Apprentissage de bancs de filtres pour la séparation aveugle de sources sonores
Résumé
-L'utilisation d'encodeurs audio paramétrés s'est révélée être une piste encourageante pour améliorer l'interprétabilité et les performances des modèles de séparation de sources bout-à-bout. Nous présentons des propriétés d'intérêt nécessaires à l'apprentissage des filtres de ces encodeurs ; et proposons une paramétrisation pour contraindre ces filtres. Sur la base de la transformée de Hilbert et du théorème de Bedrosian, nous proposons de construire un ensemble de filtres déphasés en modulant des sinusoïdes à travers des filtres passe-bas appris librement. Ces filtres permettent d'obtenir des invariances pour des décalages temporels, des décalages de phases tout en évitant l'utilisation de réseaux de neurones complexes grâce à une astuce de sur-paramétrisation de la phase pour une forme d'onde donnée.
Origine | Fichiers produits par l'(les) auteur(s) |
---|