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Abstract
While classical forms of stochastic gradient descent algorithm treat the different coordinates
in the same way, a framework allowing for adaptive (non uniform) coordinate sampling is
developed to leverage structure in data. In a non-convex setting and including zeroth-order
gradient estimate, almost sure convergence as well as non-asymptotic bounds are established.
Within the proposed framework, we develop an algorithm, MUSKETEER, based on a
reinforcement strategy: after collecting information on the noisy gradients, it samples the
most promising coordinate (all for one); then it moves along the one direction yielding an
important decrease of the objective (one for all). Numerical experiments on both synthetic
and real data examples confirm the effectiveness of MUSKETEER in large scale problems.
Keywords: stochastic optimization, stochastic gradient algorithms, zeroth-order opti-
mization, coordinate descent, adaptive methods.

1. Introduction

Coordinate Descent (CD) algorithms have become unavoidable in modern machine learning
because they are tractable (Nesterov, 2012) and competitive to other methods when dealing
with key problems such as support vector machines, logistic regression, LASSO regression
and other `1-regularized learning problems (Wu et al., 2008; Friedman et al., 2010). They are
applied in a wide variety of problems ranging from linear systems (Lee and Sidford, 2013; Beck
and Tetruashvili, 2013) to finite sum optimization (Necoara et al., 2014; Lu and Xiao, 2015)
and composite functions (Richtárik and Takáč, 2014) with parallel (Fercoq and Richtárik,
2015; Richtárik and Takáč, 2016b), distributed (Fercoq et al., 2014; Qu et al., 2015) and dual
(Shalev-Shwartz and Zhang, 2013; Csiba et al., 2015; Perekrestenko et al., 2017) variants.
In many contributions (Loshchilov et al., 2011; Richtárik and Takáč, 2016a; Glasmachers
and Dogan, 2013; Qu and Richtárik, 2016; Allen-Zhu et al., 2016; Namkoong et al., 2017),
the choice of the coordinate sampling policy is conducted through some optimality criterion
estimated along the algorithm. On the one hand, efficient forms of CD methods rely on a
deterministic procedure (Nutini et al., 2015) which adapts to the underlying structure in data
at the expense of higher calculation and thus, may be costly. On the other hand, stochastic
gradient descent (SGD) methods are computationally efficient but often treat all coordinates
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Leluc and Portier

equally and thus, may be sub-optimal. In the spirit of adaptive schemes, we tend to bridge
the gap between the best of both worlds by developing, within a noisy gradient framework, a
general stochastic coordinate descent method with a particular selection strategy.

We are interested in solving unconstrained optimization problems of the form minθ∈Rp f(θ),
where the objective function f may be either known exactly or accessed through noisy
observations. When f is differentiable, a common appproach is to rely on the gradient of f .
However, in many scenarios and particularly in large-scale learning, the gradient may be hard
to evaluate or even intractable. Hence, one usually approximates the gradient using zeroth
or first order estimates (Ghadimi and Lan, 2013; Lian et al., 2016). The former constructs
pseudo-gradients by sampling some perturbed points or using finite differences (Flaxman
et al., 2005; Duchi et al., 2012; Nesterov and Spokoiny, 2017; Shamir, 2017) (see Liu et al.
(2020) for a recent survey and numerous references) leading to biased gradient estimates
while the latter often relies on data sampling techniques (Needell et al., 2014; Papa et al.,
2015) to obtain unbiased gradient estimates. In both cases, a random gradient estimate is
available at a cheap computing cost and the method consists in moving along this estimate
at each iteration. Early seminal works on such stochastic algorithms include Robbins and
Monro (1951); Kiefer et al. (1952) and a recent review dealing with large scale learning
problems is given in Bottou et al. (2018).

Starting from an initial point θ0 ∈ Rp, the SGD algorithm is defined by the update rule

∀t ≥ 0, θt+1 = θt − γt+1gt

where gt ∈ Rp is a gradient estimate at θt (possibly biased) and (γt)t≥1 is some learning rate
sequence that should decrease throughout the algorithm. While the computation of gt may
be cheap, it still requires the computation of a vector of size p which may be a critical issue
in high-dimensional problems. To address this difficulty, we rely on sampling well-chosen
coordinates of the gradient estimate at each iteration.

We consider the framework of stochastic coordinate gradient descent (SCGD) which
modifies standard stochastic gradient descent methods by adding a selection step to perform
random coordinate descent. The SCGD algorithm is defined by the following iteration{

θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

where ζt+1 is a random variable valued in J1, pK which selects a coordinate of the gradient
estimate. The distribution of ζt is called the coordinate sampling policy. Note that the SCGD
framework is very general as it contains as many methods as there are ways to generate both
the gradient estimate gt and the random variables ζt.

Contributions. The main contributions are as follows
(i)(Theory) We show the almost-sure convergence of the SCGD iterates (θt)t∈N towards

stationary points in the sense that ∇f(θt) → 0 almost surely as well as non-asymptotic
bounds on the optimality gap E[f(θt)− f?] where f? is a lower bound of f . The working
conditions are relatively weak as the function f is only required to be L-smooth (classical
in non-convex problems) and the stochastic gradients are possibly biased with unbounded
variance, using a growth condition related to expected smoothness (Gower et al., 2019).
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(ii)(Practice) We develop a new algorithm, called MUSKETEER, for MUltivariate
Stochastic Knowledge Extraction Through Exploration Exploitation Reinforcement. In the
image of the motto ’all for one and one for all’, this procedure belongs to the SCGD framework
with a particular design for the coordinate sampling policy. It compares the value of all
past gradient estimates gt to select a descent direction (all for one) and then moves the
current iterate according to the chosen direction (one for all). The heuristic is the one of
reinforcement learning in the sense that large gradient coordinates represent large decrease
of the objective and can be seen as high rewards. The resulting directions should be favored
compared to the path associated to small gradient coordinates. By updating the coordinate
sampling policy, the algorithm is able to detect when a direction becomes rewarding and
when another one stops being engaging.

Related work. The authors of (Nutini et al., 2015) investigate the deterministic Gauss-
Southwell rule which consists of picking the coordinate with maximum gradient value. In
trusting large gradients, this rule looks like the one of MUSKETEER except that no stochastic
noise -neither in the gradient evaluation nor in the coordinate selection- is present in their
algorithm. In that aspect, our method differs from all the previous CD studies (Loshchilov
et al., 2011; Richtárik and Takáč, 2016a; Glasmachers and Dogan, 2013; Qu and Richtárik,
2016; Allen-Zhu et al., 2016; Namkoong et al., 2017) which rely on ∇f . Among the SGD
literature, compression and sparsification methods (Alistarh et al., 2017; Wangni et al., 2018)
were developed for communication efficiency. The former use compression operators to select
a few components of the gradient estimates at the cost of full gradient computation and
coordinate sorting. The latter use a gradient estimate g which is sparsified using probability
weights to reach an unbiased estimate of the gradient. In contrast, the SCGD framework
allows the gradient to be biased as no importance re-weighting is performed. Note also that,
to cover zeroth-order methods, the gradient estimate itself gt is allowed to be biased as for
instance in the recent study of Ajalloeian and Stich (2020). The proofs of the asymptotic
convergence results are based on ideas from Bertsekas and Tsitsiklis (2000) with particular
extensions in the framework of biased gradient estimates. Finally, the non-asymptotic bounds
are inspired from Moulines and Bach (2011) where the authors provide a non-asymptotic
analysis for standard SGD.

Outline. Section 2 introduces the mathematical framework with the different sampling
strategies and Section 3 contains our main theoretical results. Section 4 is dedicated to
MUSKETEER algorithm and a numerical analysis is performed in Section 5. Proofs, technical
details and additional experiments may be found in the appendix.

2. Mathematical Background

2.1 Notation and problem set-up

Notation. Denote by (e1, . . . , ep) the canonical basis of Rp and for k ∈ J1, pK, D(k) =
eke

T
k ∈ {0, 1}p×p is a diagonal matrix with a 1 in position k. ‖ · ‖2 and ‖ · ‖∞ are respectively

the Euclidian and infinity norm. For any u ∈ Rp, u(k) is the k-th coordinate of u; 1A
is the indicator function of the event A, i.e., 1A = 1 is A is true and 1A = 0 otherwise.
Denote by U(J1, pK) the uniform distribution over J1, pK. For a vector of probability weights
d = (d(1), . . . , d(p)) with

∑p
k=1 d

(k) = 1, denote by Q(d) the associated categorical distribution.
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Problem set-up. Consider the classical stochastic optimization problem

min
θ∈Rp
{f(θ) = Eξ[f(θ, ξ)]} ,

where ξ is a random variable. In many scenarios, e.g. empirical risk minimization or
reinforcement learning, the gradient ∇f cannot be computed in a reasonable time and only
a stochastic version, possibly biased, is available. The distribution of ξ is called the data
sampling policy as it refers to the sampling mechanism in the empirical risk minimization
(ERM) framework. This running example is presented below and shall be considered
throughout the paper. Other classical optimization problems where stochastic gradients are
available include adaptive importance sampling (Delyon and Portier, 2018), policy gradient
methods (Hanna et al., 2019) and optimal transport (Genevay et al., 2016).

Running Example (ERM). Given some observed data z1, . . . , zn ⊂ Z and a loss function
` : Rp ×Z → R, the objective function f approximates the risk Ez[`(θ, z)] by the so-called
empirical risk defined as

∀θ ∈ Rp, f(θ) =
1

n

n∑
i=1

`(θ, zi).

Evaluating f or its gradient is prohibitive in large scale machine learning as it requires seeing
all the samples in the dataset. Instead, after picking at random an index j = ξ, uniformly
distributed over J1, nK, the k-th coordinate of the gradient estimate may be computed as
(`(θ + hek, zj)− `(θ, zj))/h. When differentiation is possible, another gradient estimate is
offered by ∇θ`(θ, zj). These two gradient estimates are of a different nature: the first one,
often referred to as zeroth-order estimate, is biased whereas the second one, often referred to
as first order estimate, is unbiased.

2.2 Gradient estimates

Throughout the paper, the gradient generator is denoted by gh(·, ξ) where the parameter
h ≥ 0 represents the underlying bias as claimed in the next assumption. This level of
generality allows to include zeroth-order estimate as discussed right after the assumption.

Assumption 1 (Biased gradient) There exists a constant c ≥ 0 such that:

∀h > 0, ∀θ ∈ Rp, ‖Eξ[gh(θ, ξ)]−∇f(θ)‖2 ≤ ch.

This general assumption enables to work with classical unbiased gradient in the framework of
first order estimates by taking c = 0. Furthermore, Assumption 1 is satisfied for the following
well-spread zeroth-order estimates.

Example 1 (smoothing). The smoothed gradient estimate (Nesterov and Spokoiny, 2017)
is given for all θ ∈ Rp by gh(θ, ξ) = h−1[f(θ + hU, ξ) − f(θ, ξ)]U where U is a standard
Gaussian vector (independent from ξ). An alternative version consists in taking U uniformly
distributed over the unit sphere.

Example 2 (finite differences). The finite differences gradient estimate is given for
all θ ∈ Rp by gh(θ, ξ) =

∑p
k=1 gh(θ, ξ)(k)ek where for all k = 1, . . . , p the coordinates are

gh(θ, ξ)(k) = h−1[f(θ + hek, ξ)− f(θ, ξ)].
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Both previous examples share the following general property. There exists a probability
measure ν satisfying

∫
Rp xx

>ν(dx) = Ip such that,

∀h > 0, θ ∈ Rp, Eξ[gh(θ, ξ)] =

∫
Rp
x

{
f(θ + hx)− f(θ)

h

}
ν(dx). (1)

The smoothed gradient estimate is recovered when ν is the standard Gaussian measure
and taking ν =

∑p
k=1 δek/p covers the finite differences estimate. As detailed in the next

subsection, an interesting framework is to use a measure ν that evolves through time and
put different weights on the different directions. As stated in the following proposition, when
the function f is L-smooth, i.e., ∇f is L-Lipschitz, the bias of the gradient estimate (1) is of
order h and thus satisfies Assumption 1.

Proposition 1 Under Eq. (1), if f is L-smooth, then Assumption 1 holds true with c =√
CL/2 where C =

∫
Rp ‖x‖62ν(dx) <∞.

