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Abstract

While classical forms of stochastic gradient descent algorithm treat the different coordinates
in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is
developed to leverage structure in data. In a non-convex setting and including zeroth-order
gradient estimate, almost sure convergence as well as non-asymptotic bounds are established.
Within the proposed framework, we develop an algorithm, MUSKETEER, based on a
reinforcement strategy: after collecting information on the noisy gradients, it samples the
most promising coordinate (all for one); then it moves along the one direction yielding an
important decrease of the objective (one for all). Numerical experiments on both synthetic
and real data examples confirm the effectiveness of MUSKETEER in large scale problems.

Keywords: stochastic optimization, stochastic gradient algorithms, zeroth-order opti-
mization, coordinate descent, adaptive methods.

1. Introduction

Coordinate Descent (CD) algorithms have become unavoidable in modern machine learning
because they are tractable (Nesterov, 2012) and competitive to other methods when dealing
with key problems such as support vector machines, logistic regression, LASSO regression
and other ¢;-regularized learning problems (Wu et al., 2008; Friedman et al., 2010). They are
applied in a wide variety of problems ranging from linear systems (Lee and Sidford, 2013; Beck
and Tetruashvili, 2013) to finite sum optimization (Necoara et al., 2014; Lu and Xiao, 2015)
and composite functions (Richtarik and Taka¢, 2014) with parallel (Fercoq and Richtarik,
2015; Richtéarik and Takag, 2016b), distributed (Fercoq et al., 2014; Qu et al., 2015) and dual
(Shalev-Shwartz and Zhang, 2013; Csiba et al., 2015; Perekrestenko et al., 2017) variants.
In many contributions (Loshchilov et al., 2011; Richtarik and Takaé¢, 2016a; Glasmachers
and Dogan, 2013; Qu and Richtarik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017),
the choice of the coordinate sampling policy is conducted through some optimality criterion
estimated along the algorithm. On the one hand, efficient forms of CD methods rely on a
deterministic procedure (Nutini et al., 2015) which adapts to the underlying structure in data
at the expense of higher calculation and thus, may be costly. On the other hand, stochastic
gradient descent (SGD) methods are computationally efficient but often treat all coordinates
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equally and thus, may be sub-optimal. In the spirit of adaptive schemes, we tend to bridge
the gap between the best of both worlds by developing, within a noisy gradient framework, a
general stochastic coordinate descent method with a particular selection strategy.

We are interested in solving unconstrained optimization problems of the form mingegr f(6),
where the objective function f may be either known exactly or accessed through noisy
observations. When f is differentiable, a common appproach is to rely on the gradient of f.
However, in many scenarios and particularly in large-scale learning, the gradient may be hard
to evaluate or even intractable. Hence, one usually approximates the gradient using zeroth
or first order estimates (Ghadimi and Lan, 2013; Lian et al., 2016). The former constructs
pseudo-gradients by sampling some perturbed points or using finite differences (Flaxman
et al., 2005; Duchi et al., 2012; Nesterov and Spokoiny, 2017; Shamir, 2017) (see Liu et al.
(2020) for a recent survey and numerous references) leading to biased gradient estimates
while the latter often relies on data sampling techniques (Needell et al., 2014; Papa et al.,
2015) to obtain unbiased gradient estimates. In both cases, a random gradient estimate is
available at a cheap computing cost and the method consists in moving along this estimate
at each iteration. Early seminal works on such stochastic algorithms include Robbins and
Monro (1951); Kiefer et al. (1952) and a recent review dealing with large scale learning
problems is given in Bottou et al. (2018).

Starting from an initial point 8y € RP, the SGD algorithm is defined by the update rule

VE>0, 041 =0 — V410

where g; € RP is a gradient estimate at 6; (possibly biased) and (74)¢>1 is some learning rate
sequence that should decrease throughout the algorithm. While the computation of g; may
be cheap, it still requires the computation of a vector of size p which may be a critical issue
in high-dimensional problems. To address this difficulty, we rely on sampling well-chosen
coordinates of the gradient estimate at each iteration.

We consider the framework of stochastic coordinate gradient descent (SCGD) which
modifies standard stochastic gradient descent methods by adding a selection step to perform
random coordinate descent. The SCGD algorithm is defined by the following iteration

eg?l = 915]6) if k # G
k k k) .
oy = 0" —ng” itk =Gn

where (41 is a random variable valued in [1, p] which selects a coordinate of the gradient
estimate. The distribution of (; is called the coordinate sampling policy. Note that the SCGD
framework is very general as it contains as many methods as there are ways to generate both
the gradient estimate ¢g; and the random variables ;.

