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Probabilistic semi-nonnegative matrix
factorization: a Skellam-based framework

Benoit Fuentes and Gaël Richard

Abstract—We present a new probabilistic model to address semi-nonnegative matrix factorization (SNMF), called Skellam-SNMF. It is
a hierarchical generative model consisting of prior components, Skellam-distributed hidden variables and observed data. Two inference
algorithms are derived: Expectation-Maximization (EM) algorithm for maximum a posteriori estimation and Variational Bayes EM
(VBEM) for full Bayesian inference, including the estimation of parameters prior distribution. From this Skellam-based model, we also
introduce a new divergence D between a real-valued target data x and two nonnegative parameters λ0 and λ1 such that
D (x | λ0, λ1) = 0⇔ x = λ0 − λ1, which is a generalization of the Kullback-Leibler (KL) divergence. Finally, we conduct experimental
studies on those new algorithms in order to understand their behavior and prove that they can outperform the classic SNMF approach
on real data in a task of automatic clustering.

Index Terms—Semi-Nonnegative Matrix Factorization, Skellam Distribution, Clustering, Bayesian inference

F

1 INTRODUCTION

MATRIX factorization, which consists in expressing or
approximating a given matrix X as the product of

two matrices W (called atoms in this paper) and λ (called
activations in this paper), i.e. X = Wλ or X ≈ Wλ,
has been widely used in data analysis, signal processing
and machine learning over many decades. There is a large
number of techniques to address this problem, including
principal component analysis (PCA), independent compo-
nent analysis (ICA) [1], or Dictionary Learning [2] just to
name a few. In some applications where observed matrix
X ≥ 0, an additional constraint can be added to factors W
and λ so they remain within the positive orthant, leading
to the nonnegative matrix factorization problem (NMF) [3].
Beyond the innumerable applications of NMF that can be
found in the literature, in fields such as astronomy [4], audio
signal processing [5], bioinformatics [6], text mining [7], etc.,
there exists a great variety of theoretical work on NMF,
focusing on different aspects of the problem [8]. Without
being exhaustive, one can mention studies on objective
functions [9], [10], efficient algorithms [11] or probabilistic
interpretation [12], [13], [14].

More recently, in domains such as energy efficiency
[15], gene clustering [16], template matching [17], hid-
den representation learning [18], or computational imag-
ing [19], a number of studies have made use of an alter-
native model called semi-nonnegative matrix factorization
(SNMF), where observed matrixX is real-valued and where
a nonnegativity constraint is added on the λ factor, leaving
W unconstrained. SNMF was first introduced by Ding et.
al. [20]. They define this problem as a classic optimization
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Palaiseau, France, e-mail: bf@benoit-fuentes.fr, gael.richard@telecom-
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problem: given a matrix X ∈ RI×J , and a rank K , solve

min
W∈RI×K ,λ∈RK×J

‖X −Wλ‖2F such that λ ≥ 0, (1)

where ‖·‖F is the Frobenius norm. As for classical NMF
[3], this problem is solved by alternatively updating W and
λ. Update of W is performed via least square method and
update of λ is performed via some multiplicative update
which ensures the nonnegativity of λ. Following this first
article on SNMF, a few theoretical studies have been con-
ducted in order to better understand this problem or to
provide alternative solutions. In [21] and [22], the notion
of semi-nonnegative rank of matrix X is introduced and
SNMF algorithms under exact reconstruction constraint are
developed. Gillis et. al. [22] also put forward improvements
to the original SNMF algorithm in order to overcome some
former drawbacks such as numerical instability or slowness
of convergence. Other studies focus on interpretability of
parameters W and λ by adding extra regularization terms.
In [23], a constraint onW is introduced in order to minimize
the maximum angle between any two columns of W . In
[15], the regularization term is designed to minimize the
total variation of each row of λ.

Although there seems to be a growing interest in this
problem, knowledge about SNMF is limited compared to
that of NMF. In order to make our contribution, in this
paper we formulate SNMF as a statistical inference problem
by developing a probabilistic framework suitable for this
type of semi-nonnegative model. This framework, called
Skellam-SNMF, is based on the Skellam distribution. It is
a generalization to signed data of either Poisson NMF [12]
or probabilistic latent semantic analysis (PLSA) [13] – also
known as probabilistic latent component analysis (PLCA)
[14] – and its development into the fully-probabilistic latent
Dirichlet allocation (LDA) model [24]. This will lead us to
introduce a generalization to signed data of the Kullback-
Leibler divergence, as an alternative to the classic Euclidean
norm. We will also explain how to add priors on the model
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parameters as a way to perform regularization, and two
inference algorithms will be developed in order to estimate
factor matrices W and λ: one for standard maximum a
posteriori estimation, and one for full Bayesian inference.
Finally, we will see how to automatically infer the prior
distribution of the parameters which shall open the path
for online algorithms. By formulating it as a generalization
of existing probabilistic models, the SNMF problem will
benefit for future research from all improvements and en-
hancements that have been made on probalistic NMF. We
think for instance of generalized tensor factorizations [25],
dynamic models [26], sophisticated ad hoc models [27], etc.

The paper is organized as follows. After having pre-
sented in section 2 some properties about the Skellam dis-
tribution, the Skellam-SNMF model is introduced in section
3. Sections 4 and 5 are dedicated to the derivation of two
inference algorithms. In section 6 we conduct experiments
on toy examples in order to better understand the behavior
of our algorithms and we compare Skellam-SNMF with
other SNMF methods on real data on a simple clustering
problem. Finally, we present our conclusions and ideas for
future work in section 7.

Before tackling the subject, let us present the notations
that will be used in the sequel. The bold letters, whether
upper of lower case, always refer to sets of scalars, including
tensors or matrices. The letters X and Z are dedicated to
observed data and hidden sources respectively. The letter
λ is always used for nonnegative parameters of Poisson or
Skellam distributions. A bar an top indicates that the pa-
rameter is expressed as a function of other basic parameters
(i.e. λ̄s =

∑
n λsn). Finally, the letter θ is used to designate

a set of nonnegative parameters subject to normalization
constraints.

