Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks - Télécom Paris Access content directly
Conference Papers Year : 2021

Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks

Abstract

Neural network compression techniques have become increasingly popular as they can drastically reduce the storage and computation requirements for very large networks. Recent empirical studies have illustrated that even simple pruning strategies can be surprisingly effective, and several theoretical studies have shown that compressible networks (in specific senses) should achieve a low generalization error. Yet, a theoretical characterization of the underlying causes that make the networks amenable to such simple compression schemes is still missing. In this study, focusing our attention on stochastic gradient descent (SGD), our main contribution is to link compressibility to two recently established properties of SGD: (i) as the network size goes to infinity, the system can converge to a mean-field limit, where the network weights behave independently [DBDFŞ20], (ii) for a large stepsize/batch-size ratio, the SGD iterates can converge to a heavy-tailed stationary distribution [HM20, GŞZ21]. Assuming that both of these phenomena occur simultaneously, we prove that the networks are guaranteed to be ' p-compressible', and the compression errors of different pruning techniques (magnitude, singular value, or node pruning) become arbitrarily small as the network size increases. We further prove generalization bounds adapted to our theoretical framework, which are consistent with the observation that the generalization error will be lower for more compressible networks. Our theory and numerical study on various neural networks show that large step-size/batch-size ratios introduce heavy tails, which, in combination with overparametrization, result in compressibility. * Equal contribution. 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
Fichier principal
Vignette du fichier
HT_and_Compressibility.pdf (1.34 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03413484 , version 1 (03-11-2021)

Identifiers

  • HAL Id : hal-03413484 , version 1

Cite

Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, Umut Şimşekli. Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks. 35th Conference on Neural Information Processing Systems (NeurIPS), Dec 2021, Online, United States. ⟨hal-03413484⟩
141 View
141 Download

Share

Gmail Mastodon Facebook X LinkedIn More