Communication Dans Un Congrès Année : 2022

FAST STRATEGIES FOR MULTI-TEMPORAL SPECKLE REDUCTION OF SENTINEL-1 GRD IMAGES

Résumé

Reducing speckle and limiting the variations of the physical parameters in Synthetic Aperture Radar (SAR) images is often a key-step to fully exploit the potential of such data. Nowadays, deep learning approaches produce state of the art results in single-image SAR restoration. Nevertheless, huge multi-temporal stacks are now often available and could be efficiently exploited to further improve image quality. This paper explores two fast strategies employing a singleimage despeckling algorithm, namely SAR2SAR [1], in a multi-temporal framework. The first one is based on Quegan filter [2] and replaces the local reflectivity pre-estimation by SAR2SAR. The second one uses SAR2SAR to suppress speckle from a ratio image encoding the multi-temporal information under the form of a "super-image", i.e. the temporal arithmetic mean of a time series. Experimental results on Sentinel-1 GRD data show that these two multi-temporal strategies provide improved filtering results while adding a limited computational cost.
Fichier principal
Vignette du fichier
igarss_multitemp-5.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03756068 , version 1 (22-08-2022)

Identifiants

Citer

Inès Meraoumia, Emanuele Dalsasso, Loïc Denis, Florence Tupin. FAST STRATEGIES FOR MULTI-TEMPORAL SPECKLE REDUCTION OF SENTINEL-1 GRD IMAGES. IGARSS, 2022, Kuala Lumpur, Malaysia. ⟨10.1109/IGARSS46834.2022.9883448⟩. ⟨hal-03756068⟩
80 Consultations
109 Téléchargements

Altmetric

Partager

More