2 SKELLAM DISTRIBUTION

Skellam-SNMF is based on a linear source mixture model
where individual sources are modeled as Skellam random
variables and we present in this section important proper-
ties about this distribution. All proofs are reported in the
supplementary material. A Skellam random variable (r.v.)
X is defined as the difference of two independent Poisson
random variables:{

X0 ∼ Pois (λ0)

X1 ∼ Pois (λ1)
⇔ X = X0 −X1 ∼ Skell (λ0, λ1) . (2)

Parameters λ0 and λ1 are nonnegative and mean and vari-
ance of X are given by

〈X〉 = λ0 − λ1, (3)
Var (X) = λ0 + λ1. (4)

There exists several equivalent expressions for the Skellam
distribution [28] and the one that will be used in this paper
is the following:

P (X = x) =
0F1 (|x|+ 1, λ0λ1)

Γ (|x|+ 1)

∏
s∈{0,1}

e−λsλmax((−1)sx,0)
s

(5)
where 0F1 is the confluent hypergeometric limit function
(which is closely related to the modified Bessel function of
the first kind) and where x ∈ Z. It is easy to verify that

this distribution is simplified into the Poisson distribution
if λ1 = 0. A key property is that the sum of independant
Skellam r.v. Zn ∼ Skell (λ0,n, λ1,n) is a also a Skellam r.v.:

X =
∑
n

Zn ∼ Skell

(∑
n

λ0,n,
∑
n

λ1,n

)
. (6)

We refer {Zn} as the hidden Skellam sources and X as the
observed mixture or observed data. Besides, the underlying
Poisson r.v. {Zsn ∼ Pois (λsn)}s∈{0,1},n such that Zn =
Z0,n − Z1,n are called hidden Poisson sources.

Now, we are interested in the posterior distribution of
those hidden Poisson sources given the observed mixture,
since it will be useful during the derivation of the statistical
inference algorithms used later on. First, it can be proven
that the expectation of this posterior distribution is given
by:

〈Zsn | X = x〉 =λsn

[
max ((−1)

s
x, 0)

λ̄s
+

λ̄1−s

|x|+ 1 +
√
λ̄0λ̄1 R|x|+1

(
2
√
λ̄0λ̄1

)
 (7)

where λ̄s =
∑
n λsn for s ∈ {0, 1} and where Rx (z) is the

ratio of modified Bessel functions of the first king [29]:

Rx (z) =
Ix+1 (z)

Ix (z)
. (8)

Then, using Bayes rule, one can give the full posterior
distribution ofZ = {Zsn}with respect toX and parameters
λ = {λsn}:

P (Z = z | X = x) = p (z;λ, x) (9)

with

p (z;λ, x) = D (λ, x)

∏
sn λ

zsn
sn∏

sn zsn!
1{x=

∑
n z0,n−z1,n} (10)

where 1 is the indicator function and where

D (λ, x) =

∏
s (
∑
n λsn)

−max((−1)sx,0)

0F1 (|x|+ 1,
∏
s

∑
n λsn)

Γ (|x|+ 1) (11)

is the normalization factor. To our knowledge, such a dis-
tribution has not yet been introduced in the literature. We
decide to name it the diffnomial distribution, as a reference
to the equivalent multinomial law in the Poisson mixture
case1 :

(Z | X = x) ∼ DiffNomial (x,λ) . (12)

It is easy to verify that the diffnomial law is indeed simpli-
fied into a multinomial law if λ1,n and z1,n are set to 0 for
all n.

Now we have presented all necessary background pre-
liminaries, the Skellam-SNMF model can be introduced.

1. It is a well known result that if Zn ∼ Pois (λn) for n = 1 . . . N and
if X =

∑
n Zn, then {Zn} | X follows a multinomial distribution.
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3 SKELLAM-SNMF: THE GENERATIVE MODEL

We aim at approximating a matrix X as a factorization of
two matrices X ≈ Wλ where W ∈ RI×K contains real
values and λ ∈ RK×J+ only nonnegative ones. The main
idea in Skellam-NMF is to express atoms matrix W as the
difference between two nonnegative matrices W = θ0 − θ1

and then to consider that each coefficient Xij is drawn from
a Skellam distribution Xij ∼ Skell

(
[θ0λ]ij , [θ1λ]ij

)
. An

appropriate estimator for parameters θ0, θ1 and λ will
try to make the expected value of Skellam distribution
[θ0λ]ij − [θ1λ]ij as closed as possible to the observed data
and then have the best possible approximation X ≈ X̂ =
θ0λ−θ1λ = Wλ. With this generative model, only integers
are allowed for the coefficients of X . For real-valued data,
the idea is to consider X as the mean of M Skellam-
distributed matrices X = 1

M

∑M
m=1X

m and then make M
tends towards∞.

3.1 Normalization constraints on atoms

From now on, we gather the two matrices θ0 and θ1 in
a single tensor θ = {θsik}s∈{0,1},i=1...I,k=1...K also called
atoms herein. We decide to add the following normalization
constraint on θ:

∀k,
∑
si

θsik = 1. (13)

In order to notify such a constraint, we will use notation
θsi|k instead of θsik. This presents many advantages. First of
all, it overcomes an homogeneity flaw that happens when
the observed data X has a physical dimension, such as
Watts (W), lumen (lm), etc.: since X̂ = Wλ should have the
same physical dimension, it makes more sense to have one
normalized factor with no dimension whatsoever and one
factor that carries the physical dimension, than two factors
that would be expressed in square root of the dimension.
Then, a practical advantage is that this constraint leads to
the following simplification∑

ijks

θsi|kλkj =
∑
kj

λkj (14)

which facilitates the derivation of both inference algorithms
presented in sections 4 and 5. It also naturally prevents
any estimation algorithm from numerical stability problems,
with for instance atoms tending towards very small values
and activations tending towards very high ones. Finally, it
removes a well known identifiability problem, namely the
scale invariance between columns ofW and rows of λ. Note
that the choice to apply a normalization constraint on atoms
θ is arbitrary and we could have normalized activations
instead.

3.2 Priors on parameters

We consider the possibility of adding priors on parameters
as a way to both get rid of all identifiability problems
that might remain and to add regularization terms in the
objective function to be optimized. This can help to find
more relevant estimates for the parameters, depending
on the application. In order to stay in a easy-to-compute

probabilistic framework, we suggest the use of conjugate
priors for the Skellam likelihood function, which happens
to be Gamma priors for non-normalized parameters λkj and
Dirichlet priors for normalized parameters θsi|k.

3.3 The generative model

Now, we can detail the full generative model of Skellam-
SNMF. In order to consider both cases according to whether
X is composed of integers or real numbers, we let the
number M undefined. Just be aware that the two values of
interest are M = 1 for integer data or M →∞ for real data.
Note also that we are going to artificially over-parameterize
our model by defining M atoms tensors and M activations
matrices. This will be discussed at the end of this section.
The first step of the generative model is to draw parameters
from their prior distributions:

∀m = 1 . . .M,
{
θmsi|k

}
si
∼ Dirichlet

({
αϕ(s,i,k)

}
si

)
, (15)

λmkj ∼ Gamma
(
αυ(k,j), βω(k,j)

)
.

