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Abstract
Assessing the probability of occurrence of extreme events is a crucial issue in various fields like

finance, insurance, telecommunication or environmental sciences. In a multivariate framework, the
tail dependence is characterized by the so-called stable tail dependence function (STDF). Learning
this structure is the keystone of multivariate extremes. Although extensive studies have proved con-
sistency and asymptotic normality for the empirical version of the STDF, non-asymptotic bounds
are still missing. The main purpose of this paper is to fill this gap. Taking advantage of adapted
VC-type concentration inequalities, upper bounds are derived with expected rate of convergence in
O(k−1/2). The concentration tools involved in this analysis rely on a more general study of max-
imal deviations in low probability regions, and thus directly apply to the classification of extreme
data.

KEYWORDS: VC theory, multivariate extremes, stable tail dependence function, concentration
inequalities, extreme data classification.

1. Introduction

Extreme Value Theory (EVT) develops models for learning the unusual rather than the usual. These
models are widely used in fields involving risk management like finance, insurance, telecommunica-
tion or environmental sciences. One major application of EVT is to provide a reasonable assessment
of the probability of occurrence of rare events. To illustrate this point, suppose we want to manage
the risk of a portfolio containing d different assets, X = (X1, . . . , Xd). A fairly general purpose
is then to evaluate the probability of events of the kind {X1 ≥ x1 or . . . or Xd ≥ xd}, for large
multivariate thresholds x = (x1, . . . , xd). Under not too stringent conditions on the regularity of
X’s distribution, EVT shows that for large enough thresholds, (see Section 2 for details)

P{X1 ≥ x1 or . . . or Xd ≥ xd} ' l(p1, . . . , pd),

where l is the stable tail dependence function and the pj’s are the marginal exceedance probabilities,
pj = P(Xj ≥ xj). Thus, the functional l characterizes the dependence among extremes. The
joint distribution (over large thresholds) can thus be recovered from the knowledge of the marginal
distributions together with the STDF l. In practice, l can be learned from ‘moderately extreme’ data,
typically the k ‘largest’ ones among a sample of size n, with k � n. Recovering the pj’s can be
done following a well paved way: in the univariate case, EVT essentially consists in modeling the
distribution of the maxima (resp. the upper tail) as a generalized extreme value distribution, namely
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an element of the Gumbel, Fréchet or Weibull parametric families (resp. by a generalized Pareto
distribution).

In contrast, in the multivariate case, there is no finite-dimensional parametrization of the depen-
dence structure. The latter is characterized by the so-called stable tail dependence function (STDF).
Estimating this functional is thus one of the main issues in multivariate EVT. Asymptotic properties
of the empirical STDF have been widely studied, see Huang (1992), Drees and Huang (1998), Em-
brechts et al. (2000) and de Haan and Ferreira (2006) for the bivariate case, and Qi (1997), Einmahl
et al. (2012) for the general multivariate case under smoothness assumptions.

However, to the best of our knowledge, no bounds exist on the finite sample error. It is precisely
the purpose of this paper to derive such non-asymptotic bounds. Our results do not require any
assumption other than the existence of the STDF. The main idea is as follows. The empirical
estimator is based on the empirical measure of ‘extreme’ regions, which are hit only with low
probability. It is thus enough to bound maximal deviations on such low probability regions. The
key consists in choosing an adaptive VC class, which only covers the latter regions, and on the other
hand, to derive VC-type inequalities that incorporate p, the probability of hitting the class at all.

The structure of the paper is as follows. The whys and wherefores of EVT and the STDF

are explained in Section 2. In Section 3, concentration tools which rely on the general study of
maximal deviations in low probability regions are introduced, with an immediate application to the
framework of classification (Remark 5). The main result of the paper, a non-asymptotic bound on
the convergence of the empirical STDF, is derived in Section 4. Section 5 concludes.

2. Background in extreme value theory

A useful setting to understand the use of EVT and to give intuition about the STDF concept is
that of risk monitoring. In the univariate case, it is natural to consider the (1 − p)th quantile of
the distribution F of a random variable X , for a given exceedance probability p, that is xp =
inf{x ∈ R, P(X > x) ≤ p}. For moderate values of p, a natural empirical estimate is xp,n =
inf{x ∈ R, 1/n

∑n
i=1 1Xi>x ≤ p}. However, if p is very small, the finite sample X1, . . . , Xn

contains insufficient information and xp,n becomes irrelevant. That is where EVT comes into play
by providing parametric estimates of large quantiles: whereas statistical inference often involves
sample means and the central limit theorem, EVT handles phenomena whose behavior is not ruled
by an ‘averaging effect’. The focus is on the sample maximum rather than the mean. The primal
assumption is the existence of two sequences {an, n ≥ 1} and {bn, n ≥ 1}, the an’s being positive,
and a non-degenerate distribution function G such that

lim
n→∞

n P
(
X − bn
an

≥ x

)
= − logG(x) (1)

for all continuity points x ∈ R of G. If this assumption is fulfilled – it is the case for most textbook
distributions – then F is said to be in the domain of attraction of G, denoted F ∈ DA(G). The tail
behavior of F is then essentially characterized byG, which is proved to be – up to rescaling – of the
typeG(x) = exp(−(1+γx)−1/γ) for 1+γx > 0, γ ∈ R, setting by convention (1+γx)−1/γ = e−x

for γ = 0. The sign of γ controls the shape of the tail and various estimators of the rescaling
sequence as well as γ have been studied in great detail, see e.g. Dekkers et al. (1989), Einmahl et al.
(2009), Hill (1975), Smith (1987), Beirlant et al. (1996).
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LEARNING RATES FOR THE DEPENDENCE STRUCTURE OF RARE EVENTS