The previous proposition allows us to cover the two methods: smoothing and finite
difference. Note that for the latter, the constant C is equal to 1.

2.3 Coordinate Sampling Policy

Let (ξt)t≥1 be a sequence of independent and identically distributed random variables. Let
(γt)t≥1 be a sequence of positive numbers called learning rates. Let (ht)t≥1 be a sequence of
positive numbers called smoothing parameters. Denote by gt = ght+1(θt, ξt+1) the gradient
estimate at time t. The classical SGD update rule is given by

θt+1 = θt − γt+1gt, t ≥ 0, (2)

For any t ∈ N,Ft = σ(θ0, θ1, . . . , θt) is the σ-field associated to the sequence of iterates
(θt)t∈N.

The framework of SCGD is introduced thanks to random coordinate sampling. At each
step, only one coordinate of the parameter of interest is updated. This coordinate is selected
at random according to a distribution valued in J1, pK which is allowed to evolve during the
algorithm. The iteration of the coordinate sampling algorithm is given coordinate-wise by{

θ
(k)
t+1 = θ

(k)
t if k 6= ζt+1

θ
(k)
t+1 = θ

(k)
t − γt+1g

(k)
t if k = ζt+1

(3)

where ζt+1 is a random variable valued in J1, pK. Hence ζt+1 selects the coordinate along
which the t-th descent shall proceed. The distribution of ζt+1 is called the coordinate sampling
policy as opposed to the data sampling policy governed by the random variable ξt+1. The
distribution of ζt+1 is characterized by the probability weights vector dt = (d

(1)
t , . . . , d

(p)
t )

defined by
d
(k)
t = P(ζt+1 = k|Ft), k ∈ J1, pK.

The categorical distribution on J1, pK associated to dt is denoted by Q(dt), i.e., conditionally
to Ft, we have:

∀t ≥ 0, ζt+1 ∼ Q(dt) with dt = (d
(1)
t , . . . , d

(p)
t ).
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Running Example (ERM). The CD algorithm defined by Equation (3) can easily be
applied in the ERM framework. The coordinate sampling strategy ζ ∼ Q(dt) combined
with the uniform data sampling ξ ∼ U(J1, nK) leads to θ

(ζ)
t+1 = θ

(ζ)
t − (γt+1/ht+1)(`(θt +

ht+1eζ , zξ)− `(θt, zξ)) (zeroth-order) and θ(ζ)t+1 = θ
(ζ)
t − γt+1∂θζ`(θt, zξ) (first order).

Given the past, the data sampling and coordinate sampling draws should not be related.

Assumption 2 (Conditional Independence) ζt+1 is independent from ξt+1 condition-
ally on Ft.

This assumption is natural in the ERM context as in most cases there is no particular link
between the sample indexes and the coordinates. Futhermore, the independence property
plays an important role in our proofs. The SCGD algorithm defined in (3) is simply written
with matrix notation as

θt+1 = θt − γt+1D(ζt+1)gt,

where D(k) = eke
>
k ∈ Rp×p has its entries equal to 0 except the (k, k) which is 1. Observe

that the distribution of the random matrix D(ζt+1) is fully characterized by the matrix

Dt = E[D(ζt+1)|Ft] = Diag(d
(1)
t , . . . , d

(p)
t ).

Note that under Assumptions 1 and 2, the average move of SCGD follows a biased gradient
direction. For instance, when c = 0, the average move of SCGD is given by E[θt+1 − θt|Ft] =
−γt+1Dt∇f(θt) which bears resemblance to the Conditioned-SGD iteration (Bottou et al.,
2018, Section 6.2). Such preprocessing is meant to refine the gradient direction through a
matrix mulitplication for a better understanding of the underlying structure of the data.
A natural question rises on the choice of the matrix Dt among all the possible coordinate
sampling distributions.

The SCGD framework is efficient as soon as one can compute each coordinate of the
gradient estimate. This is the case for zeroth-order (ZO) optimization with finite differences
where the full gradient estimate uses p partial derivatives, each of them requiring two queries
of the objective function. SCGD reduces this cost to a single coordinate update.

Remark 1 (Batch coordinates) A natural extension is to consider subsets of coordinates,
a.k.a. block-coordinate descent. Note that this framework is covered by our approach as
the proofs can be extended by summing different matrices D(ζ). Similarly to mini-batching
(Gower et al., 2019), one can consider multiple draws for the coordinates that are to be
updated. The selecting random matrix D(ζt+1) may be replaced by a diagonal matrix with
m(< p) non-zero coefficients. For that matter, it is enough to have multiple draws from the
categorical distribution Q(dt).

Remark 2 (Parallelization) Several families of communication-reduction methods such
as quantization (Alistarh et al., 2017), gradient sparsification (Wangni et al., 2018; Alistarh
et al., 2018) or local-SGD (Patel and Dieuleveut, 2019) have been proposed to reduce the
overheads of distribution. The SCGD framework can benefit from such data parallelization
techniques. When a fixed number m of machines is available, it is then possible to gain
computational acceleration by drawing m times the coordinate distribution Q(dt) on the
different machines and then transmit the batch of selected coordinates to the workers.

6



SGD with Coordinate Sampling: Theory and Practice

2.4 Adaptive and Unbiased Policies

To understand more clearly the differences between SGD and SCGD, we shall rely on a more
general iteration scheme. This framework is useful to compare different algorithms in terms
of adaptive policies and unbiased estimates. Consider the following general update rule

θt+1 = θt − γt+1h(θt, ωt+1), t ≥ 0 (4)

where h is a gradient generator and (ωt)t≥1 is a sequence of random variables which are not
necessarily independent nor identically distributed. Observe that both frameworks, SGD
and SCGD, are instances of (4). For example, the randomness of SCGD can be expressed
through ωt = (ξt, ζt).

Definition 1 (Policy) Denote by Pt the distribution of ωt+1 given Ft. The sequence (Pt)t≥0
is called the policy of the stochastic algorithm.

The policy of a stochastic algorithm is an important tool as it determines the randomness
introduced over time. On the one hand, it provides insights on the expected behavior of the
algorithm. On the other hand, it measures the ability to adapt through the iterations.

Definition 2 (Unbiased and Adaptive) A policy (Pt)t≥0 is called "unbiased" if: ∀θ ∈
Rp, t ≥ 0,

∫
h(θ, ω)Pt(dω) ∝ ∇f(θ). It is called "naive" if Pt does not change with t,

otherwise it is adaptive.

With these definitions in mind, it is clear that the SGD policy (2) under Assumption 1
with c = 0 is unbiased and naive, and so does the policy induced by first order gradient in
ERM.

Within the framework of SCGD, a policy cannot be unbiased and adaptive as claimed in
the next proposition.

Proposition 2 (Unbiased coordinate policy) Suppose that Assumption 1 is fulfilled
with c = 0 and that Span{∇f(θ) : θ ∈ Rp} is dense in Rp, then the only unbiased co-
ordinate sampling policy is Dt = Ip/p. It corresponds to uniform coordinate sampling.

When working under Assumption 1 with c = 0, SCGD with uniform coordinate sampling
is unbiased and hence similar to SGD. This is confirmed in the numerical experiments
(Appendix E and G). However, a uniform sampling does not use any available information to
favor coordinates among others. Thus, the approach promoted in the paper is different: past
gradient values are used to update the probability weights of Dt. The resulting method is an
adaptive algorithm which is biased.

Remark 3 (Importance Coordinate Sampling) Note that the general framework de-
fined above includes the particular case where the coordinates are selected according to
ζ then reweighted as proposed in (Wangni et al., 2018). This corresponds to the choice
h(θ, ωt+1) = D−1t D(ζt+1)g(θ, ξt+1). Even though such a policy is adaptive and unbiased, it
turns out -from our numerical experiments (Appendix F)- that it behaves similarly to the
uniform version and is therefore sub-optimal.
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3. Main Theoretical Results

In a general non-convex setting, we investigate the almost sure convergence of SCGD
algorithms as well as non-asymptotic bounds. The following assumptions on the objective
function f are classical among the SGD literature.

Assumption 3 (Lower bound) There exists f? ∈ R such that: ∀θ ∈ Rp, f(θ) ≥ f?.

Assumption 4 (Smoothness) The objective f : Rp → R is twicely continuously differen-
tiable and L-smooth: ∀θ, η ∈ Rp, ‖∇f(θ)−∇f(η)‖2 ≤ L‖θ − η‖2.

Remark 4 (Coordinate smoothness) Note that this assumption may be refined using
the notion of coordinate smoothness with parameters (L1, . . . , Lp) where for all k = 1, . . . , p,
∂kf(·) is Lk-Lipschitz, i.e., for all θ ∈ Rp, δ ∈ R, |∂kf(θ + δek) − ∂kf(θ)| ≤ Lk|δ|. Within
this framework, small values of Lk are associated to a high degree of smoothness in the
k-th direction. Conversely, large values of Lk are associated to more difficult minimization
problems along that direction. Intuitively, it requires more energy to minimize f along these
directions and one should assign more sampling probability on coordinates with larger Lk (see
Proposition 9 in the appendix).

When dealing with stochastic algorithms, the stochastic noise associated to the gradient
estimates is the keystone for the theoretical analysis. To treat this term, we consider a weak
growth condition, related to the notion of expected smoothness as introduced in Gower et al.
(2019) (see also Gazagnadou et al. (2019); Gower et al. (2021)).

Assumption 5 (Growth condition) With probability 1, there exist 0 ≤ L, σ2 <∞ such
that for all θ ∈ Rp and h > 0, we have: E

[
‖gh(θ, ξ)‖22

]
≤ 2L (f(θ)− f?) + σ2.

This bound on the stochastic noise E
[
‖g(θ, ξ)‖22

]
is the key to prove the almost sure

convergence of the algorithm. Note that Assumption 5 is weak as it allows the noise to be
large when the iterate is far away from the optimal point. In that aspect, it contrasts with
uniform bounds of the form E

[
‖g(θ, ξ)‖22

]
≤ σ2 for some deterministic σ2 > 0 (Nemirovski

and Yudin, 1983; Nemirovski et al., 2009; Shalev-Shwartz et al., 2011). Observe that such
uniform bound is recovered by taking L = 0 in Assumption 5 but cannot hold when the
objective function f is strongly convex (Nguyen et al., 2018). The standard Robbins-Monro
condition,

∑
t≥1 γt = +∞ and

∑
t≥1 γ

2
t < +∞ is required in the next theorem which serves

as a starting point for a comparison between SGD and SCGD methods.

Theorem 1 (Almost sure convergence of biased SGD) Suppose that Assumptions 1
to 5 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (2). If the learning rates
satisfy the Robbins-Monro condition and h2t = O(γt) then ∇f(θt)→ 0 a.s. when t→ +∞.

The SCGD framework is very general in the sense that it covers as many algorithms as
there are ways to generate both the gradient estimate gt and the random variables ζt that
select the coordinates. The next theorem provides the almost sure convergence of particular
instances of SCGD algorithms where the true gradient is known and used to define the
coordinate sampling policy. It recovers the deterministic Gauss-Southwell rule (Nutini et al.,
2015) and extends it to the case where the coordinate weights are proportional to any norm
of the current gradient ∇f(θt).

8
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Theorem 2 (Almost sure convergence of particular SCGD) Suppose that Assump-
tions 1 to 5 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (3), i.e.,
θt+1 = θt − γt+1D(ζt+1)gt. If the learning rates satisfy the standard Robbins-Monro and
h2t = O(γt), then the two following results hold:

• (a) (maximum gradient) if the selected coordinate follows the maximum coordinate of the
gradient ζt+1 = arg maxk=1,...,p |∂kf(θt)| then ∇f(θt)→ 0 almost surely as t→ +∞.

• (b) (gradient weights) if the selection weights are proportional to the gradient norm
Dt ∝ (|∇kf(θt)|q)1≤k≤p with q > 0 then ∇f(θt)→ 0 almost surely as t→ +∞.

Remark 5 (Sparse Gradient) In light of the sparsity assumption used in Wang et al.
(2018)(Assumption A5), note that SCGD methods with weights proportional to the gradient
coordinates can outperform uniform coordinate sampling as they only select the relevant
directions throughout the procedure. Such sparsity framework happens for instance in hyper-
parameter tuning problems of learning systems: usually the performance of the system is
insensitive to some hyper-parameters which implies the sparsity of the gradients.