Contributions. The main contributions are as follows

(i)(Theory) We show the almost-sure convergence of the SCGD iterates (0;):cn towards
stationary points in the sense that Vf(6;) — 0 almost surely as well as non-asymptotic
bounds on the optimality gap E[f(0;) — f*] where f* is a lower bound of f. The working
conditions are relatively weak as the function f is only required to be L-smooth (classical
in non-convex problems) and the stochastic gradients are possibly biased with unbounded
variance, using a growth condition related to expected smoothness (Gower et al., 2019).
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(ii)(Practice) We develop a new algorithm, called MUSKETEER, for M Ultivariate
Stochastic Knowledge Extraction Through Exploration Ezploitation Reinforcement. In the
image of the motto ’all for one and one for all’, this procedure belongs to the SCGD framework
with a particular design for the coordinate sampling policy. It compares the value of all
past gradient estimates g; to select a descent direction (all for one) and then moves the
current iterate according to the chosen direction (one for all). The heuristic is the one of
reinforcement learning in the sense that large gradient coordinates represent large decrease
of the objective and can be seen as high rewards. The resulting directions should be favored
compared to the path associated to small gradient coordinates. By updating the coordinate
sampling policy, the algorithm is able to detect when a direction becomes rewarding and
when another one stops being engaging.

Related work. The authors of (Nutini et al., 2015) investigate the deterministic Gauss-
Southwell rule which consists of picking the coordinate with maximum gradient value. In
trusting large gradients, this rule looks like the one of MUSKETEER except that no stochastic
noise -neither in the gradient evaluation nor in the coordinate selection- is present in their
algorithm. In that aspect, our method differs from all the previous CD studies (Loshchilov
et al., 2011; Richtarik and Takac¢, 2016a; Glasmachers and Dogan, 2013; Qu and Richtarik,
2016; Allen-Zhu et al., 2016; Namkoong et al., 2017) which rely on Vf. Among the SGD
literature, compression and sparsification methods (Alistarh et al., 2017; Wangni et al., 2018)
were developed for communication efficiency. The former use compression operators to select
a few components of the gradient estimates at the cost of full gradient computation and
coordinate sorting. The latter use a gradient estimate g which is sparsified using probability
weights to reach an unbiased estimate of the gradient. In contrast, the SCGD framework
allows the gradient to be biased as no importance re-weighting is performed. Note also that,
to cover zeroth-order methods, the gradient estimate itself g; is allowed to be biased as for
instance in the recent study of Ajalloeian and Stich (2020). The proofs of the asymptotic
convergence results are based on ideas from Bertsekas and Tsitsiklis (2000) with particular
extensions in the framework of biased gradient estimates. Finally, the non-asymptotic bounds
are inspired from Moulines and Bach (2011) where the authors provide a non-asymptotic
analysis for standard SGD.

Outline. Section 2 introduces the mathematical framework with the different sampling
strategies and Section 3 contains our main theoretical results. Section 4 is dedicated to
MUSKETEER algorithm and a numerical analysis is performed in Section 5. Proofs, technical
details and additional experiments may be found in the appendix.

2. Mathematical Background

2.1 Notation and problem set-up

Notation. Denote by (e1,...,ep) the canonical basis of RP and for k € [1,p], D(k) =
epei € {0,1}P*P is a diagonal matrix with a 1 in position k. || - [|2 and || - | are respectively
the Euclidian and infinity norm. For any u € RP, u(® is the k-th coordinate of u; 14
is the indicator function of the event A, i.e., 14 = 1 is A is true and 14 = 0 otherwise.
Denote by U([1,p]) the uniform distribution over [1,p]. For a vector of probability weights
d=(dM,... dP)with DDy d®) = 1, denote by Q(d) the associated categorical distribution.
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Problem set-up. Consider the classical stochastic optimization problem

min {£(0) = E[f(6, €)1},

where £ is a random variable. In many scenarios, e.g. empirical risk minimization or
reinforcement learning, the gradient V f cannot be computed in a reasonable time and only
a stochastic version, possibly biased, is available. The distribution of £ is called the data
sampling policy as it refers to the sampling mechanism in the empirical risk minimization
(ERM) framework. This running example is presented below and shall be considered
throughout the paper. Other classical optimization problems where stochastic gradients are
available include adaptive importance sampling (Delyon and Portier, 2018), policy gradient
methods (Hanna et al., 2019) and optimal transport (Genevay et al., 2016).