In the multivariate case, it is mathematically very convenient to decompose the joint distribution
of X = (X1, . . . , Xd) into the margins on the one hand, and the dependence structure on the
other hand. In particular, handling uniform margins is very helpful when it comes to establishing
upper bounds on the deviations between empirical and mean measures. Define thus standardized
variables U j = 1 − Fj(X

j), where Fj is the marginal distribution function of Xj , and U =
(U1, . . . , Ud). Knowledge of the Fj’s and of the joint distribution of U allows to recover that of
X, since P(X1 ≤ x1, . . . , Xd ≤ xd) = P(U1 ≥ 1 − F1(x1), . . . , U

d ≥ 1 − Fd(xd)). With these
notations, under a fairly general assumption similar to (1) (namely, standard multivariate regular
variation of standardized variables, see e.g. Resnick (2007), chap. 6), there exists a limit measure Λ
on [0,∞]d \ {∞} (called the exponent measure) such that

lim
t→0

t−1P
[
U1 ≤ t x1 or . . . or Ud ≤ t xd

]
= Λ[x,∞]c := l(x) . (xj ∈ [0,∞],x 6=∞) (2)

Notice that no assumption is made about the marginal distributions, so that our framework allows
non-standard regular variation, or even no regular variation at all of the original data X (for more
details see e.g. Resnick (2007), th. 6.5 or Resnick (1987), prop. 5.10.). The functional l in the
limit in (2) is called the stable tail dependence function. In the remainder of this paper, the only
assumption is the existence of a limit in (2), i.e., the existence of the STDF.

We emphasize that the knowledge of both l and the margins gives access to the probability of
hitting ‘extreme’ regions of the kind [0,x]c, for ‘large’ thresholds x = (x1, . . . , xd) (i.e. such that
for some j ≤ d, 1− Fj(xj) is a O(t) for some small t). Indeed, in such a case,

P(X1 > x1 or . . . or Xd > xd) = P

 d⋃
j=1

(1− Fj)(Xj) ≤ (1− Fj)(xj)


= t

1

t
P

 d⋃
j=1

U j ≤ t
[

(1− Fj)(xj)
t

]
∼
t→0

t l
(
t−1 (1− F1)(x1), . . . , t

−1 (1− Fd)(xd)
)

= l
(

(1− F1)(x1), . . . , (1− Fd)(xd)
)

where the last equality follows from the homogeneity of l. This underlines the utmost importance
of estimating the STDF and by extension stating non-asymptotic bounds on this convergence.

Any stable tail dependence function l(.) is in fact a norm, (see Falk et al. (1994), p179) and
satisfies

max{x1, . . . , xn} ≤ l(x) ≤ x1 + . . .+ xd,

where the lower bound is attained if X is perfectly tail dependent (extremes of univariate marginals
always occur simultaneously), and the upper bound in case of tail independence or asymptotic
independence (extremes of univariate marginals never occur simultaneously). We refer to Falk et al.
(1994) for more details and properties on the STDF.

3. A VC-type inequality adapted to the study of low probability regions

Classical VC inequalities aim at bounding the deviation of empirical from theoretical quantities on
relatively simple classes of sets, called VC classes. These classes typically cover the support of the

3



GOIX SABOURIN CLÉMENÇON

underlying distribution. However, when dealing with rare events, it is of great interest to have such
bounds on a class of sets which only covers a small probability region and thus contains (very) few
observations. This yields sharper bounds, since only differences between very small quantities are
involved. The starting point of this analysis is the following VC-inequality stated below.

Theorem 1 Let X1, . . . ,Xn i .i .d . realizations of a r.v. X, a VC-class A with VC-dimension VA
and shattering coefficient (or growth function) SA(n). Consider the class union A = ∪A∈AA,
and let p = P(X ∈ A). Then there is an absolute constant C such that for all 0 < δ < 1, with
probability at least 1− δ,

sup
A∈A

∣∣∣∣∣P[X ∈ A]− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ C

[
√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

]
. (3)

Proof (sketch of) Details of the proof are deferred to the appendix section. We use a Bernstein-type
concentration inequality (McDiarmid (1998)) that we apply to the general functional

f(X1:n) = sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ,
where X1:n denotes the sample (X1, . . . ,Xn). The inequality in McDiarmid (1998) involves the
variance of the r.v. f(X1, . . . ,Xk, xk+1, . . . , xn)−f(X1, . . . ,Xk−1, xk, . . . , xn), which can easily
be bounded in our setting. We obtain

P [f(X1:n)− Ef(X1:n) ≥ t] ≤ e
− nt2

2q+2t
3 , (4)

where the quantity q = E (supA∈A |1X′∈A − 1X∈A|) (with X′ an independent copy of X) is a
measure of the complexity of the class A with respect to the distribution of X. It leads to high

probability bounds on f(X1:n) of the form Ef(X1:n) + 1
n log(1/δ) +

√
2q
n log(1/δ) instead of

the standard Hoeffding-type bound Ef(X1:n) +
√

1
n log(1/δ) . It is then easy to see that q ≤

2 supA∈A P(X ∈ A) ≤ 2p. Finally, an upper bound on Ef(X1:n) is obtained by introducing re-
normalized Rademacher averages

Rn,p = E sup
A∈A

1

np

∣∣∣∣∣
n∑
i=1

σi1Xi∈A

∣∣∣∣∣ .
which are then proved to be of order O(

√
VA
pn ), so that E(f(X1:n)) ≤ C

√
VA
pn .