In the general case, one may not have access to the true gradient and can only rely on
the estimate gt. Another assumption is therefore needed on the weights of the coordinate
sampling policy to ensure that all the coordinates of interest are selected throughout the
algorithm. The success of the proposed approach relies on the following restrictions between
the learning rates sequence (γt)t∈N and the weights of the coordinate policy. This is formally
stated in the following assumption, referred to as the extended Robbins-Monro condition.
Denote by βt+1 the smallest probability weight at time t, i.e., βt+1 = min1≤k≤p d

(k)
t .

Assumption 6 (Extended Robbins-Monro condition) (γt)t≥1, (βt)t≥1 are positive se-
quences such that

∑
t≥1 γtβt = +∞ and

∑
t≥1 γ

2
t < +∞.

From a practical point of view, those are not restrictive as they can always be implemented
by the user. In the case Dt = Ip, this is simply the standard Robbins-Monro condition.

Theorem 3 (Almost sure convergence of general SCGD) Suppose that Assumptions
1 to 5 are fulfilled and let (θt)t∈N be the sequence of iterates defined by (3). Assume moreover
that the learning rates satisfy Assumption 6, h2t = O(γt) and that (βt) has a positive lower
bound, then ∇f(θt)→ 0 almost surely as t→ +∞.

Remark 6 (Global convergence) Other convergence results concerning the sequence of
iterates towards global minimizers may be obtained by considering stronger assumptions
including that f is coercive and the level sets of stationary points {θ,∇f(θ) = 0}∩{θ, f(θ) = y}
are locally finite for every y ∈ Rd (see Gadat et al. (2018) or Appendix B.1).

For a non-asymptotic analysis, we place ourselves under the Polyak–Łojasiewicz (PL)
condition (Polyak, 1963) which does not assume convexity of f but retains many properties
of strong convexity, e.g. the fact that every stationary point is a global minimum.
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Assumption 7 (PL inequality) There exists a constant µ > 0 such that:

∀θ ∈ Rp, ‖∇f(θ)‖22 ≥ 2µ (f(θ)− f?) .

Similarly to (Moulines and Bach, 2011), we introduce ϕα : R?+ → R, ϕα(t) = α−1(tα − 1)
if α 6= 0 and ϕα(t) = log(t) if α = 0. Denoting δt = E [f(θt)− f?] and assuming that βt+1 ≥
β > 0, one can obtain the recursion equation: δt ≤

(
1− 2µβγt + LLγ2t

)
δt−1+γ2t (σ2L+c2)/2,

leading to the following theorem on non-asymptotic bounds for SCGD methods.

Theorem 4 (Non-asymptotic bounds) Suppose that Assumptions 1 to 7 are fulfilled and
let (θt)t∈N defined in (3) with γt = γt−α and ht =

√
γt. Denote by δt = E [f(θt)− f?] and

assume that there exists β > 0 such that βt+1 ≥ β > 0. We have for α ∈ [0, 1]:
• If 0 ≤ α < 1 then

δt ≤ 2 exp
(
2LLγ2ϕ1−2α(t)

)
exp

(
−µβγ

4
t1−α

)(
δ0 +

σ2 + 2c2

2L

)
+
γ(σ2L+ 2c2)

µβ
t−α

• If α = 1 then

δt ≤ 2 exp
(
LLγ2

)(
δ0 +

σ2 + 2c2

2L

)
t−µβγ +

(
σ2L

2
+ c2

)
γ2ϕµβγ/2−1(t)t

−µβγ/2

Remark 7 (Importance weights) The conclusion of Theorem 3 remains valid for the
update rule θt+1 = θt − γt+1WtD(ζt+1)gt where Wt is a diagonal matrix with coefficients
(w

(1)
t , . . . , w

(p)
t ) such that βt+1 = min1≤k≤pw

(k)
t d

(k)
t .

Remark 8 (Norms and constants) A quick inspection of the proof reveals that Assump-
tions 1 and 5 may be replaced respectively by: ∀θ ∈ Rp, h > 0, ‖Eξ[gh(θ, ξ)]−∇f(θ)‖∞ ≤ ch
and maxk=1,...,p E[g

(k)
h (θ, ξ)2] ≤ 2L (f(θ)− f(θ?)) + σ2. Since ‖ · ‖∞ ≤ ‖ · ‖2 ≤ √p‖ · ‖∞, the

above constant scales more efficiently with the dimension.

Remark 9 (Rates) The optimal convergence rate in Theorem 4 is of order O(1/t), obtained
with α = 1 under the condition µβγ > 2. Such rate matches optimal asymptotic minimax
rate for stochastic approximation (Agarwal et al., 2012) and recovers the rate of (Ajalloeian
and Stich, 2020) for SGD with biased gradients.

4. MUSKETEER Algorithm

This section is dedicated to the algorithm MUSKETEER which performs an adaptive
reweighting of the coordinate sampling probabilities to leverage the data structure. Note
that this procedure is general and may be applied on top of any stochastic optimization
algorithm as soon as one has acces to coordinates of a gradient estimate. In view of Theorem
2 and Remark 5, the main idea is to rely on a stochastic version of the Gauss-southwell rule
where the coordinates of the gradients are only available through random estimates. The
algorithm of interest alternates between two elementary blocks: one for the exploration phase
and another one for the exploitation phase.
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Exploration phase. The goal of this phase is twofold: perform stochastic coordinate
gradient descent and collect information about the noisy directions of the gradient. The
former task is done using the current coordinate sampling distribution Q(dn) which is fixed
during this phase whereas the latter is computed through cumulative gains.

Exploitation phase. This phase is the cornerstone of the probability updates since it
exploits the knowledge of the cumulative gains to update the coordinate sampling probability
vector dn in order to sample more often the relevant directions of the optimization problem.

MUSKETEER
Require: θ0 ∈ Rp, N,T ∈ N, (γt)t≥0, (λn)n≥0, η > 0.
1. Initialize probability weights d0 = (1/p, . . . , 1/p) // start with uniform sampling
2. Initialize cumulative gains G0 = (0, . . . , 0)
3. for n = 0, . . . , N − 1 do
4. Initialize current gain G̃0 = (0, . . . , 0)
5. Run Explore(T, dn) // to compute current gain G̃T
6. Run Exploit(Gn, G̃T , λn, η) // to update weights dn+1

7. end for
8. Return final point θN

Consider a fixed iteration n ∈ N of MUSKETEER’s main loop. The exploration phase
may be seen as a multi-armed bandit problem (Auer et al., 2002a) where the arms are the
gradient coordinates for k ∈ J1, pK. At each time step t ∈ J1, T K, a coordinate ζ is drawn
according to Q(dn) and the relative gradient g(ζ)t /d

(ζ)
n , representing the reward, is observed.

Note that an importance sampling strategy is used to produce an unbiased estimate of
the gradient when dealing with first order methods. The rewards are then used to build
cumulative gains G̃T which can be written in a vectorized form as an empirical sum of the
visited gradients during the exploration phase

∀k ∈ J1, pK, G̃
(k)
T =

1

T

T∑
t=1

g
(k)
t

d
(k)
n

1{ζt+1=k}, i.e. G̃T =
1

T

T∑
t=1

D−1n D(ζt+1)g(θt, ξt+1). (5)

This average reduces the noise induced by the gradient estimates but may be sign-dependent.
Thus, one may rely on the following cumulative gains which are also considered in the
experiments,

G̃T =
1

T

T∑
t=1

D−1n D(ζt+1)|g(θt, ξt+1)| or G̃T =
1

T

T∑
t=1

D−1n D(ζt+1)g(θt, ξt+1)
2. (6)

Starting from G0 = (0, . . . , 0), the total gain Gn is updated in a online manner during
the exploitation phase using the update rule Gn+1 = Gn + (G̃T − Gn)/(n + 1). Once the
average cumulative gains are computed, one needs to normalize them to obtain probability
weights. Such normalization can be done by a natural `1-reweighting or a softmax operator
with a parameter η > 0. To cover both cases, consider the normalizing function ϕ : Rp → Rp
defined by ϕ(x)(k) = |x(k)|/∑p

j=1 |x(j)| or ϕ(x)(k) = exp(ηx(k))/
∑p

j=1 exp(ηx(j)). Following
the sequential approach of the EXP3 algorithm (Auer et al., 2002a,b), the probability weights
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are updated through a mixture between the normalized average cumulative gains ϕ(Gn) and
a uniform distribution. The former term takes into account the knowledge of the gains by
exploiting the rewards while the latter ensures exploration. Given a sequence (λn) ∈ [0, 1]N,
we have for all k ∈ J1, pK,

d
(k)
n+1 = (1− λn)ϕ(Gn)(k) + λn

1

p
· (7)

Explore(T, dn)

1. for t = 1, . . . , T do
2. Sample coordinate ζ ∼ Q(dn) and data ξ
3. Move iterate: θ(ζ)t+1 = θ

(ζ)
t −γt+1g

(ζ)
h (θt, ξ)

4. Update gain G̃(ζ)
t+1 using (5) or (6)

5. end for
6. Return vector of gains G̃T

Exploit(Gn, G̃T , λn, η)

1. Update total average gain Gn in
an online manner

2. Compute normalized gains ϕ(Gn)
with `1-weights or softmax

3. Update probability weights dn+1

with the mixture of Eq.(7)

In view of Theorem 3, the convergence of the sequence of iterates (θt)t∈N obtained by
MUSKETEER relies on the extended Robbins-Monro condition

∑
t≥1 βtγt = +∞ which is

implied by the weaker condition
∑

t≥1 λtγt = +∞ for both `1 and softmax weights. Observe
that such a constraint is easily verified with either a fixed value λt ≡ λ in the mixture update
or more generally a slowly decreasing sequence, e.g. λt = 1/ log(t). Since the gradients
∇f(θt) get smaller through the iterations, the softmax weights get closer to 1/p. Thus, in the
asymptotic regime, there is no favorable directions among all the possible gradient directions.
Hence, near the optimum, the coordinate sampling policy of MUSKETEER with softmax
weights is likely to treat all the coordinates equally.

Theorem 5 (Weak convergence) Suppose that Assumptions 1 to 5 are fulfilled and that
the learning rates satisfy the standard Robbins-Monro condition. Then MUSKETEER’s
coordinate policy (Q(dn))n∈N with softmax normalization converges weakly to the uniform
distribution, i.e., Q(dn) U(J1, pK) as n→ +∞.

Remark 10 (On the choice of λn and η) The uniform term in Equation (7) ensures that
all coordinates are eventually visited. Taking λn → 0 at a specific rate (which can be derived
from the proof) gives more importance to the cumulative gains. The parameter η is fixed
during the algorithm and may be tuned through an analysis of the regret (Auer et al., 2002a).

Remark 11 (Choice of Exploration Size T ) Choosing the value of T is a central question
known as the exploration-exploitation dilemma in reinforcement learning. As T gets large,
the exploration phase gathers more information leading to fewer but more accurate updates.
Conversely, with a small value of T , the probabilities get updated more often, at the price
of less collected information. Setting T = p ensures that, in average, all the coordinates are
visited once during the exploration phase. Nevertheless, a smaller value T = b√pc is taken
in the experiments and lead to great performance.

Remark 12 (Asymptotic behavior) The previous results highlight two main features of
MUSKETEER: the sequence of iterates converges almost surely and the coordinate policy
converges weakly. The latter point suggests that, in the long run, MUSKETEER is similar

12



SGD with Coordinate Sampling: Theory and Practice

to the uniform coordinate version of SCGD. However, the weak convergence of the rescaled
process (θt − θ?)/√γt remains an open question. In light of the link between SCGD and
Conditioned-SGD, discussed in Section 2.3, we conjecture that the behavior of MUSKETEER
with softmax weights is asymptotically equivalent to SCGD with uniform policy. This is in
line with the continuity property obtained in Leluc and Portier (2020) within the Conditioned-
SGD framework and relates to the convergence of stochastic Newton algorithms (Boyer and
Godichon-Baggioni, 2020).

