SGD with Coordinate Sampling: Theory and Practice - Télécom Paris
Article Dans Une Revue Journal of Machine Learning Research Année : 2022

SGD with Coordinate Sampling: Theory and Practice

Résumé

While classical forms of stochastic gradient descent algorithm treat the different coordinates in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is developed to leverage structure in data. In a non-convex setting and including zeroth order gradient estimate, almost sure convergence as well as non-asymptotic bounds are established. Within the proposed framework, we develop an algorithm, MUSKETEER, based on a reinforcement strategy: after collecting information on the noisy gradients, it samples the most promising coordinate (all for one); then it moves along the one direction yielding an important decrease of the objective (one for all). Numerical experiments on both synthetic and real data examples confirm the effectiveness of MUSKETEER in large scale problems.
Fichier principal
Vignette du fichier
main_jmlr_camera.pdf (4.64 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04044494 , version 1 (24-03-2023)

Identifiants

Citer

Rémi Leluc, François Portier. SGD with Coordinate Sampling: Theory and Practice. Journal of Machine Learning Research, 2022, 23, (342), pp.1-47. ⟨hal-04044494⟩
23 Consultations
25 Téléchargements

Altmetric

Partager

More