Remark 2 (COMPARISON WITH EXISTING BOUNDS) The following re-normalized VC-inequality
due to Vapnik and Chervonenkis (see Vapnik and Chervonenkis (1974), Anthony and Shawe-Taylor
(1993) or Bousquet et al. (2004), Thm 7),

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1
n

∑n
i=1 1Xi∈A√

P(X ∈ A)

∣∣∣∣∣ ≤ 2

√
logSA(2n) + log 4

δ

n
, (5)
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which holds under the same conditions as Theorem 1, allows to derive a bound similar to (3), but
with an additional log n factor. Indeed, it is known as Sauer’s Lemma (see Bousquet et al. (2004)-
lemma 1 for instance) that for n ≥ VA, SA(n) ≤ ( enVA )VA . It is then easy to see from (5) that:

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ 2
√

sup
A∈A

P(X ∈ A)

√
VA log 2en

VA
+ log 4

δ

n
.

Introduce the union A of all sets in the considered VC class, A = ∪A∈AA, and let p = P (X ∈ A).
Then, the previous bound immediately yields

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ 2
√
p

√
VA log 2en

VA
+ log 4

δ

n
.

Remark 3 (SIMPLER BOUND) If we assume furthermore that δ ≥ e−np, then we have:

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ C
√
p

√
VA
n

log
1

δ
.

Remark 4 (INTERPRETATION) Inequality (3) can be seen as an interpolation between the best
case (small p) where the rate of convergence is O(1/n), and the worst case (large p) where the
rate is O(1/

√
n). An alternative interpretation is as follows: divide both sides of (3) by p, so

that the left hand side becomes a supremum of conditional probabilities upon belonging to the
union class A, {P(X ∈ A

∣∣X ∈ A)}A∈A. Then the upper bound is proportional to ε(np, δ) where

ε(n, δ) :=
√

VA
n log 1

δ + 1
n log 1

δ is a classical VC-bound; np is in fact the expected number of
observations involved in (3), and can thus be viewed as the effective sample size.

Remark 5 (CLASSIFICATION OF EXTREMES) A key issue in the prediction framework is to find
upper bounds for the maximal deviation supg∈G |Ln(g) − L(g)|, where L(g) = P(g(X) 6= Y ) is
the risk of the classifier g : X → {−1, 1}, associated with the r.v. (X, Y ) ∈ Rd×{−1, 1}. Ln(g) =
1
n

∑n
i=1 I{g(Xi) 6= Yi} is the empirical risk based on a training dataset {(X1, Y1), . . . , (Xn, Yn)}.

Strong upper bounds on supg∈G |Ln(g)−L(g)| ensure the accuracy of the empirical risk minimizer
gn := argming∈G Ln(g).

In a wide variety of applications (e.g. Finance, Insurance, Networks), it is of crucial importance
to predict the system response Y when the input variable X takes extreme values, corresponding
to shocks on the underlying mechanism. In such a case, the risk of a prediction rule g(X) should
be defined by integrating the loss function L(g) with respect to the conditional joint distribution
of the pair (X, Y ) given X is extreme. For instance, consider the event {‖X‖ ≥ tα} where tα is
the (1 − α)th quantile of ‖X‖ for a small α. To investigate the accuracy of a classifier g given
{‖X‖ ≥ tα}, introduce

Lα(g) : =
1

α
P (Y 6= g(X), ‖X‖ > tα) = P

(
Y 6= g(X)

∣∣ ‖X‖ ≥ tα) ,

5
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and its empirical counterpart

Lα,n(g) : =
1

nα

n∑
i=1

I{Yi 6=g(Xi), ‖Xi‖>‖X(bnαc)‖} ,

where ‖X(1)‖ ≥ . . . ≥ ‖X(n)‖ are the order statistics of ‖X‖. Then as an application of Theorem
1 with A = {(x, y), g(x) 6= y, ‖x‖ > tα}, g ∈ G, we have :

sup
g∈G

∣∣∣∣L̂α,n(g)− Lα(g)

∣∣∣∣ ≤ C[
√
VG
nα

log
1

δ
+

1

nα
log

1

δ

]
. (6)

We refer to the appendix for more details. Again the obtained rate by empirical risk minimization
meets our expectations (see remark 4), insofar as α is the fraction of the dataset involved in the
empirical risk Lα,n. We point out that α may typically depend on n, α = αn → 0. In this context
a direct use of the standard version of the VC inequality would lead to a rate of order 1/(αn

√
n),

which may not vanish as n→ +∞ and even go to infinity if αn decays to 0 faster than 1/
√
n .

Let us point out that rare events may be chosen more general than {‖X‖ > tα}, say {X ∈ Q}
with unknown probability q = P({X ∈ Q}). The previous result still applies with L̃Q(g) :=

P (Y 6= g(X),X ∈ Q) and L̃Q,n(g) := Pn (Y 6= g(X),X ∈ Q); then the obtained upper bound

on supg∈G
1
q

∣∣∣L̃Q(g)− L̃Q,n(g)
∣∣∣ is of order O(1/

√
qn).