Running Example (ERM). Given some observed data z1,...,z, C Z and a loss function
¢:RP x Z — R, the objective function f approximates the risk E,[¢(0, z)] by the so-called
empirical risk defined as

1 n
YO ER?,  f(0) = ;K(G,zi).

Evaluating f or its gradient is prohibitive in large scale machine learning as it requires seeing
all the samples in the dataset. Instead, after picking at random an index j = &, uniformly
distributed over [1,n], the k-th coordinate of the gradient estimate may be computed as
(0(0 + hey, zj) — £(0, z;))/h. When differentiation is possible, another gradient estimate is
offered by Vyl(8, zj). These two gradient estimates are of a different nature: the first one,
often referred to as zeroth-order estimate, is biased whereas the second one, often referred to
as first order estimate, is unbiased.

2.2 Gradient estimates

Throughout the paper, the gradient generator is denoted by g, (-, &) where the parameter
h > 0 represents the underlying bias as claimed in the next assumption. This level of
generality allows to include zeroth-order estimate as discussed right after the assumption.

Assumption 1 (Biased gradient) There exists a constant ¢ > 0 such that:
Vh > 0,0 € RP, || E¢[gn(0,8)] =V f(O)|l2 < ch.

This general assumption enables to work with classical unbiased gradient in the framework of
first order estimates by taking ¢ = 0. Furthermore, Assumption 1 is satisfied for the following
well-spread zeroth-order estimates.

Example 1 (smoothing). The smoothed gradient estimate (Nesterov and Spokoiny, 2017)
is given for all § € R? by gn(0,¢) = h=1[f(0 + hU, &) — £(0,€)]U where U is a standard
Gaussian vector (independent from £). An alternative version consists in taking U uniformly
distributed over the unit sphere.

Example 2 (finite differences). The finite differences gradient estimate is given for
all @ € R? by gn(6,&) = > 04 gn(0,6)® ey, where for all k = 1,...,p the coordinates are

gn(0, %) = B £(0 + hex, &) — £(0,€)].
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Both previous examples share the following general property. There exists a probability
measure v satisfying [, 22" v(dz) = I, such that,

Wh>0.0 € R, Elgn(0,6)] = [ s
Rp

{f(e + h:;) — f(0) } v(dz). (1)

The smoothed gradient estimate is recovered when v is the standard Gaussian measure
and taking v = Y 7_, 0, /p covers the finite differences estimate. As detailed in the next
subsection, an interesting framework is to use a measure v that evolves through time and
put different weights on the different directions. As stated in the following proposition, when
the function f is L-smooth, i.e., V f is L-Lipschitz, the bias of the gradient estimate (1) is of
order h and thus satisfies Assumption 1.

Proposition 1 Under Eq. (1), if f is L-smooth, then Assumption 1 holds true with ¢ =
VCOL/2 where C = [, ||z||Sv(dz) < .

The previous proposition allows us to cover the two methods: smoothing and finite
difference. Note that for the latter, the constant C is equal to 1.

2.3 Coordinate Sampling Policy

Let (&)i>1 be a sequence of independent and identically distributed random variables. Let
(7t)e>1 be a sequence of positive numbers called learning rates. Let (ht)¢>1 be a sequence of
positive numbers called smoothing parameters. Denote by g; = gp,., (04, &11) the gradient
estimate at time ¢. The classical SGD update rule is given by

Or1=0r — vi119t, >0, (2)

For any t € N, F; = o(6p,01,...,0;) is the o-field associated to the sequence of iterates
(01)ten-

The framework of SCGD is introduced thanks to random coordinate sampling. At each
step, only one coordinate of the parameter of interest is updated. This coordinate is selected
at random according to a distribution valued in 1, p] which is allowed to evolve during the
algorithm. The iteration of the coordinate sampling algorithm is given coordinate-wise by

9&?1 = Ht(k) if k # G
k k k) .
0 = 0 — g™ ik = G

(3)

where ;41 is a random variable valued in [1,p]. Hence (;4; selects the coordinate along
which the ¢-th descent shall proceed. The distribution of (1 is called the coordinate sampling
policy as opposed to the data sampling policy governed by the random variable &.1. The
distribution of (441 is characterized by the probability weights vector d; = (dil), ey dgp ))
defined by

AP = P(Co1 = k| F), ke [1,p].

