Probabilistic semi-nonnegative matrix factorization: a Skellam-based framework - Télécom Paris
Autre Publication Scientifique Computing Research Repository Année : 2021

Probabilistic semi-nonnegative matrix factorization: a Skellam-based framework

Benoît Fuentes

Résumé

We present a new probabilistic model to address semi-nonnegative matrix factorization (SNMF), called Skellam-SNMF. It is a hierarchical generative model consisting of prior components, Skellam-distributed hidden variables and observed data. Two inference algorithms are derived: Expectation-Maximization (EM) algorithm for maximum \emph{a posteriori} estimation and Variational Bayes EM (VBEM) for full Bayesian inference, including the estimation of parameters prior distribution. From this Skellam-based model, we also introduce a new divergence D between a real-valued target data x and two nonnegative parameters λ0 and λ1 such that D(x∣λ0,λ1)=0⇔x=λ0−λ1, which is a generalization of the Kullback-Leibler (KL) divergence. Finally, we conduct experimental studies on those new algorithms in order to understand their behavior and prove that they can outperform the classic SNMF approach on real data in a task of automatic clustering.
Fichier principal
Vignette du fichier
2107.03317.pdf (4.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03790824 , version 1 (16-12-2022)

Identifiants

  • HAL Id : hal-03790824 , version 1

Citer

Benoît Fuentes, Gael Richard. Probabilistic semi-nonnegative matrix factorization: a Skellam-based framework. arxiv.2107.03317, 2021. ⟨hal-03790824⟩
24 Consultations
28 Téléchargements

Partager

More