Similar results can be established for the problem of distribution-free regression, when the error
of any predictive rule f(x) is measured by the conditional mean squared error E[(Z − f(X))2 |
Z > qαn ], denoting by Z the real-valued output variable to be predicted from X and by qα its
quantile at level 1− α.

4. A bound on the STDF

Let us place ourselves in the multivariate extreme framework introduced in Section 1: Consider a
random variable X = (X1, . . . Xd) in Rd with distribution function F and marginal distribution
functions F1, . . . , Fd. Let X1,X2, . . . ,Xn be an i .i .d . sample distributed as X. In the subsequent
analysis, the only assumption is the existence of the STDF defined in (2) and the margins Fj are
supposed to be unknown. The definition of l may be recast as

l(x) := lim
t→0

t−1F̃ (tx) (7)

with F̃ (x) = (1 − F )
(
(1 − F1)

←(x1), . . . , (1 − Fd)←(xd)
)
. Here the notation (1 − Fj)←(xj)

denotes the quantity sup{y : 1− Fj(y) ≥ xj}. Notice that, in terms of standardized variables U j ,

F̃ (x) = P
(⋃d

j=1{U j ≤ xj}
)

= P(U ∈ [x,∞[c).
Let k = k(n) be a sequence of positive integers such that k → ∞ and k = o(n) as n → ∞.

A natural estimator of l is its empirical version defined as follows, see Huang (1992), Qi (1997),
Drees and Huang (1998), Einmahl et al. (2006):

ln(x) =
1

k

n∑
i=1

1{X1
i ≥X1

(n−bkx1c+1)
or ... or Xd

i ≥Xd
(n−bkxdc+1)

} , (8)
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The expression is indeed suggested by the definition of l in (7), with all distribution functions and
univariate quantiles replaced by their empirical counterparts, and with t replaced by k/n. Extensive
studies have proved consistency and asymptotic normality of this nonparametric estimator of l,
see Huang (1992), Drees and Huang (1998) and de Haan and Ferreira (2006) for the asymptotic
normality in dimension 2, Qi (1997) for consistency in arbitrary dimension, and Einmahl et al.
(2012) for asymptotic normality in arbitrary dimension under differentiability conditions on l.

To our best knowledge, there is no established non-asymptotic bound on the maximal deviation
sup0≤x≤T |ln(x)− l(x)|. It is the purpose of the remainder of this section to derive such a bound,
without any smoothness condition on l.

First, Theorem 1 needs adaptation to a particular setting: introduce a random vector Z =
(Z1, . . . , Zd) with uniform margins, i.e., for every j = 1, . . . , d, the variable Zj is uniform on
[0, 1]. Consider the class

A =

{[k
n
x,∞

[ c
: x ∈ Rd+, 0 ≤ xj ≤ T (1 ≤ j ≤ d)

}
This is a VC-class of VC-dimension d, as proved in Devroye et al. (1996), Theorem 13.8, for its
complementary class

{
[x,∞[, x > 0

}
. In this context, the union class A has mass p ≤ dT k

n since

P(Z ∈ A) = P
[
Z ∈

([k
n
T,∞

[d)c]
= P

 ⋃
j=1..d

Zj <
k

n
T

 ≤ d∑
j=1

P
[
Zj <

k

n
T

]

Consider the measures Cn( · ) = 1
n

∑n
i=1 1{Zi∈ · } and C(x) = P(Z ∈ · ). As a direct consequence

of Theorem 1 the following inequality holds true with probability at least 1− δ,

sup
0≤x≤T

n

k

∣∣∣∣Cn(
k

n
[x,∞[c)− C(

k

n
[x,∞[c)

∣∣∣∣ ≤ Cd

(√
T

k
log

1

δ
+

1

k
log

1

δ

)
.

If we assume furthermore that δ ≥ e−k, then we have

sup
0≤x≤T

n

k

∣∣∣∣Cn(
k

n
[x,∞[c)− C(

k

n
[x,∞[c)

∣∣∣∣ ≤ Cd

√
T

k
log

1

δ
. (9)

Inequality (9) is the cornerstone of the following theorem, which is the main result of the paper.
In the sequel, we consider a sequence k(n) of integers such that k = o(n) and k(n) → ∞. For
notational convenience, we often drop the dependence in n and simply write k instead of k(n).

Theorem 6 Let T be a positive number such that T ≥ 7
2( log dk + 1), and δ such that δ ≥ e−k. Then

there is an absolute constant C such that for each n > 0, with probability at least 1− δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Cd

√
T

k
log

d+ 3

δ
+ sup

0≤x≤2T

∣∣∣∣nk F̃ (
k

n
x)− l(x)

∣∣∣∣ (10)

The second term on the right hand side of (10) is a bias term which depends on the discrepancy
between the left hand side and the limit in (2) or (7) at level t = k/n. The value k can be interpreted
as the effective number of observations used in the empirical estimate, i.e. the effective sample

7
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size for tail estimation. Considering classical inequalities in empirical process theory such as VC-
bounds, it is thus no surprise to obtain one in O(1/

√
k). Too large values of k tend to yield a large

bias, whereas too small values of k yield a large variance. For a more detailed discussion on the
choice of k we recommend Einmahl et al. (2009).