(16)

Here, α = {αa} and β = {βb} are two sets of non-negative
shape and rate hyperparameters, and ϕ, υ and ω are
functions that map the parameters to the hyperparameters.
Using such maps allows us to keep the possibility for several
parameters to share a same hyperparameter, reducing then
their number. Later, we will see how hyperparameters can
be learned from the data, and such feature can be useful
in order to avoid overfitting. However, we do not permit
Gamma and Dirichlet parameters to share a same shape
hyperparameter and one must have

{ϕ (s, i, k)}s,i,k ∩ {υ (k, j)}k,l = ∅. (17)

The second step is to draw Poisson hidden variables (or
hidden sources) depending on the parameters:

Zmsikj ∼ Pois
(
λ̄msikj

)
(18)

with
λ̄msikj = θmsi|kλ

m
kj . (19)

Finally, observed data are computed as:

Xij =
1

M

∑
mk

Zms=0,ikj −
∑
mk

Zms=1,ikj , (20)

leading to Skellam independent random variables for M×
the observed data:

MXij ∼ Skell

(∑
m

λ̄ms=0,ij ,
∑
m

λ̄ms=1,ij

)
(21)

with
λ̄msij =

∑
k

λ̄msikj . (22)

Possibly, we can also consider that some data are missing,
meaning that {Xij} is observed only for a subset

O ⊂ {1, . . . I} × {1, . . . J} (23)

of indexes (i, j). We redefine then the set of observed data
as

XO = {Xij}ij∈O . (24)



SUBMITTED FOR PUBLICATION 4

The reason for over-parameterizing the model by draw-
ing M independent pairs of atoms and activations is that
otherwise the log-prior probability of the parameters would
become negligible compared to the log-likelihood of the
data as M grows, making the addition of priors useless.
With M draws, priors are “counted” M times, which solves
the problem. Now, the trick to getting back to a single atoms
factor and a single activations factor is to constrain, when
we seek to infer the parameter values, the estimates of θm

and λm to be pairwise equals, i.e. ∃ (θ,λ) ,∀m, (θm,λm) =
(θ,λ).

At this point, any statistical inference algorithms can be
applied in order to estimate the best value for the parame-
ters given observed data X . In the two following sections,
we focus on the Expectation-Maximization (EM) algorithm
and the Variational Bayes EM algorithm.

4 SKELLAM-SNMF WITH EM ALGORITHM

4.1 Objective function and emergence of a new diver-
gence

In order to estimate the parameters of our model, one
can use the Expectation-Maximization algorithm [30] which
aims at finding a local maximum of the log-posterior prob-
ability of the parameters given the data. In the case of the
generative model presented in previous section, the Bayes
rule can be used to compute it:

lnP ({θm} , {λm} |MX) = lnP (MX | {θm}m , {λ
m}m)

+
∑
m

lnP (θm) +
∑
m

lnP (λm) + cst

(25)
where cst does not depend on the parameters. Each of the
other terms can be computed using equations (15), (16),
(21) and the definition of the corresponding distributions. If
now we add a normalization factor 1

M so that this quantity
does not tend toward −∞ as M goes to +∞, and if we
consider, as justified before, only values of parameters such
as ∀m, (θm,λm) = (θ,λ), we can define the objective
function that the EM algorithm will optimize as:

fMX (θ,λ) =
1

M
lnP ({θm = θ}m , {λ

m = λ}m |MX)

=LMX (θ,λ)

+
∑
kj

(
αυ(k,j) − 1

)
lnλkj − βω(k,j)λkj

+
∑
sik

(
αϕ(s,i,k) − 1

)
ln θsi|k + cst/M (26)

where

LMX (θ,λ) =
1

M
lnP (MX | {θm = θ}m , {λ

m = λ}m)

(27)
can be interpreted as a data fitting term, and the other terms
as regularization terms (cst/M is ignored thereafter). If X
contains integer values (M = 1), equation (5) gives:

L1
X (θ,λ) =

∑
ij∈O

ln
0F1 (|Xij |+ 1, σij)

Γ (|Xij |+ 1)
+∑

s

−λ̄sij + max ((−1)
s
Xij , 0) ln λ̄sij

(28)

with
σij = λ̄s=0,ij λ̄s=1,ij . (29)

and λ̄sij given by equations (19) and (22). IfX is real-valued
(M = +∞), it can be proven using asymptotic expansion of
0F1 (see supplementary material) that:

L∞X (θ,λ) = −
∑
ij∈O

D
(
Xij | λ̄s=0,ij , λ̄s=1,ij

)
(30)

with

D (x | λ0, λ1) =
∑

s∈{0,1}

λs −max ((−1)
s
x, 0) lnλs

−
√
x2 + 4λ0λ1 + |x| ln

(
|x|+

√
x2 + 4λ0λ1

2

)
.

(31)

The function D (x | λ0, λ1) can be seen as a divergence
function: it is indeed always positive or null by construction
and vanishes if and only if x = λ0 − λ1. It is actually a
generalization to signed data of the Kullback-Leibler (KL)
divergence DKL [3] since D (x | λ0, 0) = DKL (x | λ0) for
nonnegative values of x. Note also that as for the KL
divergence, it respects the following property:

∀µ > 0, D (µx | µλ0, µλ1) = µD (x | λ0, λ1) . (32)

To our knowledge, this divergence has never been intro-
duced in the literature.

4.2 Derivation of the EM algorithm

Each iteration of the EM algorithm consists of two steps.
First the expectation step, were the log-likelihood of the
complete data Y (observed and latent variables) is com-
puted as well as its conditional expectation given current
estimates for the parameters. Then the maximization step,
where this last quantity is maximized with respect to the
parameters. For the definition of Y , we can either include
or exclude missing data and latent sources that are linked
to them. We decide to include them for a practical reason:
when deriving the algorithm, it allows to perform simpli-
fication (14) at some point, and without it, we would not
have a simple closed form solution in the maximization
stage. The downside in return is that it might slow down
the speed of convergence, since it is a known feature of
the EM algorithm that the more hidden variables compared
to number of observed data, the slowest the convergence.
Curious readers may refer to the supplementary material,
where the derivation of the EM algorithm is fully detailed.
The computation is quite straightforward once the formula
of the posterior expectation of the hidden sources (7) is
known. The resulting update rules for the parameters are
summarized in Algorithm 1.

