Learning the dependence structure of rare events: a non-asymptotic study - Télécom Paris
Proceedings/Recueil Des Communications Année : 2015

Learning the dependence structure of rare events: a non-asymptotic study

Résumé

Assessing the probability of occurrence of extreme events is a crucial issue in various fields like finance, insurance, telecommunication or environmental sciences. In a multivariate framework, the tail dependence is characterized by the so-called stable tail dependence function (STDF). Learning this structure is the keystone of multivariate extremes. Although extensive studies have proved consistency and asymptotic normality for the empirical version of the STDF, non-asymptotic bounds are still missing. The main purpose of this paper is to fill this gap. Taking advantage of adapted VC-type concentration inequalities, upper bounds are derived with expected rate of convergence in O(k −1/2). The concentration tools involved in this analysis rely on a more general study of maximal deviations in low probability regions, and thus directly apply to the classification of extreme data.
Fichier principal
Vignette du fichier
Goix15.pdf (301.98 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02107454 , version 1 (06-02-2022)

Identifiants

  • HAL Id : hal-02107454 , version 1

Citer

Nicolas Goix, Anne Sabourin, Stéphan Clémençon. Learning the dependence structure of rare events: a non-asymptotic study. 40, pp.1 - 18, 2015. ⟨hal-02107454⟩
51 Consultations
40 Téléchargements

Partager

More