Pré-Publication, Document De Travail Année : 2022

Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications

Résumé

The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. Here we follow earlier approaches which fully exploit the normal Hilbert module property of the time domain. The key point is to build the Gramian-Cramér representation as an isomorphic mapping from the modular spectral domain to the modular time domain. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cramér-Karhunen-Loève decomposition and harmonic functional principal component analysis, which are established without relying on additional assumptions.
Fichier principal
Vignette du fichier
filtering-hilbert-esaim-v3.pdf (522 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02318267 , version 1 (16-10-2019)
hal-02318267 , version 2 (04-12-2019)
hal-02318267 , version 3 (06-07-2020)
hal-02318267 , version 4 (11-09-2021)
hal-02318267 , version 5 (03-06-2022)
hal-02318267 , version 6 (05-10-2022)
hal-02318267 , version 7 (06-09-2023)

Identifiants

  • HAL Id : hal-02318267 , version 6

Citer

Amaury Durand, François Roueff. Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications. 2022. ⟨hal-02318267v6⟩
1039 Consultations
558 Téléchargements

Partager

More