The proof of Theorem 6 follows the same lines as in Qi (1997). For unidimensional random
variables Y1, . . . , Yn, let us denote by Y(1) ≤ . . . ≤ Y(n) their order statistics. Define then the
empirical version F̃n of F̃ ( introduced in (7)) as

F̃n(x) =
1

n

n∑
i=1

1{U1
i ≤x1 or ... or Udi ≤xd}

,

so that nk F̃n( knx) = 1
k

∑n
i=1 1{U1

i ≤
k
n
x1 or ... or Udi ≤

k
n
xd} . Notice that the U ji ’s are not observable

(since Fj is unknown). In fact, F̃n will be used as a substitute for ln allowing to handle uniform
variables. The following lemmas make this point explicit.

Lemma 7 (Link between ln and F̃n) The empirical version of F̃ and that of l are related via

ln(x) =
n

k
F̃n(U1

(bkx1c), . . . , U
d
(bkxdc)).

Proof Consider the definition of ln in (8), and note that for j = 1, . . . , d,

Xj
i ≥ X

j
(n−bkxic+1) ⇔ rank(Xj

i ) ≥ n− bkxjc+ 1

⇔ rank(Fj(X
j
i )) ≥ n− bkxjc+ 1

⇔ rank(1− Fj(Xj
i )) ≤ bkxjc

⇔ U ji ≤ U
j
(bkxjc),

so that ln(x) = 1
k

∑n
j=1 1{U1

j≤U1
(bkx1c)

or ... or Udj ≤Ud(bkxdc)}
.

Lemma 8 (Uniform bound on F̃n’s deviations) For any finite T > 0, and δ ≥ e−k, with proba-
bility at least 1− δ, the deviation of F̃n from F̃ is uniformly bounded:

sup
0≤x≤T

∣∣∣∣nk F̃n(
k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣ ≤ Cd
√
T

k
log

1

δ

Proof Notice that

sup
0≤x≤T

∣∣∣∣nk F̃n(
k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣ =
n

k

∣∣∣∣∣ 1n
n∑
i=1

1{Ui∈ kn ]x,∞]c} − P
[
U ∈ k

n
]x,∞]c

]∣∣∣∣∣ ,
and apply inequality (9).

8
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Lemma 9 (Bound on the order statistics of U) Let δ ≥ e−k. For any finite positive number T >
0 such that T ≥ 7/2((log d)/k + 1), we have with probability greater than 1− δ,

∀ 1 ≤ j ≤ d, n

k
U j(bkT c) ≤ 2T , (11)

and with probability greater than 1− (d+ 1)δ,

max
1≤j≤d

sup
0≤xj≤T

∣∣∣∣bkxjck − n

k
U j(bkxjc)

∣∣∣∣ ≤ C

√
T

k
log

1

δ
.

Proof Notice that sup[0,T ]
n
kU

j
(bk · c) = n

kU
j
(bkT c) and let Γn(t) = 1

n

∑n
i=1 1{Uji ≤t}

. It then straight-
forward to see that

n

k
U j(bkT c) ≤ 2T ⇔ Γn

(k
n

2T
)
≥ bkT c

n

so that

P
(n
k
U j(bkT c) > 2T

)
≤ P

 sup
2kT
n
≤t≤1

t

Γn(t)
> 2

 .

Using Wellner (1978), Lemma 1-(ii) (we use the fact that, with the notations of this reference,
h(1/2) ≥ 1/7 ), we obtain

P
(n
k
U j(bkT c) > 2T

)
≤ e−

2kT
7 ,

and thus
P
(
∃j, n

k
U j(bkT c) > 2T

)
≤ de−

2kT
7 ≤ e−k ≤ δ

as required in (11). Yet,

sup
0≤xj≤T

∣∣∣∣bkxjck − n

k
U j(bkxjc)

∣∣∣∣ = sup
0≤xj≤T

∣∣∣∣∣1k
n∑
i=1

1{Uji ≤U
j
(bkxjc)

} −
n

k
U j(bkxjc)

∣∣∣∣∣
=

n

k
sup

0≤xj≤T

∣∣∣∣∣ 1n
n∑
i=1

1{Uji ≤U
j
(bkxjc)

} − P
[
U j1 ≤ U

j
(bkxjc)

]∣∣∣∣∣
= sup

0≤xj≤T
Θj(

n

k
U j(bkxjc)),

where Θj(y) = n
k

∣∣∣ 1n∑n
i=1 1{Uji ≤

k
n
y} − P

[
U j1 ≤ k

ny
]∣∣∣. Then, by (11), with probability greater

than 1− δ,

max
1≤j≤d

sup
0≤xj≤T

∣∣∣∣bkxjck − n

k
U j(bkxjc)

∣∣∣∣ ≤ max
1≤j≤d

sup
0≤y≤2T

Θj(y)

and from (9), each term sup0≤y≤2T Θj(y) is bounded by C
√

T
k log 1

δ (with probability 1 − δ). In
the end, with probability greater than 1− (d+ 1)δ :

max
1≤j≤d

sup
0≤y≤2T

Θj(y) ≤ C

√
T

k
log

1

δ
,

9
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which is the desired inequality

We may now proceed with the proof of Theorem 6. First of all, noticing that F̃ (tx) is non-
decreasing in xj for every l and that l(x) is non-decreasing and continuous (thus uniformly contin-
uous on [0, T ]d), from (7) it is easy to prove by subdivising [0, T ]d (see Qi (1997) p.174 for details)
that

sup
0≤x≤T

∣∣∣∣1t F̃ (tx)− l(x)

∣∣∣∣→ 0 as t→ 0 . (12)