The categorical distribution on [[1, p] associated to d; is denoted by Q(d;), i.e., conditionally
to Fi, we have:

VE>0, g1~ Qd) with dp =", ... dP).
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Running Example (ERM). The CD algorithm defined by Equation (3) can easily be
applied in the ERM framework. The coordinate sampling strategy ¢ ~ Q(d;) combined

with the uniform data sampling & ~ U([1,n]) leads to Ht(i)l = 0§<) — (Vi1 /hagr) (0(0r +

hiyiec, ze) — (04, z¢)) (zeroth-order) and Qt(i)l = ISC) — Y4109 (01, z¢) (first order).
Given the past, the data sampling and coordinate sampling draws should not be related.

Assumption 2 (Conditional Independence) (i1 is independent from &1 condition-
ally on Fi.

This assumption is natural in the ERM context as in most cases there is no particular link
between the sample indexes and the coordinates. Futhermore, the independence property
plays an important role in our proofs. The SCGD algorithm defined in (3) is simply written
with matrix notation as

Orr1 = 0t — Y41D(Ce1) 9t

where D(k) = ekekT € RP*P has its entries equal to 0 except the (k, k) which is 1. Observe
that the distribution of the random matrix D((;+1) is fully characterized by the matrix

Dy = E[D(Ci41)| 7] = Diag(d”,. .. d%)).

Note that under Assumptions 1 and 2, the average move of SCGD follows a biased gradient
direction. For instance, when ¢ = 0, the average move of SCGD is given by E[0; 1 — 04| F;] =
—Y+1D¢V f(0;) which bears resemblance to the Conditioned-SGD iteration (Bottou et al.,
2018, Section 6.2). Such preprocessing is meant to refine the gradient direction through a
matrix mulitplication for a better understanding of the underlying structure of the data.
A natural question rises on the choice of the matrix D; among all the possible coordinate
sampling distributions.

The SCGD framework is efficient as soon as one can compute each coordinate of the
gradient estimate. This is the case for zeroth-order (ZO) optimization with finite differences
where the full gradient estimate uses p partial derivatives, each of them requiring two queries
of the objective function. SCGD reduces this cost to a single coordinate update.

Remark 1 (Batch coordinates) A natural extension is to consider subsets of coordinates,
a.k.a. block-coordinate descent. Note that this framework is covered by our approach as
the proofs can be extended by summing different matrices D(C). Similarly to mini-batching
(Gower et al., 2019), one can consider multiple draws for the coordinates that are to be
updated. The selecting random matriz D((i+1) may be replaced by a diagonal matriz with
m(< p) non-zero coefficients. For that matter, it is enough to have multiple draws from the
categorical distribution Q(dy).

Remark 2 (Parallelization) Several families of communication-reduction methods such
as quantization (Alistarh et al., 2017), gradient sparsification (Wangni et al., 2018; Alistarh
et al., 2018) or local-SGD (Patel and Dieuleveut, 2019) have been proposed to reduce the
overheads of distribution. The SCGD framework can benefit from such data parallelization
techniques. When a fized number m of machines is available, it is then possible to gain
computational acceleration by drawing m times the coordinate distribution Q(dy) on the
different machines and then transmit the batch of selected coordinates to the workers.
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2.4 Adaptive and Unbiased Policies

To understand more clearly the differences between SGD and SCGD, we shall rely on a more
general iteration scheme. This framework is useful to compare different algorithms in terms
of adaptive policies and unbiased estimates. Consider the following general update rule

Ory1 = 0 — Y1 h(Op, wip1), >0 (4)

where h is a gradient generator and (w¢)¢>1 is a sequence of random variables which are not
necessarily independent nor identically distributed. Observe that both frameworks, SGD
and SCGD, are instances of (4). For example, the randomness of SCGD can be expressed

through wy = (&, ().

Definition 1 (Policy) Denote by P; the distribution of wit1 given Fi. The sequence (Pr)i>o
1s called the policy of the stochastic algorithm.