5. Numerical Experiments

In this section, we empirically validate the SCGD framework by running MUSKETEER
and competitors on synthetic and real datasets. First, we focus on regularized regression
problems adopting the data generation process of (Namkoong et al., 2017) in which the
covariates exhibit a certain block structure. Second, MUSKETEER is employed to train
different neural networks models on real datasets for multi-label classification task. For ease
of reproducibility, the code is available online1. Technical details and additional results (with
different data settings, normalization and hyperparameters) are available in the appendix.

Methods in competition. The set of methods is restricted to zeroth-order methods. This
choice leads to an honest comparison based on the number of function queries. MUSKETEER
is implemented according to Section 4 with T = b√pc, softmax and `1 normalization for
the simulated and real data respectively. The different cumulative gains of Eq. (6) are
considered, namely AVG, SQR and ABS for the gradients, their squares or their absolute
value respectively. The method FULL is the finite difference gradient estimate computed
over all coordinates and UNIFORM stands for the uniform coordinate sampling policy.
NESTEROV implements the gaussian smoothing of (Nesterov and Spokoiny, 2017). In all
cases, the initial parameter is set to θ0 = (0, . . . , 0)> ∈ Rp and the optimal SGD learning
rate of the form γk = γ/(k + k0) is used.

Regularized linear models. We apply the Empirical Risk Minimization paradigm to
regularized linear problems. Given a data matrix X = (xi,j) ∈ Rn×p, labels y ∈ Rn or
{−1,+1}n and a regularization parameter µ > 0, the Ridge regression objective is defined by

f(θ) =
1

2n

n∑
i=1

(yi −
p∑
j=1

xi,jθj)
2 +

µ

2
‖θ‖22

and the `2-regularized logistic regression is given by

f(θ) =
1

n

n∑
i=1

log(1 + exp(−yi
p∑
j=1

xi,jθj)) + µ‖θ‖22.

Similarly to (Namkoong et al., 2017), we endow the data matrix X with a block structure.
The columns are drawn as X[:, k] ∼ N (0, σ2kIn) with σ2k = k−α for all k ∈ J1, pK. The
parameters are set to n = 10, 000 samples in dimension p = 250 with an exploration size
equal to T = b√pc = 15. The regularization parameter is set to the classical value µ = 1/n.

1. https://github.com/RemiLELUC/SCGD-Musketeer
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Figure 1 provides the graphs of the optimaliy gap t 7→ f(θt) − f(θ?) averaged over 20
independent simulations for different values of α ∈ {2; 5; 10}. First, note that the uniform
sampling strategy shows similar performance to the classical full gradient estimate. Besides,
MUSKETEER with average or absolute gains shows the best performance in all configurations.
Greater values of α, i.e. stronger block structure, improve our relative performance with
respect to the other methods as shown by Figures 1(b) and 1(d).
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(c) Logistic α = 2
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(d) Logistic α = 5

Figure 1: [f(θt) − f(θ?)] for Ridge and Logistic on Synthetic data with different block
structures.

Neural Networks. We focus on the training of neural networks within the framework of
multi-label classification. The datasets in the experiments are popular publicly available
deep learning datasets: MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al., 2017). Given
an image, the goal is to predict its label among ten classes. The neural architecture is based
on linear layers in dimension p = 55, 050 with T = 234. Figure 2 shows the means and
standard deviations of the training losses of the different ZO methods averaged over 10
independent runs. Interestingly, the performance of MUSKETEER also benefit from the
adaptive structure in terms on accuracy of the test set (see Figures 3(a) and 3(b)). This
allows to quantify the statistical gain brought by MUSKETEER over standard ZO methods.
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(b) Fashion-MNIST

Figure 2: Evolution of training loss.

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

(a) MNIST

0 75 150 225 300 375
#Queries of Loss f (x1e3)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

uniform
nesterov
mus_avg
mus_sqr
mus_abs

(b) Fashion-MNIST

Figure 3: Evolution of test accuracy.
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A. Technical Proofs

A.1 Proof of Proposition 1

Under Eq.(1), using Jensen inequality, we find

‖Eξ[gµ(θ, ξ)]−∇f(θ)‖22 =

∥∥∥∥∫
Rp
x

(
f(θ + µx)− f(θ)

µ
− x>∇f(θ)

)
ν(dx)

∥∥∥∥2
2

≤
∫
Rp
‖x‖22

(
f(θ + µx)− f(θ)

µ
− x>∇f(θ)

)2

ν(dx)

= µ−2
∫
Rp
‖x‖22

(
f(θ + µx)− f(θ)− µx>∇f(θ)

)2
ν(dx)

Using the quadratic bound of L-smooth functions, we obtain

‖Eξ[gµ(θ, ξ)]−∇f(θ)‖22 ≤ µ−2
L2

4

∫
‖x‖22‖µx‖42ν(dx) = µ2

L2

4

∫
‖x‖62ν(dx).

A.2 Deterministic results for convergence of gradients

In this section we provide results ensuring the convergence to 0 of several gradient descent
algorithms. They are meant to be high-level as they may be applied in different situations
and deterministic because no randomness is measured but only an inclusion of events is
considered. The results are key in the proofs.

Lemma 6 (Deterministic result 1) Let f : Rp → R be a L-smooth function, (γt)t≥1 a
positive sequence of learning rates such that

∑
t γt =∞. Let (θt) a random sequence obtained

by the SGD update rule θt+1 = θt − γt+1gt. Let ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(gt−1(ω)−∇f(θt−1(ω))) <∞

then ∇f(θt(ω))→ 0 as t→∞.

The next Lemma is the equivalent of Lemma 6 for a specific procedure which, at each
iteration, moves only one well-chosen coordinate: the one with highest gradient value.

Lemma 7 (Deterministic result 2) Let f : Rp → R be a L-smooth function (with respect
to | · |∞), (γt)t≥1 a positive sequence of learning rates such that

∑
t γt = ∞. Let (θt)

a random sequence obtained by the SCGD update rule θt+1 = θt − γt+1D(ζt+1)gt with
ζt+1 = arg maxk=1,...,p |∂kf(θt)|. Let ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1|∇f(θt(ω)|2∞ <∞ (ii)
∑
t≥1

γtD(ζt)(gt−1(ω)−∇f(θt−1(ω))) <∞,

then ∇f(θt(ω))→ 0 as t→∞.

We conclude with one last result which is valid for procedure where only one coordinate
(chosen randomly) is moved at each iteration.
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Lemma 8 (Deterministic result 3) Let f : Rp → R be a L-smooth function, (γt)t≥1 a
positive sequence of learning rates such that

∑
t γt =∞. Let (θt) a random sequence obtained

by the SCGD update rule θt+1 = θt− γt+1D(ζt+1)gt where ζt+1 ∼ Q(dt). Let ω ∈ Ω such that
the following limits exist:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(D(ζt(ω))gt−1(ω)−Dt−1∇f(θt−1(ω))) <∞

then ∇f(θt(ω))→ 0 as t→∞.

Proof of Lemma 6. The proof (and in particular the reasoning by contradiction) is inspired
from the proof of Proposition 1 in Bertsekas and Tsitsiklis (2000). For ease of notation
we omit the ω in the proof. Note that condition (i) along with

∑
t γt = ∞ implie that

lim inft ‖∇f(θt)‖ = 0. Now, by contradiction, let ε > 0 and assume that

lim sup
t
‖∇f(θt)‖ > ε

We have that there is infinitely many t such that ‖∇f(θt)‖ < ε/2 and also infinitely many t
such that ‖∇f(θt)‖ > ε. It follows that there is infinitely many crossings between the sets
{t ∈ N : ‖∇f(θt)‖ < ε/2} and {t ∈ N : ‖∇f(θt)‖ > ε}. A crossing is a collection of indexes
Ik = {Lk, Lk + 1, . . . , Uk − 1} with Lk ≤ Uk (Ik = ∅ when Lk = Uk) such that for all t ∈ Ik,

‖∇f(θLk−1)‖ < ε/2 ≤ ‖∇f(θt)‖ ≤ ε < ‖∇f(θUk)‖.

Define the following partial Cauchy sequence Rk =
∑Uk

t=Lk
γt(gt−1−∇f(θt−1)) and note that

condition (ii) implies that Rk → 0 as k →∞. For all k ≥ 1,

ε/2 ≤ ‖∇f(θUk)‖2 − ‖∇f(θLk−1)‖2
≤ ‖∇f(θUk)−∇f(θLk−1)‖2
≤ L‖θUk − θLk−1‖2,

where we use that ∇f is L-Lipschitz. Then using the update rule θt − θt−1 = −γtgt−1, we
have by sum

ε/2 ≤ L‖
Uk∑
t=Lk

θt − θt−1‖2 = L‖
Uk∑
t=Lk

γtgt−1‖2

≤ L‖
Uk∑
t=Lk

γt∇f(θt−1)‖2 + L‖
Uk∑
t=Lk

γt(gt−1 −∇f(θt−1))‖2

≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖2 + L‖Rk‖2

Since in the previous equation ‖∇f(θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖22 + (ε/2)L‖Rk‖2

17



Leluc and Portier

But since
∑

t≥0 γt+1‖∇f(θt)‖2 is finite and limk Rk = 0, the previous upper bound goes to 0
and implies a contradiction. �

Proof of Lemma 7. For ease of readability, the variable ω is removed during the proof.
By assumption, |∇ζt+1f(θt)| = |∇f(θt)|∞. Hence, (i) yields that lim inft |∇f(θt)|∞ = 0. The
proof is by contradiction. Suppose that lim supt |∇f(θt)|∞ > ε. There exists a sequence of
crossings between the sets {t ∈ N : |∇f(θt)|∞ < ε/2} and {t ∈ N : |∇f(θt)|∞ > ε}. Formally,
there is a collection of indexes Ik = {Lk, Lk + 1, . . . , Uk − 1} with Lk ≤ Uk (Ik = ∅ when
Lk = Uk) such that for all t ∈ Ik,

|∇f(θLk−1)|∞ < ε/2 ≤ |∇f(θt)|∞ ≤ ε < |∇f(θUk)|∞.
Define

Rk =

Uk∑
t=Lk

γtDζt(gt−1 −∇f(θt−1))

and use that ∇f is L-smooth to get

(ε/2) ≤ |∇f(θUk)|∞ − |∇f(θLk−1)|∞
≤ L|θUk − θLk−1|∞

≤ L|
Uk∑
t=Lk

γtDζt∇f(θt−1)|∞ + L

∣∣∣∣∣∣
Uk∑
t=Lk

γtDζt(gt−1 −∇f(θt−1))

∣∣∣∣∣∣
∞

= L|
Uk∑
t=Lk

γtDζt∇f(θt−1)|∞ + L|Rk|∞

≤ L
Uk∑
t=Lk

γt|Dζt∇f(θt−1)|∞ + L|Rk|∞

Noting that |Dζt∇f(θt−1)|∞ = |∇f(θt−1)|∞ > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt|∇f(θt−1)|2∞ + (ε/2)L|Rk|∞.

As the previous upper bound converges to 0 by assumption we reach a contradiction. �

Proof of Lemma 8. Following the proof of Lemma 6, we assume that lim supt ‖∇f(θt)‖2 > ε
and consider the same collection of crossing indexes (Lk, Uk) to obtain that

ε/2 ≤ L
Uk∑
t=Lk

γt‖Dt−1∇f(θt−1)‖2 + L‖Rk‖2

where Rk =
∑Uk

t=Lk
γt(D(ζt)gt−1 −Dt−1∇f(θt−1)) is a sequence that goes to 0. Since in the

previous equation Dt−1 � Id and ‖∇f(θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γt‖∇f(θt−1)‖22 + (ε/2)L‖Rk‖2

and a contradiction follows as the above term goes to 0. �
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A.3 Proof of Theorem 1

The proof follows from applying Lemma 6 in which two conditions are required:

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥1

γt(gt−1(ω)−∇f(θt−1(ω))) <∞.

Proof of condition (i). We classically rely on the Robbins-Siegmund Theorem (Theorem

10 in Section B.4). Since θ 7→ f(θ) is L-smooth, we have the quadratic bound f(η) ≤
f(θ) + 〈∇f(θ), η − θ〉+ L

2 ‖η − θ‖22. Using the update rule θt+1 = θt − γt+1gt, we get

f(θt+1) ≤ f(θt) + 〈∇f(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖22

= f(θt)− γt+1〈∇f(θt), gt〉+
L

2
γ2t+1‖gt‖22.