Using Lemma 7, we can write :

sup
0≤x≤T

|ln(x)− l(x)| = sup
0≤x≤T

∣∣∣n
k
F̃n

(
U1
(bkx1c), . . . , U

d
(bkxdc)

)
− l(x)

∣∣∣
≤ sup

0≤x≤T

∣∣∣n
k
F̃n

(
U1
(bkx1c), . . . , U

d
(bkxdc)

)
− n

k
F̃
(
U1
(bkx1c), . . . , U

d
(bkxdc)

)∣∣∣
+ sup

0≤x≤T

∣∣∣n
k
F̃
(
U1
(bkx1c), . . . , U

d
(bkxdc)

)
− l
(n
k
U1
(bkx1c), . . . ,

n

k
Ud(bkxdc)

)∣∣∣
+ sup

0≤x≤T

∣∣∣l (n
k
U1
(bkx1c), . . . ,

n

k
Ud(bkxdc)

)
− l(x)

∣∣∣
=: Λ(n) + Ξ(n) + Υ(n) .

Now, by (11) we have with probability greater than 1− δ :

Λ(n) ≤ sup
0≤x≤2T

∣∣∣∣nk F̃n(
k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣
and by Lemma 8,

Λ(n) ≤ Cd
√

2T

k
log

1

δ

with probability at least 1− 2δ. Similarly,

Ξ(n) ≤ sup
0≤x≤2T

∣∣∣∣nk F̃ (
k

n
x)− n

k
l(
k

n
x)

∣∣∣∣ = sup
0≤x≤2T

∣∣∣∣nk F̃ (
k

n
x)− l(x)

∣∣∣∣ → 0 (bias term)

by virtue of (12). Concerning Υ(n), we have :

Υ(n) ≤ sup
0≤x≤T

∣∣∣∣l (nkU1
(bkx1c), . . . ,

n

k
Ud(bkxdc)

)
− l(bkx1c

k
, . . . ,

bkxdc
k

)

∣∣∣∣
+ sup

0≤x≤T

∣∣∣∣l(bkx1ck , . . . ,
bkxdc
k

)− l(x)

∣∣∣∣
= Υ1(n) + Υ2(n)

10
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Recall that l is 1-Lipschitz on [0, T ]d regarding to the ‖.‖1-norm, so that

Υ1(n) ≤ sup
0≤x≤T

d∑
l=1

∣∣∣∣bkxjck − n

k
U j(bkxjc)

∣∣∣∣
so that by Lemma 9, with probability greater than 1− (d+ 1)δ:

Υ1(n) ≤ Cd

√
2T

k
log

1

δ
.

On the other hand, Υ2(n) ≤ sup0≤x≤T
∑d

l=1

∣∣∣ bkxjck − xj
∣∣∣ ≤ d

k . Finally we get, for every n > 0,
with probability at least 1− (d+ 3)δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Λ(n) + Υ1(n) + Υ2(n) + Ξ(n)

≤ Cd

√
2T

k
log

1

δ
+ Cd

√
2T

k
log

1

δ
+

d

k
+ sup

0≤x≤2T

∣∣∣∣F̃ (x)− n

k
l(
k

n
x)

∣∣∣∣
≤ C ′d

√
2T

k
log

1

δ
+ sup

0≤x≤2T

∣∣∣∣nk F̃ (
k

n
x)− l(x)

∣∣∣∣
5. Discussion

We provide a non-asymptotic bound of VC type controlling the error of the empirical version of
the STDF. Our bound achieves the expected rate in O(k−1/2) + bias(k), where k is the number
of (extreme) observations retained in the learning process. In practice the smaller k/n, the smaller
the bias. Since no assumption is made on the underlying distribution, other than the existence of
the STDF, it is not possible in our framework to control the bias explicitly. One option would be to
make an additional hypothesis of ‘second order regular variation’ (see e.g. de Haan and Resnick,
1996). We made the choice of making as few assumptions as possible, however, since the bias
term is separated from the ‘variance’ term, it is probably feasible to refine our result with more
assumptions.

For the purpose of controlling the empirical STDF, we have adopted the more general framework
of maximal deviations in low probability regions. The VC-type bounds adapted to low probability
regions derived in Section 3 may directly be applied to a particular prediction context, namely
where the objective is to learn a classifier (or a regressor) that has good properties on low proba-
bility regions. This may open the road to the study of classification of extremal observations, with
immediate applications to the field of anomaly detection.
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Appendix A. Proof of Theorem 1

Theorem 1 is actually a short version of Theorem 10 below:

Theorem 10 (Maximal deviations) Let X1, . . . ,Xn i .i .d . realizations of a r.v. X valued in Rd,
a VC-class A, and denote byRn,p the associated relative Rademacher average defined by

Rn,p = E sup
A∈A

1

np

∣∣∣∣∣
n∑
i=1

σi1Xi∈A

∣∣∣∣∣ . (13)

Define the union A = ∪A∈AA, and p = P(X ∈ A). Fix 0 < δ < 1, then with probability at least
1− δ,

1

p
sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ 2Rn,p +
2

3np
log

1

δ
+ 2

√
1

np
log

1

δ
,

and there is a constant C independent of n, p, δ such that with probability greater than 1− δ,

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ C

(
√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

)
.