The policy of a stochastic algorithm is an important tool as it determines the randomness
introduced over time. On the one hand, it provides insights on the expected behavior of the
algorithm. On the other hand, it measures the ability to adapt through the iterations.

Definition 2 (Unbiased and Adaptive) A policy (P;)i>0 is called "unbiased" if: V0 €
RP,t > 0, [h(0,w)P(dw) o< Vf(#). It is called "naive" if P; does not change with t,
otherwise it is adaptive.

With these definitions in mind, it is clear that the SGD policy (2) under Assumption 1
with ¢ = 0 is unbiased and naive, and so does the policy induced by first order gradient in
ERM.

Within the framework of SCGD, a policy cannot be unbiased and adaptive as claimed in
the next proposition.

Proposition 2 (Unbiased coordinate policy) Suppose that Assumption 1 is fulfilled
with ¢ = 0 and that Span{V f(0) : 6 € RP} is dense in RP, then the only unbiased co-
ordinate sampling policy is Dy = I,/p. It corresponds to uniform coordinate sampling.

When working under Assumption 1 with ¢ = 0, SCGD with uniform coordinate sampling
is unbiased and hence similar to SGD. This is confirmed in the numerical experiments
(Appendix E and G). However, a uniform sampling does not use any available information to
favor coordinates among others. Thus, the approach promoted in the paper is different: past
gradient values are used to update the probability weights of D;. The resulting method is an
adaptive algorithm which is biased.

Remark 3 (Importance Coordinate Sampling) Note that the general framework de-
fined above includes the particular case where the coordinates are selected according to
¢ then reweighted as proposed in (Wangni et al., 2018). This corresponds to the choice
h(0,wis1) = D7D (Ca1)9(0, E441). Bven though such a policy is adaptive and unbiased, it
turns out -from our numerical experiments (Appendiz F)- that it behaves similarly to the
uniform version and is therefore sub-optimal.
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3. Main Theoretical Results

In a general non-convex setting, we investigate the almost sure convergence of SCGD
algorithms as well as non-asymptotic bounds. The following assumptions on the objective
function f are classical among the SGD literature.

Assumption 3 (Lower bound) There exists f* € R such that: V0 € RP, f(0) > f*.

Assumption 4 (Smoothness) The objective f : RP — R is twicely continuously differen-
tiable and L-smooth: ¥0,n € RP, ||V f(0) — Vf(n)|2 < L||0 — nl|2.

Remark 4 (Coordinate smoothness) Note that this assumption may be refined using
the notion of coordinate smoothness with parameters (L1, ..., Ly) where for allk =1,...,p,
Ok f(+) is Li-Lipschitz, i.e., for all 0 € RP, 6 € R, |0k f(0 + de,) — O f(0)] < Lg|d|. Within
this framework, small values of Ly are associated to a high degree of smoothness in the
k-th direction. Conversely, large values of Ly are associated to more difficult minimization
problems along that direction. Intuitively, it requires more energy to minimize f along these
directions and one should assign more sampling probability on coordinates with larger Ly, (see
Proposition 9 in the appendiz).

When dealing with stochastic algorithms, the stochastic noise associated to the gradient
estimates is the keystone for the theoretical analysis. To treat this term, we consider a weak
growth condition, related to the notion of expected smoothness as introduced in Gower et al.
(2019) (see also Gazagnadou et al. (2019); Gower et al. (2021)).

Assumption 5 (Growth condition) With probability 1, there exist 0 < L,0% < co such
that for all € RP and h > 0, we have: E [||gn(6,€)[3] < 2L (f(0) — f*) + o2

This bound on the stochastic noise E [||g(6,£)|3] is the key to prove the almost sure
convergence of the algorithm. Note that Assumption 5 is weak as it allows the noise to be
large when the iterate is far away from the optimal point. In that aspect, it contrasts with
uniform bounds of the form E [[|g(6,£)[|3] < o? for some deterministic 0 > 0 (Nemirovski
and Yudin, 1983; Nemirovski et al., 2009; Shalev-Shwartz et al., 2011). Observe that such
uniform bound is recovered by taking £ = 0 in Assumption 5 but cannot hold when the
objective function f is strongly convex (Nguyen et al., 2018). The standard Robbins-Monro
condition, Y ;5,7 = 400 and Y, 77 < 400 is required in the next theorem which serves
as a starting point for a comparison between SGD and SCGD methods.