5 FULL BAYESIAN INFERENCE

5.1 VBEM: Motivations and general guidelines

Whether it is to estimate the posterior distribution of the
parameters given the observed data and the hyperparam-
eters, to perform hyperparameters estimation or to com-
pare two given models, full Bayesian methods can be very
useful. Here we focus on one of them called Variational
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Algorithm 1: EM algorithm for Skellam-SNMF.

Input: X , O, M , ε = 0 if shape hyperparameters α ≥ 1 else ε > 0

Output: θ̂ and λ̂

1 initialize θ̂ and λ̂
2 repeat

/* Compute the model and the multiplicative updates */

3 λ̄sij ←
∑
k θ̂si|kλ̂kj

4 optional: compute objective function fMX
(
θ̂, λ̂

)
(equation (26))

5 σij ← λ̄s=0,ij λ̄s=1,ij

6 Usij ←


1 if ij /∈ O
max((−1)sXij ,0)

λ̄sij
+

λ̄1−s,ij

|Xij |+1+
√
σij R|Xij |+1(2

√
σij)

if ij ∈ O and M = 1

max((−1)sXij ,0)

λ̄sij
+

2λ̄1−s,ij

|Xij |+
√
X2

ij+4σij
if ij ∈ O and M =∞

7 U act
kj ←

∑
si Usij θ̂si|k U atoms

sik ←
∑
j Usij λ̂kj

/* Update parameters */

8 λ̂kj ← λ̂kjU
act
kj + αυ(k,j) − 1 θ̂sik ← θ̂si|kU

atoms
sik + αϕ(s,i,k) − 1

9 λ̂kj ← min
(
λ̂kj , ε

)
θ̂sik ← min

(
θ̂sik, ε

)
10 λ̂kj ← λ̂kj/

(
1 + βω(k,j)

)
θ̂si|k ← θ̂si|k/

∑
s′i′ θ̂s′i′|k

11 until convergence;

Bayesian EM (VBEM) [31]. It allows both to find an ap-
proximation of the posterior distribution of parameters and
hidden variables (we regroup them into a single variable
W = (Z,θ,λ)):

Q (W ) ≈ P (W |XO) (33)

and to compute the Evidence Lower BOund (ELBO) E , a
lower bound for the log-evidence of the data, which has
generally no closed-form solution:

E (Q;XO) ≤ lnP (XO) (34)

with

E (Q;XO) =
∑
W

Q (W ) ln
P (W ,XO)

Q (W )
(35)

and
P (XO) =

∑
W

P (W ,XO) . (36)

The goal of VBEM is to maximize E (Q;XO) with re-
spect to Q. To do so, Q (W ) is usually factorized as

Q (W ) =
N∏
n=1

qn (W n) (37)

where W1, . . .WN is some partition of all latent variables
W . It is shown that the following update rules for the
qn distribution make the ELBO non decreasing (the nota-
tion 〈f (x1, . . . )〉q1(x1),... is used for the expected value of
f (x1, . . . ) taking q1, . . . as the probability distributions for
x1, . . . ):

ln qn (W n) = 〈lnP (W 1, . . .WN ,XO)〉{qn′ (Wn′ )}n′ 6=n

+ cst. (38)

For the following, we define the normalized ELBO as

gM (Q;XO) =
1

M
E (Q;XO) , (39)

which turns out to be well defined when M tends towards
infinity. This corresponds to the objective function to be
maximized.

5.2 Derivation of VBEM algorithm
Because this will lead to VBEM algorithm that is “easy” to
derive, we decide to take a fully factorized distribution for
Q:

Q (W ) =
∏
ij

qZij

({
Zmsikj

}
msk

) ∏
mkj

qλm
kj

(
λmkj
)

∏
mk

qθm
k

({
θmsi|k

}
si

)
. (40)

Due to the symmetry with respect to m of the generative
process described in section 3.3, VBEM will give similar
definitions and update rules for qλm

kj
and qθm

k
for all m.

This means that on condition that they are all initialized
the same way – which we will suppose –, they will all
be equals over the iterations and we can therefore ignore
superscripts m. Note also that, for the same practical reason
as for the EM algorithm (see subsection 4.2), hidden sources
that are linked to missing data

{
Zmsikj

}
ij /∈O,s,k,m

are not

excluded from W . At each iteration, we update factor
distributions according to equation (38) in the following
order: first, updates of parameter distributions

{
qλm

kj

}
mkj

and
{
qθm

k

}
mkj

2, and then updates of source distributions

2. It turns out that due to normalization constraint on atoms (13),
those updates can be performed independently from each other, and
therefore the order does not matter.
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qZij

}
ij

. The detailed calculations are provided in the sup-
plementary material and we report here the main results. By
following these guidelines, we end up with the following
posterior distributions:

qZij =


∏
msk Pois

(
¯̀m
sikj

)
, if ij /∈ O

DiffNomial
(
MXij ,

{
¯̀m
sikj

}
msk

)
, if ij ∈ O

(41)

qλm
kj

= qλkj
= Gamma

(
α̂kj , β̂kj

)
, (42)

qθm
k

= qθk
= Dirichlet ({α̂sik}si) (43)

where ¯̀m
sikj can be computed from α̂kj , β̂kj and α̂sik, and

vice versa, leading to a EM-like alternative algorithm. A
nice feature is that due to calculation simplifications, it
is not necessary to explicitly compute the ¯̀m

sikj variables.
The resulting algorithm is described in algorithm 2 and is
actually very closed to the EM algorithm.

Now we have a definition for theQ distribution, the nor-
malized ELBO gM (Q;XO) (39) can be computed explicitly
thanks to equation (35). The developped formula is given
in Appendix A. Just know that as for the EM algorithm’s
objective function, it is composed of three terms that can
be interpreted as a data fitting term and two regularization
terms for atoms and activations.

5.3 Estimation of hyperparameters

Though it is not justified in theory, the ELBO is often used
in the literature as a replacement for the log-evidence of
data lnP (XO) (36) in order to perform model selection3 or
hyperparameters estimation [12], [33]. For instance, in the
specific case of Poisson-NMF and given a single observed
matrix X , it is explained in [12] how to infer the model
order K and how to alternatively run the VBEM algorithm
with fixed hyperparameters, and update the hyperparam-
eters with fixed distribution Q, as a way to improve the
estimation of the model parameters.

Here, we focus on an alternative scenario, namely online
learning of the hyperparameters given a collection of data(
X1, . . .Xt, . . .

