Self-supervised training strategies for SAR image despeckling with deep neural networks - Télécom Paris
Communication Dans Un Congrès Année : 2022

Self-supervised training strategies for SAR image despeckling with deep neural networks

Résumé

Images acquired by Synthetic Aperture Radar (SAR) are affected by speckle, making their interpretation difficult. Most recently, the rise of deep learning algorithms has led to groundbreaking results. The training of a neural network typically requires matched pairs of speckled / speckle-free images. To account for the speckle present in actual images and simplify the generation of training sets, self-supervision approaches directly train the network on speckled SAR data. Self-supervision exploits a form of diversity, either temporal, spatial, or based on the real/imaginary parts. We compare the requirements in terms of data preprocessing and the performance of three self-supervised strategies.
Fichier principal
Vignette du fichier
main.pdf (6.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03589245 , version 1 (25-02-2022)
hal-03589245 , version 2 (03-08-2022)

Identifiants

  • HAL Id : hal-03589245 , version 1

Citer

Emanuele Dalsasso, Loïc Denis, Max Muzeau, Florence Tupin. Self-supervised training strategies for SAR image despeckling with deep neural networks. 14th European Conference on Synthetic Aperture Radar (EUSAR), Jul 2022, Leipzig, Germany. ⟨hal-03589245v1⟩
613 Consultations
593 Téléchargements

Partager

More