Using that

2〈a, b〉 = ‖a‖22 + ‖b‖22 − ‖a− b‖22 ≥ ‖a‖22 − ‖a− b‖22
and taking the conditional expectation, we get

Et [f(θt+1)] ≤ f(θt)− γt+1〈∇f(θt),Et[gt]〉+
L

2
γ2t+1 Et[‖gt‖22]

≤ f(θt)−
γt+1

2
‖∇f(θt)‖22 +

γt+1

2
‖∇f(θt)− Et[gt]‖22 +

L

2
γ2t+1 Et[‖gt‖22]

On the one hand, using Assumption 1, we obtain

‖∇f(θt)− Et[gt]‖22 ≤ h2t+1c
2

On the other hand, using Assumption 5, there exist 0 ≤ L, σ2 <∞ such that almost surely

∀t ∈ N, Et
[
‖gt‖22

]
= Eξ

[
‖g(θt, ξ)‖22

]
≤ 2L (f(θt)− f?) + σ2.

Injecting −f? on both sides, it follows that

Et [f(θt+1)− f?] ≤ (1 + LLγ2t+1)(f(θt)− f?)−
γt+1

2
‖∇f(θt)‖22 + γt+1h

2
t+1c

2 +
L

2
γ2t+1σ

2

Introduce Vt = f(θt) − f?,Wt = γt+1‖∇f(θt)‖22/2, at = LLγ2t+1 and bt = c2h2t+1γt+1 +
(L/2)γ2t+1σ

2. These four random sequences are non-negative Ft-measurable sequences with∑
t at <∞ and

∑
t bt <∞ almost surely. We have: ∀t ∈ N,E [Vt+1|Ft] ≤ (1+at)Vt−Wt+bt.

We can apply Robbins-Siegmund Theorem to have

(a)
∑
t≥0

Wt <∞ a.s. (b) Vt
a.s.−→ V∞,E [V∞] <∞. (c) sup

t≥0
E [Vt] <∞.

Therefore we have a.s. that (f(θt)) converges to a finite value f∞ ∈ L1 and
∑

t≥0 γt+1‖∇f(θt)‖22 <
+∞. There exists an event Ω0 ⊂ Ω such that, P(Ω0) = 1 and for every ω ∈ Ω0,
limt f(θt(ω)) <∞ and

∑
t≥0 γt+1‖∇f(θt(ω))‖22 <∞.
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Proof of condition (ii). We place ourselves on the event Ω0 and omit the ω in notation for
ease of clarity. First, since lim supt f(θt) <∞, we have that (f(θt)) is bounded almost surely.
It yields, in virtue of Assumption 5 that Et

[
‖gt‖22

]
≤ 2L (f(θt)− f?) + σ2 ≤ C where C is a

some finite random variable and the latter holds almost surely. It then follows that, almost
surely

∑
t≥1 γ

2
t Et[‖gt‖2] ≤ C

∑
t≥1 γ

2
t <∞. Now, observe that condition (ii) is satisfied as

soon as

(a) ‖
∑
t≥0

γt+1(gt − Et[gt])‖2 <∞ and (b) ‖
∑
t≥0

γt+1(Et[gt]−∇f(θt))‖2 <∞.

Equation (a) involves martingale increments whose quadratic variation satisfies∑
t≥0

γ2t+1Et[‖gt − Et[gt]‖2] ≤
∑
t≥0

γ2t+1Et[‖gt‖2] <∞,

which ensures that
∑

t≥0 γt+1(gt − Et[gt]) <∞ a.s. in virtue of Theorem 2.17 in Hall and
Heyde (1980). The term in equation (b) is bounded using assumption 1 and we have∑

t≥0
γ2t+1‖Et[gt]−∇f(θt)‖22 ≤ c2

∑
t≥0

γ2t+1h
2
t <∞,

which finally proves

(ii)
∑
t≥0

γt+1(gt(ω)−∇f(θt(ω))) <∞

and gives, in virtue of Lemma 6 the conclusion ∇f(θt)→ 0 almost surely as t→ +∞.

A.4 Proof of Theorem 2

Part (a) Maximum gradient. The proof follows from applying Lemma 7 in which two
conditions are required:

(i)
∑
t≥0

γt+1|∇f(θt(ω)|2∞ <∞ (ii)
∑
t≥0

γt+1D(ζt+1)(gt(ω)−∇f(θt(ω))) <∞.

Proof of condition (i). Again, we rely on the quadratic bound

f(θt+1) ≤ f(θt)− γt+1〈∇f(θt), D(ζt+1)gt〉+
L

2
γ2t+1‖D(ζt+1)gt‖22

= f(θt)− γt+1∇ζt+1f(θt)g
(ζt+1)
t +

L

2
γ2t+1g

(ζt+1)2
t

Taking the expectation with respect to ξt+1 and using Assumption 2, we find

Eξt+1 [f(θt+1)− f?] ≤ f(θt)− f? − γt+1∇ζt+1f(θt)g̃
(ζt+1)
t +

L

2
γ2t+1Eξt+1 [g

(ζt+1)2
t ]
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where g̃t = Eξ[ght+1(θt, ξ)]. We use the inequality 2ab ≥ a2 − (a− b)2 and Assumption 1 to
get

2∇ζt+1f(θt)g̃
(ζt+1)
t ≥ ∇ζt+1f(θt)

2 − (∇ζt+1f(θt)− g̃(ζt+1)
t )2

≥ ∇ζt+1f(θt)
2 − max

k=1,...,p
(∂kf(θt)− g̃(k)t )2

≥ ∇ζt+1f(θt)
2 − c2h2t+1

We also have, invoking Assumption 5, that

Eξt+1 [g
(ζt+1)2
t ] ≤ max

k=1,...,p
Eξt+1 [g

(k)2
t ] ≤ 2L(f(θt)− f?) + σ2.

We finally obtain that

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2t+1σ

2.

Apply Robbins-Siegmund Theorem to obtain that almost surely∑
t≥0

γt+1∇ζt+1f(θt)
2 =

∑
t≥0

γt+1‖∇f(θt)‖2∞ <∞.

Proof of condition (ii). Note that from the proof of Theorem 1, we already have∑
t≥0 γt+1(gt(ω)−∇f(θt(ω))) <∞, so using that

‖D(ζt+1)(gt(ω)−∇f(θt(ω)))‖2 ≤ ‖(gt(ω)−∇f(θt(ω)))‖2,

we deduce the convergence
∑

t≥0 γt+1D(ζt+1)(gt(ω)−∇f(θt(ω))) <∞ which gives, in virtue
of Lemma 7 the result ∇f(θt)→ 0 almost surely as t→ +∞. �

Part (b) gradient weights. Here we assume that the weights of the coordinate sampling policy
are proportional to any norm of the current gradient: Dt ∝ (|∂kf(θt)|q)1≤k≤p with q > 0. As
before, the proof follows from applying Lemma 7. The proof of condition (i) relies on the
equivalence of the norms in finite dimension.

Proof of condition (i). From the proof of Theorem 2, we get

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2t+1σ

2.

Taking the expectation with respect to ζt+1, we get

Et[f(θt+1)− f?]

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1

p∑
k=1

dt,k∂kf(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2t+1σ

2.
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Apply Robbins-Siegmund Theorem to obtain
∑

t≥0 γt+1∇f(θt)
>Dt∇f(θt) <∞ almost surely.

Now observe that since Dt ∝ (|∂kf(θt)|q)1≤k≤p, it means that for all k = 1, . . . , p we have
dt,k ∝ |∂kf(θt)|q/‖∇f(θt)‖qq and

∇f(θt)
>Dt∇f(θt) =

p∑
k=1

dt,k∂kf(θt)
2 ∝

p∑
k=1

|∂kf(θt)|q
‖∇f(θt)‖qq

∂kf(θt)
2 ∝
‖∇f(θt)‖q+2

q+2

‖∇f(θt)‖qq
.

All norms are equivalent on Rp and using Hölder’s inequality we have for 0 < l < q that
‖ · ‖l ≤ p1/l−1/q‖ · ‖q so the last term is lower bounded as

‖∇f(θt)‖q+2
q+2

‖∇f(θt)‖qq
≥ C‖∇f(θt)‖2q+2 with C = p−2/(q+2),

and again using the equivalence of the norms we get the square of the infinity norm
∇f(θt)

>Dt∇f(θt) ∝ ‖∇f(θt)‖2∞ which finally proves

(i)
∑
t≥0

γt+1‖∇f(θt)‖2∞ <∞.

Proof of condition (ii). It is the same as for Part (a) maximum gradient. We deduce the
convergence

∑
t≥0 γt+1D(ζt+1)(gt(ω)−∇f(θt(ω))) <∞ which gives, in virtue of Lemma 7

the result ∇f(θt)→ 0 almost surely as t→ +∞. �

A.5 Proof of Theorem 3

Similarly to the proof of Theorem 1, we rely on Lemma 8 where gt−1 is replaced by D(ζt)gt−1.
Therefore we need to check that, with probability 1, it holds that

(i)
∑
t≥0

γt+1‖∇f(θt(ω))‖22 <∞ (ii)
∑
t≥0

γt+1(D(ζt)gt(ω)−Dt∇f(θt(ω))) <∞.

Proof of condition (i). From the proof of Theorem 2, we get

Eξt+1 [f(θt+1)− f?]

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1∇ζt+1f(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2t+1σ

2.

Taking the expectation with respect to ζt+1 and using that mink=1,...,d dt,k ≥ β gives

Et[f(θt+1)− f?]

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1

p∑
k=1

dt,k∂kf(θt)
2/2 + c2γt+1h

2
t+1/2 +

L

2
γ2t+1σ

2

≤ (1 + LLγ2t+1)(f(θt)− f?)− γt+1β‖∇f(θt)‖22/2 + c2γt+1h
2
t+1/2 +

L

2
γ2t+1σ

2,

and Robbins-Siegmund Theorem allows to conclude
∑

t≥0 γt+1‖∇f(θt)‖22 < +∞.
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Proof of condition (ii). Again, we place ourselves on the event Ω0 and omit the ω in
notation for ease of clarity. First, note that ‖gt‖22 ≤ g

(ζt+1)2
t ≤ ‖gt‖22. As a consequence,∑

t≥0 γ
2
t+1 Et[‖D(ζt+1)gt‖22] ≤

∑
t≥0 γ

2
t+1 Et[‖gt‖22] and this last series converges as shown in

the proof of Theorem 1. Now observe that condition (ii) is satisfied as soon as

(a) ‖
∑
t≥0

γt+1(D(ζt+1)gt − Et[D(ζt+1)gt])‖2 <∞

(b) ‖
∑
t≥0

γt+1(Et[D(ζt+1)gt]−Dt∇f(θt))‖2 <∞

Note that equation (a) involves martingale increments whose quadratic variation satisfies∑
t≥0

γ2t+1Et[‖D(ζt+1)gt − Et[D(ζt+1)gt]‖22] ≤
∑
t≥0

γ2t+1Et[‖D(ζt+1)gt‖2] <∞,

which proves Equation (a). Finally the term in equation (b) is bounded using assumption
1 and ‖Dt‖2 ≤ 1. We have

∑
t≥0 γ

2
t+1‖Et[D(ζt+1)gt] −Dt∇f(θt)‖22 ≤ c2

∑
t≥0 γ

2
t+1h

2
t < ∞

which finally proves condition (ii) and gives, in virtue of Lemma 8 that ∇f(θt)→ 0 almost
surely as t→ +∞.

A.6 Proof of Theorem 4

From the proof of Theorem 3 and using β as a uniform lower bound on βt+1, we have

Et [f(θt+1)− f?] ≤
(
1 + LLγ2t+1

)
[f(θt)− f?]− γt+1β‖∇f(θt)‖22 +

σ2L+ c2

2
γ2t+1.

Inject the PL inequality ‖∇f(θt)‖22 ≥ 2µ(f(θt)− f(θ∗)) from Assumption 7 to have

Et [f(θt+1)− f?] ≤
(
1− 2µβγt+1 + LLγ2t+1

)
[f(θt)− f?] +

σ2L+ c2

2
γ2t+1.

Define δt = E [f(θt)− f?] to finally obtain the recursion equation

δt ≤
(
1− 2µβγt + LLγ2t

)
δt−1 +

σ2L+ c2

2
γ2t

Applying the same result from (Moulines and Bach, 2011) with the family of functions ϕα
defined by ϕα(t) = α−1(tα − 1) if α 6= 0 and ϕα(t) = log(t) if α = 0 along with the learning
rates γt = γt−α.