If we assume furthermore that δ ≥ e−np, then we both have:

1

p
sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ 2Rn,p + 3

√
1

np
log

1

δ

1

p
sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ ≤ C

√
VA
np

log
1

δ
.
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In the following, X1:n denotes an i .i .d . sample (X1, . . . ,Xn) distributed as X, a Rd-valued
random vector. The classical steps to prove VC inequalities consist in applying a concentration
inequality to the function

f(X1:n) := sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣ , (14)

and then establishing bounds on the expectation Ef(X1:n), using for instance Rademacher average.
Here we follow the same lines, but applying a Bernstein type concentration inequality instead of
the usual Hoeffding one, since the variance term in the bound involves the probability p to be in the
union of the VC-class A considered. We then introduce relative Rademacher averages instead of
the conventional ones, to take into account p for bounding Ef(X1:n).

We need first to control the variability of the random variable f(X1:n) when fixing all but one
marginal Xi. For that purpose introduce the functional

h(x1, . . . ,xk) = E [f(X1:n)|X1 = x1, . . . ,Xk = xk]− E [f(X1:n)|X1 = x1, . . . ,Xk−1 = xk−1]

The positive deviation of h(x1, . . . ,xk−1,Xk) is defined by

dev+(x1, . . . ,xk−1) = sup
x∈Rd

{h(x1, . . . ,xk−1,x)} ,

and maxdev+, the maximum of all positive deviations, by

maxdev+ = sup
x1,...,xk−1

max
k

dev+(x1, . . . ,xk−1) .

Finally, define v̂, the maximum sum of variances, by

v̂ = sup
x1,...,xn

n∑
k=1

Var h(x1, . . . ,xk−1,Xk) .

We have now the tools to state an extension of the classical Bernstein inequality, which is proved in
McDiarmid (1998).

Proposition 11 Let X1:n = (X1, . . . ,Xn) as above, and f any function (Rd)n → R . Let
maxdev+ and v̂ the maximum sum of variances, both of which we assume to be finite, and let µ
be the mean of f(X1:n). Then for any t ≥ 0,

P
[
f(X1:n)− µ ≥ t

]
≤ exp

(
− t2

2v̂(1 + maxdev+t
3v̂ )

)
.

Note that the term maxdev+t
3v̂ is view as an ‘error term’ and is often negligible. Let us apply this

theorem to the specific function f defined in (14). Then the following lemma holds true:

Lemma 12 In the situation of Proposition 11 with f as in (14), we have

maxdev+ ≤ 1

n
and v̂ ≤ q

n
,

14
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where

q = E
(

sup
A∈A
|1X′∈A − 1X∈A|

)
≤ 2E

(
sup
A∈A
|1X′∈A1X/∈A|

)
, (15)

with X′ an independent copy of X.

Proof Considering the definition of f , we have:

h(x1, . . . ,xk−1,xk) = E sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

k∑
i=1

1xi∈A −
1

n

n∑
i=k+1

1Xi∈A

∣∣∣∣∣
− E sup

A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

k−1∑
i=1

1xi∈A −
1

n

n∑
i=k

1Xi∈A

∣∣∣∣∣ .
Using the fact that

∣∣ supA∈A |F (A)|−supA∈A |G(A)|
∣∣ ≤ supA∈A |F (A)−G(A)| for every function

F and G of A, we obtain:∣∣h(x1, . . . ,xk−1,xk)
∣∣ ≤ E sup

A∈A

1

n
|1xk∈A − 1Xk∈A| . (16)

The term on the right hand side of (16) is less than 1
n so that maxdev+ ≤ 1

n . Moreover, if X′ is an
independent copy of X, (16) yields

∣∣h(x1, . . . ,xk−1,X
′)
∣∣ ≤ E

[
sup
A∈A

1

n
|1X′∈A − 1X∈A|

∣∣∣X′] ,
so that

E
[
h(x1, . . . ,xk−1,X

′)2
]
≤ E E

[
sup
A∈A

1

n
|1X′∈A − 1X∈A|

∣∣∣X′]2
≤ E

[
sup
A∈A

1

n2
|1X′∈A − 1X∈A|2

]
≤ 1

n2
E
[

sup
A∈A
|1X′∈A − 1X∈A|

]
Thus Var(h(x1, . . . ,xk−1,Xk)) ≤ E[h(x1, . . . ,xk−1,Xk)

2] ≤ q
n2 . Finally v̂ ≤ q

n as required.

As a consequence with Proposition 11 the following general inequality holds true:

P [f(X1:n)− Ef(X1:n) ≥ t] ≤ e
− nt2

2q+2t
3 (17)

where the quantity q = E (supA∈A |1X′∈A − 1X∈A|) seems to be a central characteristic of the
VC-class A given the distribution X. It may be interpreted as a measure of the complexity of
the class A with respect to the distribution of X: how often the class A is able to separate two
independent realizations of X.
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Recall that the union class A and its associated probability p are defined as A = ∪A∈AA, and
p = P(X ∈ A). Noting that for all A ∈ A, 1{.∈A} ≤ 1{.∈A}, it is then straightforward from (15)
that q ≤ 2p. As a consequence (17) holds true when changing q by 2p. Let us now explicit the link
between the expectation of f and the Rademacher average

Rn = E sup
A∈A

1

n

∣∣∣∣∣
n∑
i=1

σi1Xi∈A

∣∣∣∣∣ ,
where (σi)i≥1 is a Rademacher chaos independent of the Xi’s.