)
, assumed to be independent and identi-

cally distributed (i.i.d.). The idea is to update the value of the
hyperparameters after each run of the VBEM algorithm on
a new observation, yielding an improved VBEM algorithm
that is increasingly adapted to observations. To solve this
problem, we first consider the case of batch estimation
where the collection

(
X1, . . .XT

)
is fully supplied, and

then explain how to switch from batch estimation to online
estimation.

Assume that for each data Xt, VBEM has provided a
posterior approximation Qt, characterized by the “poste-
rior hyperparameters” α̂tkj , β̂

t
kj and α̂tsik. We then wish

to estimate the hyperparameters via maximization of the
total normalized ELBO with respect to α and β (in this
section, gM (Q,X) is renamed as gM (Q,X;α,β) ; note

3. Note that some theoretical work about the consistency of ELBO
based model selection has been put forward lately [32].

also that the value of M plays no role in the estimation of
the hyperparameters):

α̂, β̂ = arg max
α > 0
β > 0

∑
t

gM
(
Qt,Xt;α,β

)
(44)

where gM
(
Qt,Xt;α,β

)
is given in appendix A. In order

to perform this optimization, it is important to calculate
the partial derivatives with respect to each hyperparameter
with fixed Qt, even though Qt is itself expressed as a func-
tion of α and β. There is no closed-form solution for this
optimization, and therefore optimization algorithms must
be employed. The proofs of the two following propositions
can be found in the supplementary material.

Proposition 1 (Hyperparameters estimation for gamma pri-
ors). For a ∈ υ ({(k, j)}) (i.e. for shape hyperparameters linked
to activations λ), the following update rules make the normalized
ELBO non-decreasing at each iteration (κ refers to the iteration
number):

ψ
(
α(κ+1)
a

)
=

∑
(k,j)∈υ−1(a) lnβ

(κ)
ω(k,j) + γTa

|υ−1 (a)|
, (45)

β
(κ+1)
b =

∑
(k,j)∈ω−1(b) α

(κ+1)
υ(k,j)

δTb
, (46)

where
∣∣υ−1 (a)

∣∣ is the cardinal of inverse image ϕ−1 (a) and
where

γTa =
1

T

T∑
t=1

∑
(k,j)∈υ−1(a)

(
ψ
(
α̂tkj
)
− ln β̂tkj

)
, (47)

δTb =
1

T

T∑
t=1

∑
(k,j)∈ω−1(b)

α̂tkj

β̂tkj
. (48)

ψ is the digamma function. Its inverse can be computed using
Newton’s method (see Appendix C of [34]).

Proposition 2 (Hyperparameters estimation for Dirichlet
priors). For a ∈ ϕ ({(s, i, k)}) (i.e. for shape hyperparameters
linked to atoms θ), the following update rule makes the normalized
ELBO non-decreasing at each iteration (κ refers to the iteration
number):

ψ
(
α(κ+1)
a

)
=

∑
sik∈ϕ−1(a) ψ

(∑
s′i′ α

(κ)
ϕ(s′i′,k)

)
+ ξTa

|ϕ−1 (a)|
(49)

with

ξTa =
1

T

T∑
t=1

∑
sik∈ϕ−1(a)

ψ
(
α̂tsik

)
− ψ

(∑
s′i′

α̂ts′i′k

)
. (50)

It is quite simple to switch to online estimation since
quantities γTa , δTb and ξTa can be computed recursively:

γT+1
a = (1− c) γTa + c

∑
kj∈υ−1(d)

(
ψ
(
α̂Tkj

)
− ln β̂Tkj

)
, (51)

δT+1
b = (1− c) δTb + c

∑
kj∈ω−1(e)

α̂Tkj

β̂Tkj
, (52)

ξT+1
a = (1− c) ξTa + c

∑
sik∈ϕ−1(a)

ψ
(
α̂Tsik

)
− ψ

(∑
s′i′

α̂Ts′i′k

)
(53)
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Algorithm 2: VBEM algorithm for Skellam-SNMF. ψ = Γ
Γ′ is the digamma function.

Input: X , O, M

Output: {α̂kj},
{
β̂kj
}

and {α̂sik}

1 β̂kj ← βω(k,j) + 1
2 initialize {α̂kj} and {α̂sik}
3 `kj ← expψ (α̂kj) /β̂kj , hsik ← expψ (α̂sik) / expψ (

∑
s′i′ α̂s′i′k)

4 repeat
/* Compute the model and the multiplicative updates */

5 ¯̀
sij ←

∑
k hsik`kj

6 optional: compute objective function gM (Q,XO) (see Appendix A)
7 σij ← ¯̀

s=0,ij
¯̀
s=1,ij

8 Usij ←


1 if ij /∈ O
max((−1)sXij ,0)

¯̀
sij

+
¯̀
1−s,ij

|Xij |+1+
√
σij R|Xij |+1(2

√
σij)

if ij ∈ O and M = 1

max((−1)sXij ,0)
¯̀
sij

+
2¯̀

1−s,ij

|Xij |+
√
X2

ij+4σij
if ij ∈ O and M =∞

9 U act
kj ←

∑
si Usijhsik U atoms

sik ←
∑
j Usij`kj

/* Update parameters */
10 α̂kj ← `kjU

act
kj + αυ(k,j) α̂sik ← hsikU

atoms
sik + αϕ(s,i,k)

11 `kj ← expψ (α̂kj) /β̂kj , hsik ← expψ (α̂sik) / expψ (
∑
s′i′ α̂s′i′k)

12 until convergence;

with c = 1
T+1 . Therefore, on the condition that a record

of those three quantities is kept, as well as the number
T , each time a new observation is provided, one can run
VBEM, update γ, δ and ξ and finally update α and β using
propositions 1 and 2.

Note that it may be interesting to fix the value c once
for all, independent of T , since it has two advantages. First,
it prevents overfitting in the early stages of the process (T
small), when there is still little data to learn from, and more-
over when estimation of α̂t≤Tkj and α̂t≤Tsik might be poor due
to inappropriate values for the hyperparameters. Second,
it gradually erases the contributions of past observations,
allowing the process to be resilient in case observations(
X1, . . .Xt, . . .

)
were not strictly identically distributed. c

can then be seen as a learning rate, and be set to a small value
(e.g. c = 0.02). Finally, γa, δb and ξa can be initialized using
equations (47), (48) and (50), with T = 1, α̂kj = αν(k,j),
β̂kj = βω(k,j) and α̂sik = αϕ(s,i,k).