Theorem 1 (Almost sure convergence of biased SGD) Suppose that Assumptions 1
to 5 are fulfilled and let (0;)ien be the sequence of iterates defined by (2). If the learning rates
satisfy the Robbins-Monro condition and h? = O(v;) then Vf(6;) — 0 a.s. when t — +oo.

The SCGD framework is very general in the sense that it covers as many algorithms as
there are ways to generate both the gradient estimate g; and the random variables (; that
select the coordinates. The next theorem provides the almost sure convergence of particular
instances of SCGD algorithms where the true gradient is known and used to define the
coordinate sampling policy. It recovers the deterministic Gauss-Southwell rule (Nutini et al.,
2015) and extends it to the case where the coordinate weights are proportional to any norm
of the current gradient V f(6;).
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Theorem 2 (Almost sure convergence of particular SCGD) Suppose that Assump-
tions 1 to 5 are fulfilled and let (0;)ien be the sequence of iterates defined by (3), i.e.,
0111 = 0r — 1D (Ce1) gt If the learning rates satisfy the standard Robbins-Monro and
h? = O(), then the two following results hold:

e (a) (mazimum gradient) if the selected coordinate follows the mazimum coordinate of the
gradient (py1 = argmaxy_;y Ok f(0:)| then Vf(0;) — 0 almost surely as t — +oc.

e (b) (gradient weights) if the selection weights are proportional to the gradient norm
Dy o< (|Vif(0:)|?)1<k<p with ¢ > 0 then V f(6;) — 0 almost surely as t — 4o0.

Remark 5 (Sparse Gradient) In light of the sparsity assumption used in Wang et al.
(2018)(Assumption A5), note that SCGD methods with weights proportional to the gradient
coordinates can outperform uniform coordinate sampling as they only select the relevant
directions throughout the procedure. Such sparsity framework happens for instance in hyper-
parameter tuning problems of learning systems: usually the performance of the system is
isensitive to some hyper-parameters which implies the sparsity of the gradients.

In the general case, one may not have access to the true gradient and can only rely on
the estimate g;. Another assumption is therefore needed on the weights of the coordinate
sampling policy to ensure that all the coordinates of interest are selected throughout the
algorithm. The success of the proposed approach relies on the following restrictions between
the learning rates sequence (7y¢)ien and the weights of the coordinate policy. This is formally
stated in the following assumption, referred to as the extended Robbins-Monro condition.

Denote by 3;11 the smallest probability weight at time ¢, i.e., 8;11 = minj<x<, dgk)

Assumption 6 (Extended Robbins-Monro condition) (v¢)¢>1, (5¢)e>1 are positive se-
quences such that >, 1Bt = +00 and Y5 77 < +o0.

From a practical point of view, those are not restrictive as they can always be implemented
by the user. In the case D; = I,, this is simply the standard Robbins-Monro condition.

Theorem 3 (Almost sure convergence of general SCGD) Suppose that Assumptions
1 to 5 are fulfilled and let (04):en be the sequence of iterates defined by (3). Assume moreover
that the learning rates satisfy Assumption 6, h? = O(v¢) and that (B;) has a positive lower
bound, then V f(0y) — 0 almost surely as t — +00.

Remark 6 (Global convergence) Other convergence results concerning the sequence of
iterates towards global minimizers may be obtained by considering stronger assumptions
including that f is coercive and the level sets of stationary points {0,V f(0) = 0}0{6, () = y}
are locally finite for every y € R? (see Gadat et al. (2018) or Appendiz B.1).

For a non-asymptotic analysis, we place ourselves under the Polyak—t.ojasiewicz (PL)
condition (Polyak, 1963) which does not assume convexity of f but retains many properties
of strong convexity, e.g. the fact that every stationary point is a global minimum.
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Assumption 7 (PL inequality) There exists a constant > 0 such that:
0 € RY, | VF(0)]13 > 21 (£(0) — f*) .-

Similarly to (Moulines and Bach, 2011), we introduce ¢, : R — R, o () = a=H(t* — 1)
if @ # 0 and @, (t) = log(t) if @« = 0. Denoting 6; = E[f(0;) — f*] and assuming that ;41 >
3 > 0, one can obtain the recursion equation: & < (1 — 2uBv; + LLE) 6i—1+7F (0L +c?)/2,
leading to the following theorem on non-asymptotic bounds for SCGD methods.