δt ≤

 2 exp
(
2LLγ2ϕ1−2α(t)

)
exp

(
−µβγ

4 t1−α
)(

δ0 + σ2+2c2

2L

)
+ γ(σ2L+2c2)

µβ t−α if α < 1

2 exp
(
LLγ2

) (
δ0 + σ2+2c2

2L

)
t−µβγ +

(
σ2L
2 + c2

)
γ2ϕµβγ/2−1(t)t

−µβγ/2 if α = 1

A.7 Proof of Theorem 5

Starting from G0 = (0, . . . , 0), the total average gain Gn is updated in a online manner
during the exploitation phase and collects all the empirical sums of the gradient gradient
estimates as

Gn =
1

nT

nT∑
t=1

D−1t D(ζt+1)g(θt, ξt+1), E [Gn] =
1

nT

nT∑
t=1

∇f(θt).
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The goal is to show that Gn → 0 using martingale properties. Thanks to Theorem 3, we
have the almost sure convergence θt → θ∗ which gives, since θ 7→ ∇f(θ) is continuous, that
∇f(θt)→ 0 almost surely. Applying Cesaro’s Lemma, it holds that E [Gn]→ 0. It is enough
to consider the difference

(
G

(k)
n − E

[
G

(k)
n

])
for each k ∈ J1, pK. Introducing the martingale

increments

∆
(k)
t+1 =

g(θt, ξt+1)
(k)

d
(k)
t

1{ζt+1=k} − ∂kf(θt), E
[
∆

(k)
t+1|Ft

]
= 0.

It remains to show that, with probability 1,

G(k)
n − E

[
G(k)
n

]
=

1

nT

nT∑
t=1

∆
(k)
t+1 → 0.

Or equivalently, that, for each coordinate k ∈ J1, pK

nT∑
t=1

∆
(k)
t+1 = o(n). (8)

The latter being a sum of martingale increments, we are in position to apply the strong law
of large numbers for martingales which can be find as Assertion 2 of Theorem 1.18 in (Bercu
et al., 2015). Using Assumption 5, there exist 0 ≤ L, σ2 <∞ such that almost surely

∀t ∈ N, E
[
(g(θt, ξt+1)

(k))2|Ft
]
≤ 2L (f(θt)− f?) + σ2.

Using the almost sure convergence θt → θ?, we deduce that there is exist a compact set K
which contains the sequence of iterates (θt)t∈N and using that f is continuous gives the upper
bound

∀k ∈ J1, pK E
[
(g(θt, ξt+1)

(k))2|Ft
]
≤M = 2L sup

θ∈K
(f(θ)− f(θ∗)) + σ2.

Hence, the quadratic variation is bounded as follows

nT∑
t=1

E
[
(∆

(k)
t+1)

2|Ft
]
≤

nT∑
t=1

E

(g(θt, ξt+1)
(k)

d
(k)
t

)2

|Ft


≤ (p/λ)2

nT∑
t=1

E[(g(θt, ξt+1)
(k))2|Ft]

≤ (p/λ)2nTM.

Equation (8) follows from applying the previously mentioned law of large number.
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B. Additional Results

B.1 Almost sure convergence under stronger assumptions

Similary to Gadat et al. (2018), we consider some stronger assumptions where the function f
is coercive and there exists a unique stationary point θ?. In such framework, the sequences of
iterates (θt)t≥0 obtained by both SGD and SCGD satisfy θt → θ? almost surely as t→ +∞.

f is coercive and {θ ∈ Rp : ∇f(θ) = 0} = {θ?}. Following the proofs of Theorems 1 and
3, we may apply Robbins-Siegmund Theorem. There exists an event Ω0 ⊂ Ω such that,
P(Ω0) = 1 and for every ω ∈ Ω0, lim supt f(θt(ω)) <∞ and the series

∑
t ηt+1‖∇f(θt(ω))‖22

converges (where ηt = γt for SGD and ηt = γtβt for SCGD). Since lim‖θ‖→∞ f(θ) =∞, we
deduce that for every ω ∈ Ω0, the sequence (θt(ω))t≥0 is bounded in Rp. Therefore the
limit set χ∞(ω) (set of accumulation points) of the sequence (θt(ω)) is non-empty. The
convergence of the series

∑
t ηt+1‖∇f(θt(ω))‖22 <∞ along with the condition

∑
t ηt+1 = +∞

only implie that : lim inft→∞ ‖∇f(θt(ω))‖22 = 0, P−a.s.
Hence, since θ 7→ ∇f(θ) is continuous, there exits a limit point θ∞(ω) ∈ χ∞(ω) such that
‖∇f(θ∞(ω))‖22 = 0, i.e., ∇f(θ∞(ω)) = 0. Because the set of solutions {θ ∈ Rp,∇f(θ) = 0}
is reduced to the singleton {θ?}, we have θ∞(ω) = θ?. Since (f(θt(ω))) converges, it implies
that limt f(θt(ω)) = f? and for every limit point θ ∈ χ∞(ω), we have f(θ) = f?. Since the
set {θ ∈ Rp, f(θ) = f?} is equal to {θ?}, the limit set χ∞(ω) is also reduced to {θ?}.

B.2 Almost sure convergence of MUSKETEER

By definition, we have for all k ∈ J1, pK,

d
(k)
t+1 = (1− λt)ϕ(Gt)

(k) + λt
1

p

implying that βt+1 = mink∈J1,pK d
(k)
t ≥ λt/p. As a consequence, as soon as

∑
t≥1 λtγt = +∞,

the assumption
∑

t≥1 βtγt = +∞ is satisfied. Applying Theorem 3 we obtain the almost
sure convergence of MUSKETEER. The condition

∑
t≥1 λtγt = +∞ is easily satisfied with a

fixed value λt ≡ λ in the mixture update and one can also use a slowly decreasing sequence,
e.g. λt = 1/ log(t).

B.3 Regret analysis in the convex case

In order to better understand the benefits of the adaptive sampling strategies over standard
uniform sampling, let us consider a particular setting where the objective function f is convex.
The following proposition available in Namkoong et al. (2017) presents a regret analysis
which is useful for interpretability.

Proposition 9 (Regret analysis for convex f and unbiased estimates) Assume that
f is convex and consider the sequence of iterates obtained by θt+1 = θt− γD−1t D(ζt+1)gt with
constant step size γ > 0. We have

E

[
f

(
1

T

T∑
t=1

θt

)
− f(θ?)

]
≤ ‖θ

?‖2
2γT

+
γ

2T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2

d
(k)
t

]
.
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Proof Assume that the objective f is convex and consider the average estimate θ̄T =
1
T

∑T
t=1 θt. along with the following quantity: S(f, θ̂) = E[f(θ̂)]− f?. Using convexity we

have on the one hand f(θt)− f? ≤ 〈θt − θ?,∇f(θt)〉 and on the other hand

f(θ̄T )− f? ≤ 1

T

T∑
t=1

(f(θt)− f?)

which give together the following upper bound

f(θ̄T )− f? ≤ 1

T

T∑
t=1

〈θt − θ?,∇f(θt)〉.

Using an unbiased gradient estimate vt, i.e. Et[vt] = ∇f(θt), we can write

E[f(θ̄T )]− f? ≤ E

[
1

T

T∑
t=1

〈θt − θ?,Et[vt])〉
]
.

The term in the expectation is bounded using Lemma 11 with vt = D−1t D(ζt+1)gt as

1

T

T∑
t=1

〈θt − θ?, vt〉 ≤
‖θ?‖2
2γT

+
γ

2T

T∑
t=1

‖D−1t D(ζt+1)gt‖2.

Take the expectation on both side to control the regret as

S(f, θ̄T ) ≤ ‖θ
?‖2

2γT
+

γ

2T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2

d
(k)
t

]
.

The term in expectation should be minimized with respect to the probability weights d(k)t .
Intuitively, in order to maintain the overall sum as small as possible, the large gradient
coordinates should be sampled more often, i.e. we would like to have d(k)t large whenever
|∂kf(θt)|2 is large. This is in line with the framework of coordinate smoothness discussed in
Remark 4 and the work of Allen-Zhu et al. (2016).
(Uniform Coordinate Sampling) For all k ∈ J1, pK, we have d(k)t = 1/p so that

1

T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2

d
(k)
t

]
=
p

T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2
]

=
p

T

T∑
t=1

E
[
‖∇f(θt)‖2

]
.

(MUSKETEER) For all k ∈ J1, pK, we have d(k)t = (1− λt−1)ϕ(Gt−1)
(k) + λt−1/p so that

1

T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2

d
(k)
t

]
=
p

T

T∑
t=1

E

[
p∑

k=1

|∂kf(θt)|2
(1− λt−1)pϕ(Gt−1)(k) + λt−1

]
,

where the denominator is stricly larger than 1 for all the coordinates associated to large gains.
Indeed, let k ∈ J1, pK the index of such coordinate. Since it is a rewarding coordinate, the
normalizing step implies that ϕ(Gt−1)(k) > 1/p and (1− λt−1)pϕ(Gt−1)(k) + λt−1 > 1. This
property translates the adaptive nature of the probability weights used in the MUSKETEER
strategy.
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B.4 Auxiliary Results

Theorem 10 (Robbins and Siegmund, 1971) Consider a filtration (Fn)n≥0 and four se-
quences of random variables(Vn)n≥0 , (Wn)n≥0 , (an)n≥0 and (bn)n≥0 that are adapted and
non-negative. Assume that almost surely

∑
k ak < ∞ and

∑
k bk < ∞. Assume moreover

that E [V0] <∞ and ∀n ∈ N : E[Vn+1|Fn] ≤ (1 + an)Vn −Wn + bn. Then it holds

(a)
∑
k

Wk <∞ a.s. (b) Vn
a.s.−→ V∞,E [V∞] <∞. (c) sup

n≥0
E [Vn] <∞.

Lemma 11 Let θ1, . . . , θT be an arbitrary sequence of vectors. Any algorithm with initial-
ization θ1 = 0 and update rule θt+1 = θt − γvt satisfies

T∑
t=1

〈θt − θ?, vt〉 ≤
‖θ?‖2

2γ
+
γ

2

T∑
t=1

‖vt‖2.

In particular, for B, ρ > 0, if we have ‖vt‖ ≤ ρ and we set γ =
√
B2/(ρ2T ) then for every

θ? with ‖θ?‖ ≤ B, we have T−1
∑T

t=1〈θt − θ?, vt〉 ≤ Bρ/
√
T .