6 EXPERIMENTAL STUDIES

We conduct several experiments in order to both study the
intrinsic performance and characteristics of our estimation
algorithms on synthetic data and to evaluate Skellam-SNMF
for automatic clustering on real data in comparison with the
original SNMF algorithm. Acronyms and other information
about the algorithms that will be used in this section are
presented in Table 1. All our Skellam-SNMF algorithms are
implemented using the Wonterfact python package [35].
This package, developed by the main author of this paper,
allows the design of any kind of tensor factorization model,
included Skellam-SNMF, with an automatic derivation of
the EM or the VBEM algorithm. The code to reproduce all

the experiments in this section can be found in the "jupyter"
directory of the Wonterfact repository.

TABLE 1
SNMF algorithms. Note that K-means can be interpreted as SNMF

with only binary entries for the activations.

Acronym Description Remark

SkM Skellam-SNMF
with EM algorithm

M = 1 or∞ (see section
3.3)

SkM -VB Skellam-SNMF
with VBEM
algorithm

M = 1 or∞ (see section
3.3)

Ding’10 Original SNMF
algorithm [20]

We used implementation
[36]

K-means Classic K-means
algorithm

We used implementation
[36]

6.1 Parameter estimation on synthetic data
In the first experiment, we generate integer data according
to the generative process presented in subsection 3.3 with
M = 1 and we study the performance of Sk1 and Sk1-VB
(see Table 1) in the ideal case where the hyperparameters
used to generate data are known. In order to obtain easily
interpretable and visualizable results, we decide to generate
a large number (J = 5000) of 3-dimensional data (I = 3)
with two components (K = 2). Mapping functions ϕ, ν and
ω are chosen such that each coefficient of atoms θ has its
own hyperparameter and that activation’s hyperparameters
only depend on component k:{

θsi|k
}
si
∼ Dirichlet ({αsik}si) , (54)

λkj ∼ Gamma (αk, βk) . (55)

In order to set the values of the hyperparameters, we
randomly draw shapes αsik and manually set shapes αk,
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according to two target levels of prior uncertainty for the
parameters. Rates βk are set such that mean value of ac-
tivations is 300, leading to observations in the order of
magnitude of a hundred. For each of the uncertainty level,
we add a “low variance” option: activating this option
corresponds to setting for each dimension i and component
k αsik = ε for s = 0 or 1, where ε is some small value.
Doing so insure that either θs=0,i|k or θs=1,i|k is closed to
zero and thus that variance of the Skellam hidden sources
Zikj = Zs=0,ikj − Zs=1,ikj ∼ Skell

(
θs=0,i|kλkj , θs=1,i|kλkj

)
is minimal. A low variance of the hidden sources can be
interpreted as a low level of noise in the observed data. The
values of the hyperparameters are summarized in Table 2.

TABLE 2
Values of hyperparameters according to the target level of prior

uncertainty . If low variance option is activated, then mins αsik is set to
0.02.

low uncertainty high uncertainty
αsik ∈ [1 10] αsik ∈ [0.5 1]

α1 = 5, α2 = 50 α1 = 0.8, α2 = 0.5

βk = αk/300 βk = αk/300

For each set of values for the hyperparameters, we
iterate 50 times the drawing of observations according to the
generative process and the running of Sk1 and Sk1-VB. Con-
cerning the initialization, we set θ̂(0)

si|k = αsik/
∑
si αsik and

θ̂
(0)
kj = αk/(1 + βk) for Sk1 and α̂(0)

sik = αsik, and α̂(0)
kj = αk

for Sk1-VB. After convergence, we decide for Sk1-VB to
take the mean value of estimated posterior distributions
q̂θk and q̂λkj

as the parameter estimates. In order to assess
the quality of the estimation of both atoms and activations,
we suggest to compute the mean square error (mse) on
estimated parameters of the Skellam hidden sources Zikj .
Besides, so we have interpretable results, we can compute
separate mse for the expectation and the variance of those
hidden sources:

msem =

∑
ikj (mikj − m̂ikj)

2

I ×K × J
, (56)

msev =

∑
ikj (vikj−v̂ikj)

2

I ×K × J
, (57)

with mikj = Wikλkj =
(
θs=0,i|k − θs=1,i|k

)
λkj and vikj =(

θs=0,i|k + θs=1,i|k
)
λkj (same definitions for m̂ikj and v̂ikj).

Both algorithms are compared to the “dummy” algo-
rithm consisting in taking the mean values of prior dis-
tribution as the estimation for the parameters. Results are
shown in Table 3 from which several conclusions can be
drawn. First of all, it can be noticed that results given by Sk1

and Sk1-VB are always of the same order of magnitude: at
this point, we can claim that Sk1-VB presents no significant
advantage over Sk1 for parameter estimation with known
hyperparameters. Second, when the low variance option
is activated, both Sk1 and Sk1-VB give good results with
low values of mean and standard deviation. The difference
with the dummy algorithm is particularly important in the
high uncertainty scenario. This is expected since the greater
the uncertainty on the a priori value of the parameters, the
more crucial the observed data are in order to give a good

estimation. A more surprising result is the poor quality of
the parameter estimates when the low variance option is
not activated. A probable explanation is that in objective
functions of both Sk1 and Sk1-VB, the data fitting term
prevails over the prior terms, meaning that these algorithms
prefer minimizing the reconstruction error, i.e. the variance
of the Skellam hidden sources, than complying to the priors.

6.2 Online hyperparameter estimation on synthetic
data

In this experiment, we show that Sk1-VB along with hyper-
parameter estimation can be used to perform unsupervised
learning. As a proof of concept, we decide to generate a
dataset

{
X1, . . .Xt, . . .XT

}
according to the same “low

uncertainty, low variance” scenario as in previous subsec-
tion, with always the same hyperparameters. Contrary to
the previous experiment, those hyperparameters are un-
known and to be estimated. To do so, we first initialize
hyperparameters for the Sk1-VB algorithm with neutral
values (all shape hyperparameters are set to 1 and rate
hyperparameters are set to 0.001), and then for each data
Xt, we run Sk1-VB until convergence and then update
hyperparameters as described in section 5.3. In figure 1, it is
showed how the mse of estimated hyperparameters with re-
spect to the number of analyzed data is globally decreasing
in a first learning stage, and then globally stable and close to
0 at convergence. It is also showed that while the estimated
hyperparmeters are getting closer to the ground truth, mse
of the parameters (that is msem and msev as defined in
the previous subsection) are also getting better and better.
This proves that our parameter estimation algorithm can
automatically improves itself as data are collected.