Lemma 13 With this notations the following inequality holds true:

Ef(X1:n) ≤ 2Rn

Proof The proof of this lemma relies on classical arguments: Introducing a ghost sample (X
′
i)1≤i≤n

namely i.i.d independent copy of the Xi’s, we may write:

Ef(X1:n) = E sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣
= E sup

A∈A

∣∣∣∣∣E
[

1

n

n∑
i=1

1
X
′
i∈A

]
− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣
≤ E sup

A∈A

∣∣∣∣∣ 1n
n∑
i=1

1
X
′
i∈A
− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣
= E sup

A∈A

∣∣∣∣∣ 1n
n∑
i=1

σi

(
1
X
′
i∈A
− 1Xi∈A

)∣∣∣∣∣
≤ E sup

A∈A

∣∣∣∣∣ 1n
n∑
i=1

σi1X′i∈A

∣∣∣∣∣ + sup
A∈A

∣∣∣∣∣ 1n
n∑
i=1

−σi1Xi∈A

∣∣∣∣∣
= 2Rn

Combining (17) with Lemma 13 and the fact that q ≤ 2p gives:

P [f(X1:n)− 2Rn ≥ t] ≤ e
− nt2

4p+2t
3 . (18)

Recall that the relative Rademacher average are defined in (13) as Rn,p = Rn/p. It is well-
known thatRn is of orderO((VA/n)1/2), see Koltchinskii (2006) for instance. However, we hope a
stronger bound than justRn,p = O(p−1(VA/n)1/2) since 1

np |
∑n

i=1 σi1Xi∈A| with P(Xi ∈ A) = p

is expected to be like 1
np |
∑np

i=1 σi1Yi∈A| with Yi such that P(Yi ∈ A) = 1. The result below
confirms this heuristic:

Lemma 14 The relative Rademacher averageRn,p is of order O(
√

VA
pn ).
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Proof Let us defined i .i .d . r.v. Yi independent from Xi whose law is the law of X conditioned
on the event X ∈ A. If d

= means equal in distribution it is easy to show that
∑n

i=1 σi1Xi∈A
d
=∑κ

i=1 σi1Yi∈A, where κ ∼ Bin(n, p) independent of the Yi’s. Thus,

Rn,p = E sup
A∈A

1

np

∣∣∣∣∣
n∑
i=1

σi1Xi∈A

∣∣∣∣∣ = E sup
A∈A

1

np

∣∣∣∣∣
κ∑
i=1

σi1Yi∈A

∣∣∣∣∣
= E

[
E

[
sup
A∈A

1

np

∣∣∣∣∣
κ∑
i=1

σi1Yi∈A

∣∣∣∣∣ | κ
]]

= E [Φ(κ)]

where

φ(K) = E

[
sup
A∈A

1

np

∣∣∣∣∣
K∑
i=1

σi1Yi∈A

∣∣∣∣∣
]

=
K

np
RK ≤

K

np

C
√
VA√
K

.

Thus,

Rn,p ≤ E
[√

κ

np
C
√
VA

]
≤
√
E[κ]

np
C
√
VA ≤

C
√
VA√
np

.

Finally we obtain from (18) and Lemma 14 the following bound:

P

[
1

p
sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣− 2Rn,p > t

]
≤ e

− npt2

4+2t
3 (19)

Solving exp
[
− npt2

4+ 2
3
t

]
= δ with t > 0 leads to

t =
1

3np
log

1

δ
+

√(
1

3np
log

1

δ

)2

+
4

np
log

1

δ
:= h(δ)

so that

P

[
1

p
sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑
i=1

1Xi∈A

∣∣∣∣∣− 2Rn,p > h(δ)

]
≤ δ

Using
√
a+ b ≤

√
a +
√
b if a, b ≥ 0, we have h(δ) < 2

3np log 1
δ + 2

√
1
np log 1

δ . In the case of

δ ≥ e−np, 2
3np log 1

δ ≤
2
3

√
1
np log 1

δ so that h(δ) < 3
√

1
np log 1

δ . This ends the proof.
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GOIX SABOURIN CLÉMENÇON

Appendix B. Note on Remark 5

To obtain the bound in (6), the following easy to show inequality is needed before applying Theo-
rem 1 :

sup
g∈G
|Lα,n(g)− Lα(g)| ≤ 1

α

[
sup
g∈G

∣∣∣∣∣P (Y 6= g(X), ‖X‖ > tα)− 1

n

n∑
i=1

I{Yi 6=g(Xi), ‖Xi‖>tα}

∣∣∣∣∣
+

∣∣∣∣∣P (‖X‖ > tα)− 1

n

n∑
i=1

I{‖Xi‖>tα}

∣∣∣∣∣ +
1

n

]
.

Note that the final objective would be to bound the quantity supg∈G |Lα(g) − Lα(g∗α)|, where
g∗α is a Bayes classifier for the problem at stake, i.e. a solution of the conditional risk minimiza-
tion problem inf{g measurable} Lα(g). Such a bound involves a bias term infg∈G Lα(g) − Lα(g∗α),
as in the classical setting. Further, it can be shown that the standard Bayes classifier g∗(x) :=
2I{η(x) > 1/2} − 1 (where η(x) = P(Y = 1 | X = x)) is also a solution of the condi-
tional risk minimization problem. Finally, the conditional bias infg∈G Lα(g) − Lα(g∗α) can be
expressed as 1

α infg∈G E
[
|2η(X)− 1|1g(X)6=g∗(X)1‖X‖≥tα

]
, to be compared with the standard bias

infg∈G E
[
|2η(X)− 1|1g(X)6=g∗(X)

]
.
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