Proof Using algebraic manipulations (completing the square), we obtain:

〈θt − θ?, vt〉 =
1

γ
〈θt − θ?, γvt〉

=
1

2γ

(
−‖θt − θ? − γvt‖2 + ‖θt − θ?‖2 + γ2 ‖vt‖2

)
=

1

2γ

(
−‖θt+1 − θ?‖2 + ‖θt − θ?‖2

)
+
γ

2
‖vt‖2

where the last equality follows from the definition of the update rule. Summing the equality
over t, we have

T∑
t=1

〈θt − θ?, vt〉 =
1

2γ

T∑
t=1

(
−‖θt+1 − θ?‖2 + ‖θt − θ?‖2

)
+
γ

2

T∑
t=1

‖vt‖2

The first sum on the right-hand side is a telescopic sum that collapses to ‖θ1 − θ?‖2 −
‖θT+1 − θ?‖2. Then we have

T∑
t=1

〈θt − θ?, vt〉 =
1

2γ

(
‖θ1 − θ?‖2 − ‖θT+1 − θ?‖2

)
+
γ

2

T∑
t=1

‖vt‖2

≤ 1

2γ
‖θ1 − θ?‖2 +

γ

2

T∑
t=1

‖vt‖2

=
1

2γ
‖θ?‖2 +

γ

2

T∑
t=1

‖vt‖2

where the last equality is due to the definition θ1 = 0. This proves the first part of the
lemma. The second part follows by upper bounding ‖θ?‖ by B, ‖vt‖ by ρ, dividing by T,
and plugging in the value of γ
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C. Illustrative Example (stochastic first order)

We perform a comparison on a simple example in dimension p = 2 with the functions
f(x, y) = (x2 + y2)/2 and h(x, y) = x2/2. Note that the function h only depends on the
first coordinate and an adaptive coordinate descent method should favor this direction.
Figure 4 presents the optimization paths of the different methods: SGD, Uniform and
MUKSTEER. With the function f which does not present any particular design or favorable
descent direction, the Uniform and Musketeer policies perform as good as classical SGD.
More interestingly, when dealing with the function h, our method MUSKETEER (red) finds
that the horizontal direction associated to axis (Ox) is the relevant one for optimization.
After collecting some information during the exploration phase, the probability weights got
updated to favor the horizontal direction, leading to a faster convergence. For a visual
demonstration of these optimization paths, please refer to the mp4-files optimize_f.mp4 and
optimize_h.mp4 available in the supplementary material2.
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Figure 4: Comparison of SGD/Uniform/Musketeer on simple 2D-examples

D. Numerical Experiments Details

D.1 Regularized linear models

We consider the ERM paradigm with linear models, namely regularized regression problems
with objectives of the form f(θ) = (1/n)

∑n
i=1 fi(θ) + µ‖θ‖2. Similarly to (Namkoong et al.,

2017), we endow the data matrix X with a block structure. The columns are drawn as
X[:, k] ∼ N (0, σ2kIn) with σ2k = k−α for all k ∈ J1, pK. The parameters are set to n = 10, 000
samples in dimension p = 250 with an exploration size equal to T = b√pc = 15. The
regularization parameter is set to the classical value µ = 1/n. We update the parameter

2. https://github.com/RemiLELUC/SCGD-Musketeer
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vector with the optimal learning rate γk = γ/(k + k0) in the experiments. Other learning
rates in the framework of stochastic first order methods are considered in Appendix G.
• (zeroth-order) For the Ridge regression, we set γ = 3, k0 = 10 and for the logistic regession
γ = 10, k0 = 5. The gradient estimate g is computed using queries of a function fi where
i ∼ U(J1, nK). We use the `1-reweighting with λt = 1/ log(t) or softmax with λn ≡ 0.5, which
both satisfy Assumption 6.
• (first order) The learning rate is equal to γk = 1/k (γ = 1, k0 = 0). The gradient estimate
g is computed using mini-batches of size 8. The weighting parameter η > 0 in the softmax
part of the probability weights is set to η = 1 and the parameter λ in Equation (7) is chosen
as λt = 1/ log(t) which satisfies the extended Robbins-Monro condition 6.

D.2 Neural Networks

Dataset description and parameter configuration. The three datasets in the experi-
ments are popular publicly available deep learning datasets. The underlying machine learning
task is the one of multi-label classification.

• MNIST (Deng, 2012): a database of handwritten digits with a training set of 60,000
examples and a test set of 10,000 examples. The digits have been size-normalized and
centered in a fixed-size image. The original black and white (bilevel) images from NIST were
size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The resulting
images contain grey levels as a result of the anti-aliasing technique used by the normalization
algorithm. The images were centered in a 28x28 image by computing the center of mass of
the pixels, and translating the image so as to position this point at the center of the 28x28
field. Each training and test example is assigned to the corresponding handwritten digit
between 0 and 9.

• Fashion-MNIST (Xiao et al., 2017): a dataset of Zalando’s article images, composed
of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a
28x28 grayscale image, associated with a label from 10 classes. It shares the same image size
and structure of training and testing splits as the MNIST database. Each training and test
example is assigned to one of the following labels: T-shirt/top (0); Trouser (1); Pullover (2);
Dress (3); Coat (4); Sandal (5); Shirt (6); Sneaker (7); Bag (8); Ankle boot (9).

• Kuzushiji-MNIST: This dataset is a drop-in replacement for the MNIST dataset
(28x28 grayscale, 70,000 images), provided in the original MNIST format as well as a NumPy
format. Since MNIST is restricted to 10 classes, one character here represents each of the 10
rows of Hiragana when creating Kuzushiji-MNIST.

• CIFAR10 (Krizhevsky et al., 2009): The CIFAR-10 dataset consists of 60, 000 32× 32
colour images in 10 classes, with 6, 000 images per class. There are 50, 000 training images
and 10, 000 test images. The dataset is divided into five training batches and one test batch,
each with 10, 000 images. The test batch contains exactly 1, 000 randomly-selected images
from each class. The training batches contain the remaining images in random order, but
some training batches may contain more images from one class than another. Between them,
the training batches contain exactly 5, 000 images from each class. Each training and test
example is assigned to one of the following labels: airplane (0); automobile (1); bird (2); cat
(3); deer (4); dog (5); frog (6); horse (7); ship (8); truck (9).
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(a) MNIST (b) Fashion-MNIST

(c) CIFAR10 (d) K-MNIST

Figure 5: Samples for Mnist, Fashion-Mnist, K-Mnist and CIFAR-10.

Two different neural networks are used in the experiments: one with linear layers for
MNIST, Fashion-MNIST, K-MNIST another one with convolutional layers for CIFAR10. For
the first network, the total number of parameters is p = 55, 050. For the second network,the
dimension is p = 64, 862. In both cases, the exploration size is T = b√pc. In the experiments
with stochastic first order methods, we use batches of coordinates with m = p/10.

D.3 Hyperparameters and Hardware.

Hyperparameters. When training neural networks with linear layers, we use: batch_size
= 32; input_size = 28*28; hidden_size = 32; output_size = 64, along with the parameters
• (zeroth-order) γ = 10 (Mnist and Fashion-Mnist) γ=15 (Kmnist); h = 0.01; `1 normalization
with λn = 1/ log(n); softmax normalization with λn ≡ 0.2 and η = 5 .
• (first order) γ = 0.01 (Mnist,Fashion-Mnist,Cifar10); normalization = softmax with
η ∈ {1, 2, 10}; λt = 0 (only exponential weights).

Hardware. The experiments of linear models are run using a processor Intel Core i7-10510U
CPU 1.80GHz × 8; the neural networks are trained using GPU from Google Colab (GPU:
Nvidia K80 / T4; GPU Memory: 12GB/16GB; GPU Memory Clock: 0.82GHz/1.59GHz;
Performance: 4.1 TFLOPS / 8.1 TFLOPS)
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ZO Neural Networks with `1 normalization.
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(a) MNIST
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(b) Fashion-MNIST
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(c) KMNIST

Figure 6: Training Loss ZO Neural Networks with `1 normalization.

ZO Neural Networks, Comparison of `1 and Softmax normalizations.
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(a) MNIST-`1
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(b) MNIST-Exp
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(c) Fashion-`1
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Figure 7: Training Loss ZO Neural Networks with `1 and Softmax normalizations.
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E. Numerical Experiments with stochastic first order methods

In this section, we empirically validate the SCGD framework by running MUSKETEER
and competitors on synthetic and real datasets problems with stochastic first order methods.
First, we focus on ridge regression and regularized logistic regression problems adopting
the data generation process of (Namkoong et al., 2017) in which the covariates exhibit a
certain block structure. Second, MUSKETEER is employed to train different neural networks
models on real datasets for multi-label classification task. From a practical point of view,
the optimization procedure is implemented through a PyTorch optimizer which allows an
easy deployment and integration.

Methods in competition. The set of methods in competition is restricted to stochastic
coordinate-based methods along with standard SGD playing the role of the baseline. This
choice allows an honest comparison as the parameter tuning can be the same for all methods.
MUSKETEER is implemented according to Section 4 with an exploration size T = b√pc
and different values of η are used to feed the discussion on the adaptiveness. The method
UNIFORM stands for the uniform coordinate sampling policy in SCGD. The method
ADAPTIVE is the importance sampling based method described in Remark 3. This method
is no longer part of the SCGD framework and corresponds to the one developed in (Wangni
et al., 2018). Among the different methods, MUSKETEER is the only one exhibiting a
bias when generating gradients. In all cases, θ0 = (0, . . . , 0)> ∈ Rp and the optimal SGD
learning rate γk = 1/k is used. For a fair comparison of SGD against SCGD, we normalize
the number of passes over the coordinates: one SGD step updates the p coordinates of θ so
we allow to take p steps for the coordinate-based methods in the mean time.
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(a) Ridge α = 5
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(b) Ridge α = 10
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(c) Logistic α = 2
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(d) Logistic α = 5

Figure 8: [f(θt)− f(θ?)] for Linear Models on Synthetic data with different block structures.

Linear models. We apply ERM to regularized regression and classification problems.
Similarly to (Namkoong et al., 2017), we endow the data matrix X with a block structure.
The columns are drawn as X[:, k] ∼ N (0, σ2kIn) with σ2k = k−α for k ∈ J1, pK. The parameters
are set to n = 10, 000 samples in dimension p = 250 and T = 15. Figure 8 provides the
graphs of the optimaliy gap t 7→ f(θt) − f? averaged over 20 independent simulations for
different values of α ∈ {2; 5; 10}. First, note that the uniform sampling strategy shows similar
performance to the classical SGD and that the (unbiased) importance sampling version
ADAPTIVE is also of the same order. Besides, the clear winner is MUSKETEER as it offers
the best performance in all configurations. Greater values of α (stronger block structure)
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improve our relative performance with respect to the other methods as shown by Figures
8(b) and 8(d).

Neural Networks. To asses the practical performance of MUSKETEER, we focus on the
training of neural networks within the framework of multi-label classification. The datasets in
the experiments are popular publicly available deep learning datasets: MNIST (Deng, 2012),
Fashion-MNIST (Xiao et al., 2017) and CIFAR10 (Krizhevsky et al., 2009). Given an image,
the goal is to predict its label among ten classes. Two different neural networks are used in
the experiments: one with linear layers for MNIST and Fashion-MNIST (p = 55, 050 and
T = 234) , another one with convolutional layers for CIFAR10 (p = 64, 862 and T = 254).
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Figure 9: Training Loss of SGD vs. MUSKETEER on real-world datasets.

Figure 9 compares the evolution of the training loss of SGD against MUSKETEER
averaged over 10 independent simulations with different values of η. A great value of this
parameter strengthens the adaptive scheme as it gives more importance to the weights
in Equation (7), leading to stronger decrease of the objective function. Interestingly, the
performance of MUSKETEER also benefit from such adaptive structure in terms on accuracy
of the test set (see Table 1). This allows to quantify the statistical gain brought by
MUSKETEER over SGD.

SGD η = 1 η = 2 η = 10

MNIST 84.7±1.0 86.7±0.5 88.9±0.4 91.3±0.2
FASHION 64.7±1.2 68.5±1.0 71.2±0.7 77.1±0.8
CIFAR10 51.4±1.4 57.7±0.8 59.7±1.0 62.7±0.8

Table 1: Test Accuracy (in %).
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F. Further Numerical Experiments with zeroth-order methods

F.1 Ridge Regression (`1-reweighting) with different settings of (n, p)

We consider the Ridge regression problem with the classical regularization parameter value
µ = 1/n and run several experiments in various settings of (n, p). We endow the data matrix
X with a block structure. The columns are drawn as X[:, kB+1 : kB+B] ∼ N (0, σ2kIn) with
σ2k = k−α for all k ∈ J0, (p/B)− 1K. The parameter B is the block-size and is set to B = 10
for the Ridge regression. The parameter α represents the block structure and is set to α = 5.
The different Figures below present the evolution of the optimality gap t 7→ [f(θt) − f?]
averaged over 20 independent runs. The learning rates is the same for all methods, fixed to
γk = 1/(k + 10). The different settings are: number of samples n ∈ {1, 000; 2, 000; 5, 000}
and dimension p ∈ {20; 50; 100; 200}. We use the `1 normalization in Equation (7) with
λn = 1/ log(n).
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(c) n = 1000, p = 100
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(d) n = 1000, p = 200

Figure 10: [f(θt)− f?] for Ridge Regression with n = 1000 and p = 20, 50, 100, 200
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(a) n = 2000, p = 20
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(b) n = 2000, p = 50
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(c) n = 2000, p = 100
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(d) n = 2000, p = 200

Figure 11: [f(θt)− f?] for Ridge Regression with n = 2000 and p = 20, 50, 100, 200
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(a) n = 5000, p = 20
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(b) n = 5000, p = 50
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Figure 12: [f(θt)− f?] for Ridge Regression with n = 5000 and p = 20, 50, 100, 200
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F.2 Ridge Regression (softmax reweighting) with different settings of (n, p)

