Online Learning for Adaptive Video Streaming in Mobile Networks - Télécom Paris
Article Dans Une Revue ACM Transactions on Multimedia Computing, Communications and Applications Année : 2022

Online Learning for Adaptive Video Streaming in Mobile Networks

Theodoros Karagkioules
  • Fonction : Auteur
Georgios Paschos
  • Fonction : Auteur
Nikolaos Liakopoulos
  • Fonction : Auteur
Dimitrios Tsilimantos
  • Fonction : Auteur
  • PersonId : 949664
Marco Cagnazzo

Résumé

In this paper, we propose a novel algorithm for video bitrate adaptation in HTTP Adaptive Streaming (HAS), based on online learning. The proposed algorithm, named Learn2Adapt (L2A) , is shown to provide a robust bitrate adaptation strategy which, unlike most of the state-of-the-art techniques, does not require parameter tuning, channel model assumptions, or application-specific adjustments. These properties make it very suitable for mobile users, who typically experience fast variations in channel characteristics. Experimental results, over real 4G traffic traces, show that L2A improves on the overall Quality of Experience (QoE) and in particular the average streaming bitrate, a result obtained independently of the channel and application scenarios.

Dates et versions

hal-03591241 , version 1 (28-02-2022)

Identifiants

Citer

Theodoros Karagkioules, Georgios Paschos, Nikolaos Liakopoulos, Attilio Fiandrotti, Dimitrios Tsilimantos, et al.. Online Learning for Adaptive Video Streaming in Mobile Networks. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18 (1), pp.1-22. ⟨10.1145/3460819⟩. ⟨hal-03591241⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

More