Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications - Télécom Paris
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2023

Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications

Résumé

The spectral theory for weakly stationary processes valued in a separable Hilbert space has known renewed interest in the past decade. Here we follow earlier approaches which fully exploit the normal Hilbert module property of the time domain. The key point is to build the Gramian-Cramér representation as an isomorphic mapping from the modular spectral domain to the modular time domain. We also discuss the general Bochner theorem and provide useful results on the composition and inversion of lag-invariant linear filters. Finally, we derive the Cramér-Karhunen-Loève decomposition and harmonic functional principal component analysis, which are established without relying on additional assumptions.
Fichier principal
Vignette du fichier
ps210054.pdf (748.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-02318267 , version 1 (16-10-2019)
hal-02318267 , version 2 (04-12-2019)
hal-02318267 , version 3 (06-07-2020)
hal-02318267 , version 4 (11-09-2021)
hal-02318267 , version 5 (03-06-2022)
hal-02318267 , version 6 (05-10-2022)
hal-02318267 , version 7 (06-09-2023)

Licence

Identifiants

Citer

Amaury Durand, François Roueff. Weakly stationary stochastic processes valued in a separable Hilbert space: Gramian-Cramér representations and applications. ESAIM: Probability and Statistics, 2023, ⟨10.1051/ps/2023014⟩. ⟨hal-02318267v7⟩
1007 Consultations
524 Téléchargements

Altmetric

Partager

More