We consider the Ridge regression problem with the classical regularization parameter value
µ = 1/n and run several experiments in various settings of (n, p). We endow the data matrix
X with a block structure. The columns are drawn as X[:, kB+1 : kB+B] ∼ N (0, σ2kIn) with
σ2k = k−α for all k ∈ J0, (p/B)− 1K. The parameter B is the block-size and is set to B = 10
for the Ridge regression. The parameter α represents the block structure and is set to α = 5.
The different Figures below present the evolution of the optimality gap t 7→ [f(θt) − f?]
averaged over 20 independent runs. The learning rates is the same for all methods, fixed to
γk = 1/(k + 10). The different settings are: number of samples n ∈ {1, 000; 2, 000; 5, 000}
and dimension p ∈ {20; 50; 100; 200}. We use the softmax normalization in Equation (7) with
λn ≡ 0.5 and η = 1.
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(d) n = 1000, p = 200

Figure 13: [f(θt)− f?] for Ridge Regression with n = 1000 and p = 20, 50, 100, 200
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(d) n = 2000, p = 200

Figure 14: [f(θt)− f?] for Ridge Regression with n = 2000 and p = 20, 50, 100, 200
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(d) n = 5000, p = 200

Figure 15: [f(θt)− f?] for Ridge Regression with n = 5000 and p = 20, 50, 100, 200
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F.3 Logistic Regression (`1-reweighting) with different settings of (n, p)

We consider the `2-Logistic regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, p). We endow the data
matrixX with a block structure. The columns are drawn asX[:, kB+1 : kB+B] ∼ N (0, σ2kIn)
with σ2k = k−α for all k ∈ J1, (p/B) − 1K. The parameter B is the block-size and is set
to B = 5 for the Logistic regression. The parameter α represents the block structure
and is set to α = 5. The different Figures below present the evolution of the optimality
gap t 7→ [f(θt) − f?] averaged over 20 independent runs. The learning rates is the same
for all methods, fixed to γk = 10/(k + 5). The different settings are: number of samples
n ∈ {1, 000; 2, 000; 5, 000} and dimension p ∈ {20; 50; 100; 200}. We use the `1 normalization
in Equation (7) with λn = 1/ log(n).
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(d) n = 1000, p = 200

Figure 16: [f(θt)− f?] for logistic Regression with n = 1000 and p = 20, 50, 100, 200
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(d) n = 2000, p = 200

Figure 17: [f(θt)− f?] for logistic Regression with n = 2000 and p = 20, 50, 100, 200
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(d) n = 5000, p = 200

Figure 18: [f(θt)− f?] for logistic Regression with n = 5000 and p = 20, 50, 100, 200
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F.4 Logistic Regression (softmax reweighting) with different settings of (n, p)

We consider the `2-Logistic regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, p). We endow the data
matrixX with a block structure. The columns are drawn asX[:, kB+1 : kB+B] ∼ N (0, σ2kIn)
with σ2k = k−α for all k ∈ J1, (p/B)−1K. The parameter B is the block-size and is set to B = 5
for the Logistic regression. The parameter α represents the block structure and is set to α = 5.
The different Figures below present the evolution of the optimality gap t 7→ [f(θt) − f?]
averaged over 20 independent runs. The learning rates is the same for all methods, fixed to
γk = 10/(k + 5). The different settings are: number of samples n ∈ {1, 000; 2, 000; 5, 000}
and dimension p ∈ {20; 50; 100; 200}. We use the softmax normalization in Equation (7) with
λn ≡ 0.5 and η = 1.
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(d) n = 1000, p = 200

Figure 19: [f(θt)− f?] for logistic Regression with n = 1000 and p = 20, 50, 100, 200
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(d) n = 2000, p = 200

Figure 20: [f(θt)− f?] for logistic Regression with n = 2000 and p = 20, 50, 100, 200
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Figure 21: [f(θt)− f?] for logistic Regression with n = 5000 and p = 20, 50, 100, 200
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F.5 Effect of Importance Sampling (IS) on Ridge Regression

We consider the same setting as in Subsection F.1 and study the effect of using importance
sampling weights in the update rule of MUSKETEER. Indeed, MUSKETEER update rule
is defined with the following biased gradient estimate θt+1 = θt − γt+1D(ζt+1)gt and the
importance sampling (IS) strategy consists in adding D−1t to reach an unbiased estimate

θt+1 = θt − γt+1D
−1
t D(ζt+1)gt.

For the different configurations, we compare the MUSKETEER methods with their impor-
tance sampling counterparts. The Figures below show that the importance sampling methods
perform similarly to the uniform coordinate sampling strategy and are therefore sub-optimal.
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Figure 22: [f(θt)− f?] for Ridge Regression with n = 1000 and p = 50, 200
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(a) n = 2000, p = 50
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(b) n = 2000, p = 200

Figure 23: [f(θt)− f?] for Ridge Regression with n = 2000 and p = 50, 200
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(b) n = 5000, p = 200

Figure 24: [f(θt)− f?] for Ridge Regression with n = 5000 and p = 50, 200
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F.6 Effect of Importance Sampling (IS) on Logistic Regression

We consider the same setting as in Subsection F.3 and study the effect of using importance
sampling weights in the update rule of MUSKETEER. Indeed, MUSKETEER update rule
is defined with the following biased gradient estimate θt+1 = θt − γt+1D(ζt+1)gt and the
importance sampling (IS) strategy consists in adding D−1t to reach an unbiased estimate

θt+1 = θt − γt+1D
−1
t D(ζt+1)gt.

For the different configurations, we compare the MUSKETEER methods with their impor-
tance sampling counterparts. The Figures below show that the importance sampling methods
perform similarly to the uniform coordinate sampling strategy and are therefore sub-optimal.
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Figure 25: [f(θt)− f?] for Logistic Regression with n = 1000 and p = 50, 200
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(b) n = 2000, p = 200

Figure 26: [f(θt)− f?] for Logistic Regression with n = 2000 and p = 50, 200
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(a) n = 5000, p = 50
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(b) n = 5000, p = 200

Figure 27: [f(θt)− f?] for Logistic Regression with n = 5000 and p = 50, 200
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G. Further Experiments with stochastic first order methods

G.1 Comparing learning rates

This section investigates the effect of different learning rates γk = γ/k with γ ∈ {0.5; 1; 1.5; 2}.
It reveals a safe behavior of MUSKETEER as it performs better than the other methods
in all configurations with a stronger difference when dealing with small values of γ. We
consider the Ridge regression problem with regularization parameter µ = 1/n and run several
experiments in the setting n = 5, 000 samples and dimension p ∈ {20; 100; 200}. We endow
the data matrix X with a block structure. The columns are drawn as X[:, k] ∼ N (0, σ2kIn)
with σ2k = k−α for all k ∈ J1, pK. The parameter α of block structure is α = 8. The gradient
estimate g is computed using mini-batches of size 4. The different Figures below present
the evolution of the optimality gap t 7→ [f(θt)− f?] averaged over 20 independent runs for
N = 100 iterations with normalized passes over coordinates.
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(d) p = 20, γ = 2

Figure 28: [f(θt)− f?] for Ridge Regression with p = 20 and γ ∈ {0.5; 1; 1.5; 2}
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(a) p = 100, γ = 0.5
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(b) p = 100, γ = 1

100 101 102

Passes over coordinates

10−7

10−6

10−5

10−4

10−3

10−2

10−1

O
pt

im
al

iy
G

ap
f(

θ t
)
−

f(
θ?

)

SGD
Uniform
Adaptive
Musketeer

(c) p = 100, γ = 1.5
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(d) p = 100, γ = 2

Figure 29: [f(θt)− f?] for Ridge Regression with p = 100 and γ ∈ {0.5; 1; 1.5; 2}

100 101 102

Passes over coordinates

10−4

10−3

10−2

10−1

O
pt

im
al

iy
G

ap
f(

θ t
)
−

f(
θ?

)

SGD
Uniform
Adaptive
Musketeer

(a) p = 200, γ = 0.5

100 101 102

Passes over coordinates

10−7

10−6

10−5

10−4

10−3

10−2

10−1

O
pt

im
al

iy
G

ap
f(

θ t
)
−

f(
θ?

)

SGD
Uniform
Adaptive
Musketeer

(b) p = 200, γ = 1
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(c) p = 200, γ = 1.5
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(d) p = 200, γ = 2

Figure 30: [f(θt)− f?] for Ridge Regression with p = 200 and γ ∈ {0.5; 1; 1.5; 2}
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G.2 Ridge Regression with different settings of (n, p)

We consider the Ridge regression problem with the classical regularization parameter value
µ = 1/n and run several experiments in various settings of (n, p). We endow the data matrix
X with a block structure. The columns are drawn as X[:, kB + 1 : kB + B] ∼ N (0, σ2kIn)
with σ2k = k−α for all k ∈ J0, (p/B) − 1K. The parameter B is the block-size and is set
to B = 5 for the Ridge regression. The parameter α represents the block structure and
is set to α = 10. The data sampling process ξ of gradient estimate g is computed using
mini-batches of size 8. The different Figures below present the evolution of the optimality gap
t 7→ [f(θt)− f?] averaged over 20 independent runs for N = 1000 iterations with normalized
passes over coordinates. The learning rates is the same for all methods, fixed to γk = 1/k.
The different settings are: number of samples n ∈ {1, 000; 2, 000; 5, 000} and dimension
p ∈ {20; 50; 100; 200}.
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(a) n = 1000, p = 20
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(b) n = 1000, p = 50
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(c) n = 1000, p = 100

100 101 102 103

Passes over coordinates

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Op
tim

al
iy

 G
ap

 f(
t)

f(
)

SGD
Uniform
Adaptive
Musketeer

(d) n = 1000, p = 200

Figure 31: [f(θt)− f?] for Ridge Regression with n = 1000 and p = 20, 50, 100, 200
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(a) n = 2000, p = 20
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(b) n = 2000, p = 50
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(c) n = 2000, p = 100
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(d) n = 2000, p = 200

Figure 32: [f(θt)− f?] for Ridge Regression with n = 2000 and p = 20, 50, 100, 200
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(a) n = 5000, p = 20
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(b) n = 5000, p = 50
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(c) n = 5000, p = 100
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(d) n = 5000, p = 200

Figure 33: [f(θt)− f?] for Ridge Regression with n = 5000 and p = 20, 50, 100, 200
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G.3 Logistic Regression with different settings of (n, p)

We consider the `2-Logistic regression problem with the classical regularization parameter
value µ = 1/n and run several experiments in various settings of (n, p). We endow the data
matrixX with a block structure. The columns are drawn asX[:, kB+1 : kB+B] ∼ N (0, σ2kIn)
with σ2k = k−α for all k ∈ J1, (p/B) − 1K. The parameter B is the block-size and is set
to B = 2 for the Logistic regression. The parameter α represents the block structure and
is set to α = 5. The data sampling process ξ of gradient estimate g is computed using
mini-batches of size 32. The different Figures below present the evolution of the optimality
gap t 7→ [f(θt) − f?] averaged over 20 independent runs for N = 1000 iterations with
normalized passes over coordinates. The learning rates is the same for all methods, fixed
to γk = 1/k. The different settings are: number of samples n ∈ {1, 000; 2, 000; 5, 000} and
dimension p ∈ {20; 50; 100; 200}.
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(a) n = 1000, p = 20
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(c) n = 1000, p = 100
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(d) n = 1000, p = 200

Figure 34: [f(θt)− f?] for logistic Regression with n = 1000 and p = 20, 50, 100, 200
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(a) n = 2000, p = 20

100 101 102 103

Passes over coordinates

10 1

Op
tim

al
iy

 G
ap

 f(
t)

f(
)

SGD
Uniform
Adaptive
Musketeer

(b) n = 2000, p = 50
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(c) n = 2000, p = 100
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(d) n = 2000, p = 200

Figure 35: [f(θt)− f?] for logistic Regression with n = 2000 and p = 20, 50, 100, 200
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(a) n = 5000, p = 20
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(b) n = 5000, p = 50
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(c) n = 5000, p = 100
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(d) n = 5000, p = 200

Figure 36: [f(θt)− f?] for logistic Regression with n = 5000 and p = 20, 50, 100, 200
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