(a)

(b)

Fig. 1. Hyperparameters (a) and parameters (b) estimation error is
globally decreasing with respect to the number t of analyzed data. The
best permutation of components k is found before the computations of
each mse. msem and msev are averaged over 30 consecutive results in
order to smooth out the performance variability.

Note that we ran this experiment five times, with several
random values for the ground truth hyperparameters, and
those promising results were achieved only twice out of the
five runs. In the other cases, the process degenerated into
some vicious circle, where the more biased the hyperparam-
eter estimates, the more biased the estimation of the poste-
rior distributions for the parameters given a new observed
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TABLE 3
Mean | standard deviation of the different metrics on 50 runs with respect to the prior uncertainty level and the low variance option

metric algorithm low uncertainty low uncertainty, low variance high uncertainty high uncertainty, low variance

msem (×103)
Dummy 1.01 | 0.54 1.95 | 0.52 15.74 | 06.76 31.57 | 8.33
Sk1 0.66 | 0.49 0.18 | 0.03 5.99 | 12.27 0.73 | 0.97
Sk1-VB 0.90 | 0.68 0.12 | 0.03 6.63 | 13.23 0.57 | 1.34

msev (×103)
Dummy 1.75 | 0.36 1.98 | 0.51 25.42 | 05.77 32.63 | 7.27
Sk1 3.09 | 2.31 0.19 | 0.05 13.82 | 13.38 1.37 | 1.99
Sk1-VB 2.84 | 2.35 0.13 | 0.06 13.45 | 12.79 1.43 | 3.43

data, and vice versa, leading to quite bad results. We have not
yet conducted any research in order to better understand
and circumvent this issue, hence the qualification of this ex-
perience as a proof of concept. We believe however that two
leads should be explored. The first one would be to super-
vise the VBEM algorithm in the early stages of this process.
It would assure that the parameters posterior distributions
are well estimated at the beginning, and then prevent the
hyperparameters estimation from taking a wrong direction.
The second one would be to attenuate somehow the role of
the parameters prior distribution during the last iterations
of each VBEM algorithm. Doing so would prevent priors to
take precedence over the data in case they were too strong.

6.3 Difference between Sk1 and Sk∞ for SNMF
The goal of this subsection is to better understand the con-
crete differences between Sk1 and Sk∞ in SNMF problems,
besides the fact that one is theoretically supposed to process
only integer data and the other only real-valued data. To this
aim, we generate a real matrixX as the product of a ground
truth atoms matrixW and a ground truth activations matrix
λ, with no addition of noise, and we ask Sk1 and Sk∞ to
give an estimate λ̂ of λ, givenW , meaning that atoms θ are
fixed and set up to (∝ is for “proportional to”)

θsi|k ∝
|Wik|+ (−1)

s
Wik

2
. (58)

We run our algorithms with no prior on parameters. The
dimensions used to generate data are I = 10, K = 3,
J = 100, and ground truth atoms and activations are
randomly drawn. In figure 2, the estimated λ̂ compared to
λ are plot for a given k, as well as the ratio between two
consecutive values of the objective function with respect
to the iteration number. Two simple conclusions can be
made. The first one is that Sk1 gives biased values for the
activations – especially when value of λkj is low – while
Sk∞ provides an exact estimation. The second one is that the
convergence of Sk∞ is quite slow compared to that of Sk1.
These two characteristics can be explained by visualizing
on figure 3 the shape of the objective function basic terms,
which are Skellam log-likelihood logPskel (x | λ0, λ1) (see
equation (5)) for Sk1 and −D (x | λ0, λ1) (see equation (30))
for Sk∞. The bias in activations’ estimate is due to the fact
that logPskel (x | λ0, λ1) gets higher when λ0 − λ1 indeed
gets closed to x but also when λ0 + λ1 is minimal. On the
opposite, −D (x | λ0, λ1) is always maximal if x = λ0 − λ1,
no matter the value of λ0 + λ1. As a drawback, the shape
of D (x | λ0, λ1) becomes rather flat when both λ0 and λ1

go away from 0, which can explain the slowness of the

convergence. Hopefully, there exists acceleration methods
for the EM algorithm. We have implemented the parabolic
EM algorithm [37], which showed a drastic acceleration of
the convergence.

Note that in order to emphasize the difference between
the two algorithms, we drew low random values for λkj ,
and thus for matrix X : for large values of observed data,
Sk1 tends to behave like Sk∞ even for non-integer data.

(a) Estimated vs ground truth activations for k = 1.

(b) Ratio between two consecutive values of the objective function.
The fastest it gets to 1, the fastest the convergence.

Fig. 2. Comparison between Sk1 and Sk∞ in a task of supervised
SNMF.

6.4 Automatic clustering on real data

The last experiment we conduct aims at comparing our
new Skellam-SNMF technique with the classic SNMF with
the Euclidean distance as the objective function. We chose
to do so in a simple automatic clustering task, since it is
the application that has been originally proposed [20]. The
idea behind using SNMF for this task is that atoms can
represent the centroids of the clusters while the activations
can account for the cluster membership of the observed
samples. All datasets used in this experiments are from the
UCI repository [38] and are composed of real-valued data.
They are summarized in Table 4, and include the datasets
Ionosphere and Wave, that have already been used in [20].

TABLE 4
Dataset description .

Ionosphere Wave Image Shuttle

# instances (J) 351 5000 2310 14500
# attributes (I) 34 21 19 9
# classes (K) 2 3 7 7
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(a)

(b)

Fig. 3. 3-dimensional plots of objective function basic terms of Sk1 (a)
vs Sk∞ (b) when observed data x = 1 (no prior).

We run 5 algorithms on those data: Ding’10, Sk∞ and
Sk∞-VB with all prior shapes set to 1 and all prior rates
for the activations set to 0.001 (which allows to regularize
activations and to prevent them from tending towards ∞),
K-means, and finally the “dummy” algorithm consisting
in assigning all the samples in a single class. After conver-
gence, the value of k for which λ̂kj is maximum defines the
class of sample j. As in [20], the performance measure is the
clustering accuracy: first, the confusion matrix is computed,
and then the columns are reordered so that the sum of
the diagonal is maximal. This sum defines the metric, and
represents the percentage of samples correctly clustered.
Each algorithm is run 100 times, with random initialization,
and mean and standard deviation are reported in Table 5.
From these results, the following conclusions can be made.

TABLE 5
Mean | standard deviation of the clustering accuracy (%) on 100 runs. .