Theorem 4 (Non-asymptotic bounds) Suppose that Assumptions 1 to 7 are fulfilled and
let (0t)ien defined in (3) with vy = vt~ and hy = \/7;. Denote by 6; = E[f(0;) — f*] and
assume that there exists 5 > 0 such that Bi41 > 5 > 0. We have for o € [0,1]:

o If0<a<1 then

tfa

2 2 2 9
5 < 2exp (2L£’Y2901—2a(t)) exp <_/Ttla> (60 i oc°+2c ) 4 '7(0' L+ 2c )

2L u3
e [fa=1 then

2 2 2
+ 2c _ L _
5 < 2exp (LLY?) <50 + U%> —HBY 4 <J2 4 C2> 72(%67/2_1@)75 1uBy/2

Remark 7 (Importance weights) The conclusion of Theorem 3 remains valid for the
update rule 041 = 0y — YA WiD((eq1) gt where Wy is a diagonal matrix with coefficients

(wi .. w®) such that Byy1 = min < widy.

Remark 8 (Norms and constants) A quick inspection of the proof reveals that Assump-

tions 1 and 5 may be replaced respectively by: V0 € RP h > 0, |E¢[gn(0,£)] — Vf(0)|loo < ch
k .

and maxy—1,.. , Blg}" (0,€)%) < 2L (£(0) — £(6")) + 2. Since ||+ [loo < || ll2 < /Bl oo, the

above constant scales more efficiently with the dimension.

Remark 9 (Rates) The optimal convergence rate in Theorem 4 is of order O(1/t), obtained
with o = 1 under the condition uBy > 2. Such rate matches optimal asymptotic minimax

rate for stochastic approximation (Agarwal et al., 2012) and recovers the rate of (Ajalloeian
and Stich, 2020) for SGD with biased gradients.

4. MUSKETEER Algorithm

This section is dedicated to the algorithm MUSKETEER which performs an adaptive
reweighting of the coordinate sampling probabilities to leverage the data structure. Note
that this procedure is general and may be applied on top of any stochastic optimization
algorithm as soon as one has acces to coordinates of a gradient estimate. In view of Theorem
2 and Remark 5, the main idea is to rely on a stochastic version of the Gauss-southwell rule
where the coordinates of the gradients are only available through random estimates. The
algorithm of interest alternates between two elementary blocks: one for the exploration phase
and another one for the exploitation phase.

10
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Exploration phase. The goal of this phase is twofold: perform stochastic coordinate
gradient descent and collect information about the noisy directions of the gradient. The
former task is done using the current coordinate sampling distribution Q(d,,) which is fixed
during this phase whereas the latter is computed through cumulative gains.

Exploitation phase. This phase is the cornerstone of the probability updates since it
exploits the knowledge of the cumulative gains to update the coordinate sampling probability
vector d,, in order to sample more often the relevant directions of the optimization problem.

MUSKETEER
Require: 6y e R?, N. T € N, (7)t>0, (An)n>0, 1> 0.
1. Initialize probability weights dy = (1/p,...,1/p) // start with uniform sampling
2. Initialize cumulative gains Gy = (0,...,0)
3. forn=0,...,N—1do
4. Initialize current gain Gy = (0, ... ,0)
5. Run Explore(7,d,) // to compute current gain Gp
6
7
8

Run Exploit(G,, G, A\n, 1) // to update weights d;, 1
. end for
. Return final point 0y

Consider a fixed iteration n € N of MUSKETEER’s main loop. The exploration phase
may be seen as a multi-armed bandit problem (Auer et al., 2002a) where the arms are the

gradient coordinates for k € [1,p]. At each time step ¢ € [1,T], a coordinate ( is drawn

according to Q(d,) and the relative gradient gt(o / d%), representing the reward, is observed.

Note that an importance sampling strategy is used to produce an unbiased estimate of
the gradient when dealing with first order methods. The rewards are then used to build
cumulative gains G which can be written in a vectorized form as an empirical sum of the
visited gradients during the exploration phase

T (k) T
~ 1 . ~ 1 _
vk € [1, p], Ggf“) =7 7Zt(k)]1{gt+1:k}7 i.e. Gp= T E D D(¢es1)9 (0, &41)- (5)
=1

t=1 Yn

This average reduces the noise induced by the gradient estimates but may be sign-dependent.
Thus, one may rely on the following cumulative gains which are also considered in the
experiments,

T T
Gr = %ZD#D(QH)\Q(%&H)’ or Gr= %ZDng(CHl)Q(@taftH)Q- (6)
=1 =1

Starting from Gog = (0,...,0), the total gain G,, is updated in a online manner during
the exploitation phase using the update rule Gny1 = Gy + (Gp — Gy)/(n + 1). Once the
average cumulative gains are computed, one needs to normalize them to obtain probability
weights. Such normalization can be done by a natural ¢;-reweighting or a softmax operator
with a parameter n > 0. To cover both cases, consider the normalizing function ¢ : RP — RP
defined by o(z)®) = |z*)|/ Z?:l 129)] or @(x)*) = exp(nz*))/ Y exp(nz?)). Following
the sequential approach of the EXP3 algorithm (Auer et al., 2002a,b), the probability weights
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are updated through a mixture between the normalized average cumulative gains ¢(Gy,) and
a uniform distribution. The former term takes into account the knowledge of the gains by
exploiting the rewards while the latter ensures exploration. Given a sequence (\,) € [0, I]N,
we have for all k € [1,p],

1

k
Aty = (1= M)e(Ga)® + A (7)
Explore(T', d,,) Exploit(Gp, G1, An, 1)

L fort=1,...,T do 1. Update total average gain G, in
2. Sample coordinate ¢ ~ Q(d,) and data & an online manner
3. Move iterate: 9&21 = 0,@ — Yet1 gﬁf) (0, €) 2. Compute normalized gains ¢(Gy,)
4. Update gain égi)l using (5) or (6) with ¢;-weights or softmax
5. end for 3. Update probability weights d,, 1
6. Return vector of gains éT with the mixture of Eq.(7)

In view of Theorem 3, the convergence of the sequence of iterates (6;)ieny obtained by
MUSKETEER relies on the extended Robbins-Monro condition ), 8¢y = +0c which is
implied by the weaker condition ), A¢y¢ = 400 for both ¢; and softmax weights. Observe
that such a constraint is easily verified with either a fixed value Ay = A in the mixture update
or more generally a slowly decreasing sequence, e.g. A\, = 1/log(t). Since the gradients
V f(6;) get smaller through the iterations, the softmax weights get closer to 1/p. Thus, in the
asymptotic regime, there is no favorable directions among all the possible gradient directions.
Hence, near the optimum, the coordinate sampling policy of MUSKETEER with softmax
weights is likely to treat all the coordinates equally.

Theorem 5 (Weak convergence) Suppose that Assumptions 1 to 5 are fulfilled and that
the learning rates satisfy the standard Robbins-Monro condition. Then MUSKETEER'’s
coordinate policy (Q(dy))nen with softmaz normalization converges weakly to the uniform
distribution, i.e., Q(dyn) ~> U([1,p]) as n — +oo.

Remark 10 (On the choice of A\, and n) The uniform term in Equation (7) ensures that
all coordinates are eventually visited. Taking A, — 0 at a specific rate (which can be derived
from the proof) gives more importance to the cumulative gains. The parameter n is fized
during the algorithm and may be tuned through an analysis of the regret (Auer et al., 2002a).

Remark 11 (Choice of Exploration Size T') Choosing the value of T is a central question
known as the exploration-exploitation dilemma in reinforcement learning. As T gets large,
the exploration phase gathers more information leading to fewer but more accurate updates.
Conversely, with a small value of T, the probabilities get updated more often, at the price
of less collected information. Setting T = p ensures that, in average, all the coordinates are
visited once during the exploration phase. Nevertheless, a smaller value T = |\/p] is taken
in the experiments and lead to great performance.

Remark 12 (Asymptotic behavior) The previous results highlight two main features of
MUSKETEER: the sequence of iterates converges almost surely and the coordinate policy
converges weakly. The latter point suggests that, in the long run, MUSKETEER is similar
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to the uniform coordinate version of SCGD. However, the weak convergence of the rescaled
process (0 — 0%)/\/7; remains an open question. In light of the link between SCGD and
Conditioned-SGD, discussed in Section 2.3, we conjecture that the behavior of MUSKETEER
with softmax weights is asymptotically equivalent to SCGD with uniform policy. This is in
line with the continuity property obtained in Leluc and Portier (2020) within the Conditioned-
SGD framewor