Ionosphere Wave Image Shuttle

dummy 64.1 | 0.0 33.9 | 00.0 14.3 | 0.0 79.2 | 00.0
K-means 70.8 | 1.6 50.2 | 00.0 52.2 | 5.0 60.8 | 09.9
Ding’10 58.7 | 4.8 61.9 | 10.1 46.9 | 5.0 30.0 | 05.1
Sk∞ 70.6 | 0.6 64.5 | 10.8 48.2 | 5.6 53.1 | 12.4
Sk∞-VB 70.7 | 0.0 64.1 | 10.2 50.7 | 3.0 36.8 | 07.4

1) Sk∞ and Sk∞-VB always outperform Ding’10. This
seems to show that the divergence D (x | λ0, λ1) is a good

alternative to the Euclidean distance for real-valued data,
the same way the Kullback-Leibler divergence is also a good
alternative for nonnegative data in some applications [39].
This is our main experimental result.
2) We do not share the same conclusion as in Ding et. al.
[20], where they find that matrix factorization models are
better than K-means. On the contrary, in our experiment,
K-means outperforms SNMF algorithms on 3 datasets over
4. Note that on the Ionosphere dataset and for the K-means
algorithm, we report a mean accuracy of 70.8% when Ding
et. al. report 42.2%. We suspect that it might be either a
misprint or an error in the setting of K . Indeed, this result
in addition to being very different from ours, does not make
sense: in a 2 classes automatic clustering scenario, accuracy
is necessarily above 50%. However, we agree that SNMF
algorithms can compete with K-means.
3) In the Shuttle dataset, the number of sample per class
is very unbalanced, with 79.2% of the samples belonging
to a single class. In this case, neither K-means nor other
matrix factorization models seems to be relevant as is since
the dummy algorithm gives better performances. This is
expected as soon as we minimize the global reconstruction
error: classes with too few representatives will not affect that
much the objective function.
4) Sk∞ and Sk∞-VB gives similar results, as in our very
first experiment (subsection 6.1). This confirms the fact
that VBEM algorithm does not seem to outperform EM
algorithm for the parameters estimation task. Though, we
observe that the standard deviation of the results is always
slightly less in Sk∞-VB than in Sk∞ (with even a 0 standard
deviation for the Ionosphere dataset). An explanation may
be found in the role of all shape hyperparameters (set to 1
in this experiment): in the EM algorithm they play no role
whatsoever in the computation of the objective function (26),
whereas they do in VBEM’s objective function (59). Sk∞-VB
has then an extra regularization term compared to Sk∞ ,
which can reduce the variability of the results with respect
to the initialization.

7 CONCLUSIONS

7.1 Main contributions

We have put forward a probabilistic model called Skellam-
SNMF in order to address the SNMF problem. This model
is an extension of the Poisson-NMF where the NMF with
the KL divergence is interpreted as a statistical inference
problem using Poisson-distributed latent sources. Skellam-
SNMF is based on the Skellam distribution, and allowed us
to introduce a new divergence between a real number x and
two nonnegative parameters. This divergence can be inter-
preted as a generalization of KL divergence for real valued
data. Its introduction is in our opinion the main contribution
of this paper since it can be used as an alternative to the
standard Euclidean distance in many other domains.

We have derived two algorithms in order to estimate
the parameters of Skellam-SNMF, the EM and the VBEM
algorithms, and we have also seen how to estimate the
hyperparameters. It has been showed in the experiments
that VBEM did not seems to give better estimates than EM
given fixed hyperparameters, but could improve itself as it
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analyzed new data due to online estimation of the parame-
ters latent prior distribution. This feature can be interpreted
as a way to conjugate blind data processing methods (as
matrix factorizations are often considered) and automatic
learning. We consider it as our second main contribution.

Finally, we have shown that Skellam-SNMF could com-
pete with the original SNMF model with Euclidean distance
in a simple task of automatic clustering. This gives then a
alternative algorithm to be tested for all applications that
needs SNMF.

7.2 Forthcoming work
Two features have been put forward in Skellam-SNMF
without being tested due to the lack of space. The first one
is the ability to deal with missing data, which could be used
for data restoration applications such as inpainting or for
prediction problems like movie or music recommendation.
The second one is the automatic estimation of model order
K which is possible by comparing the ELBO values of two
competing models. This will be done in future work.

Furthermore, a generalization of Skellam-SNMF for any
semi-nonnegative tensor factorization model, the same way
Generalized Coupled Tensor Factorization [25] is a gener-
alization of Poisson-NMF, is currently under publication.
This generalization has already been developed and imple-
mented in the Wonterfact package [35]. A technical report
containing the underlying theory can be found in the repos-
itory of this package.

Finally, as we have already mentioned, the ability of self-
improvement via the online estimation of parameters prior
distribution seems very promising. We wish to further study
this feature, find strategies in order to not let the process
degenerate, and test it in real applications.

APPENDIX A
EXPRESSION OF ELBO
Supposing that Q is defined as in equations (40) to (43), the
normalized ELBO can be computed as:

gM (Q,XO) = gMZ (Q,XO) +
∑
kj

gλkj
(Q) +

∑
k

gθk
(Q)

(59)
with (the definitions of ¯̀

sij and σij can be found in Algo-
rithm 2)

g1
Z (Q) = −

∑
kj

α̂kj

β̂kj
+
∑
ij∈O

(
ln

0F1 (|Xij |+ 1, σij)

Γ (|Xij |+ 1)

+
∑
s

max ((−1)
s
Xij , 0) ln ¯̀

sij

)
+
∑
ij /∈O

∑
s

¯̀
sij ,

(60)

g∞Z (Q) = −
∑
kj

α̂kj

β̂kj
+
∑
ij∈O

(

+ |Xij | ln

 |Xij |+
√
X2
ij + 4σij

2

−√X2
ij + 4σij

+
∑
s

max ((−1)
s
Xij , 0) ln ¯̀

sij

)
+
∑
ij /∈O

∑
s

¯̀
sij ,

(61)

gλkj
(Q) = αυ(k,j) ln

βω(k,j)

β̂kj
+ α̂kj

(
1−

βω(k,j)

β̂kj

)

− ψ (α̂kj)
(
−αυ(k,j)

)
− ln

Γ
(
αυ(k,j)

)
Γ (α̂kj)

,

(62)

gθk
(Q) = ln

Γ
(∑

si αϕ(s,i,k)

)
Γ (
∑
si α̂sik)

−
∑
si

ln
Γ
(
αϕ(s,i,k)

)
Γ (α̂sik)

−
∑
si

(
α̂sik − αϕ(s,i,k)

)(
ψ (α̂sik)− ψ

(∑
s′i′

α̂s′i′k

))
.

(63)
Detailed calculations can be found in the supplementary

material.
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