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Abstract

Neural network compression techniques have become increasingly popular as
they can drastically reduce the storage and computation requirements for very
large networks. Recent empirical studies have illustrated that even simple pruning
strategies can be surprisingly effective, and several theoretical studies have shown
that compressible networks (in specific senses) should achieve a low generalization
error. Yet, a theoretical characterization of the underlying causes that make the
networks amenable to such simple compression schemes is still missing. In this
study, focusing our attention on stochastic gradient descent (SGD), our main
contribution is to link compressibility to two recently established properties of SGD:
(i) as the network size goes to infinity, the system can converge to a mean-field limit,
where the network weights behave independently [DBDFŞ20], (ii) for a large step-
size/batch-size ratio, the SGD iterates can converge to a heavy-tailed stationary
distribution [HM20, GŞZ21]. Assuming that both of these phenomena occur
simultaneously, we prove that the networks are guaranteed to be ‘`p-compressible’,
and the compression errors of different pruning techniques (magnitude, singular
value, or node pruning) become arbitrarily small as the network size increases. We
further prove generalization bounds adapted to our theoretical framework, which
are consistent with the observation that the generalization error will be lower for
more compressible networks. Our theory and numerical study on various neural
networks show that large step-size/batch-size ratios introduce heavy tails, which,
in combination with overparametrization, result in compressibility.

1 Introduction
With the increasing model sizes in deep learning and with its increasing use in low-resource environ-
ments, network compression is becoming ever more important. Among many network compression
techniques, network pruning has been arguably the most commonly used method [O’N20], and it
is rising in popularity and success [BOFG20]. Though various pruning methods are successfully
used in practice and their theoretical implications in terms of generalization are increasingly apparent
[AGNZ18], a thorough understanding of why and when neural networks are compressible is lacking.
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A common conclusion in pruning research is that overparametrized networks can be greatly com-
pressed by pruning with little to no cost at generalization, including with simple schemes such as
magnitude pruning [BOFG20, O’N20]. For example, research on iterative magnitude pruning [FC19]
demonstrated the possibility of compressing trained deep learning models by iteratively eliciting a
much sparser substructure. While it is known that the choice of training hyperparameters such as
learning rate affects the performance of such pruning strategies [FDRC20, HJRY20, RFC20], usually
such observations are low in granularity and almost never theoretically motivated. Overall, the field
lacks a framework to understand why or when a pruning method should be useful [O’N20].

Another strand of research that highlights the importance of understanding network compressibility
includes various studies [AGNZ18, SAM+20, SAN20, HJTW21, KLG+21] that presented general-
ization bounds and/or empirical evidence that imply that the more compressible a network is, the more
likely it is to generalize well. The aforementioned bounds are particularly interesting since classical
generalization bounds increase with the dimension and hence become irrelevant in high dimensional
deep learning settings, and fall short of explaining the generalization behavior of overparametrized
neural networks. These results again illustrate the importance of understanding the conditions that
give rise to compressibility given their implications regarding generalization.

In this paper, we develop a theoretical framework to address (i) why and when modern neural
networks can be amenable to very simple pruning strategies and (ii) how this relates to generalization.
Our theoretical results are based on two recent disparate discoveries regarding deep neural networks
trained with the stochastic gradient descent (SGD) algorithm. The first one is the emergence of heavy-
tailed stationary distributions, which appear when the networks are trained with large learning rates
and/or small batch-sizes [HM20, GŞZ21]. The second one is the propagation of chaos phenomenon,
which indicates that, as the network size goes to infinity, the network weights behave independently
[MMN18, SS20, DBDFŞ20].

We show that, assuming both of the aforementioned phenomena occur simultaneously, fully connected
neural networks will be provably compressible in a precise sense, and the compression errors of (i)
unstructured global or layer-wise magnitude pruning, (ii) pruning based on singular values of the
weight matrices, (iii) and node pruning can be made arbitrarily small for any compression ratio as the
dimension increases. Our formulation of network compressibility in terms of ‘`p-compressibility’
enables us to access results from compressed sensing literature [GCD12, AUM11] to be used in neural
network analysis. Moreover, we prove generalization bounds adapted to our framework that agree
with existing compression-based generalization bounds [AGNZ18, SAM+20, SAN20] and confirm
that compressibility implies better generalization. We conduct experiments on fully connected and
convolutional networks and show that the results are in strong accordance with our theory.

Our study reveals an interesting phenomenon: depending on the algorithm hyperparameters, such as
learning rate and batch-size, the resulting neural networks might possess different compressibility
properties. Under the decoupling effect of propagation of chaos that emerges with overparametriza-
tion [DBDFŞ20], the networks become compressible in a way that they are amenable to simple
pruning strategies as the tails get heavier, which is shown to depend on the step-size/batch-size
ratio [GŞZ21]. Finally, when compressible, the networks become likely to generalize better. In this
sense, our results also provide an alternative perspective to the recent theoretical studies that suggest
that heavy tails can be beneficial in terms of generalization [ŞSDE20, ZFM+20].

2 Preliminaries and Technical Background

Notation. Matrices and vectors are denoted by upper- and lower-case bold letters, respectively,
e.g. X and x. A sequence of n scalars x1, . . . , xn is shown as {xi}ni=1. Similar notations are used
for sequences of matrices {Xi}li=1 and vectors {xi}li=1, whose entries are indexed with convention
Xi=[Xi]m,n and xi=(xi,1, xi,2, . . . , xi,n), respectively. The set of integers {m, . . . , n} is denoted

by Jm,nK. We denote the `p (semi-)norm of a vector x ∈ Rd as ‖x‖p=(
∑d
i=1 |xi|p)1/p for all

p ∈ (0,∞) and ‖x‖ implies ‖x‖2. For a matrix A ∈ Rn×m, ‖A‖ denotes its Frobenius norm.

Fully connected neural networks. In the entirety of the paper, we consider a multi-class classifi-
cation setting. We denote the space of data points by Z = X × Y , where X ⊂ RdX is the space of
features and Y = {1, 2, . . . , dY } is the space of the labels. Similar to prior art (e.g., [NBS18]), we
focus our attention on the bounded feature domain X = XB :=

{
x ∈ RdX ; ‖x‖ ≤ B

}
.
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We denote a fully connected neural network with L layers by a collection of weight matrices
{Wl}Ll=1, such that Wl ∈ Rhl×hl−1 , where hl denotes the number of hidden units at layer l with
h0 = dX and hL = dY . Accordingly, the prediction function fw(x) : XB 7→ RdY , with elements
fw(x) := (fw(x)[1], . . . , fw(x)[dY ]), corresponding to the neural network is defined as follows:

fw(x) = WLφ(WL−1φ(· · ·φ(W1x))), (1)
where φ : R → R is the rectified linear unit (ReLU) activation function, i.e., φ(x) = max(0, x),
and it is applied element-wise when its input is a vector. For notational convenience, let us define
dl := hl × hl−1 and d :=

∑L
l=1 dl. Furthermore, let wl denote the vectorized weight matrix of layer

l, i.e., wl := vec(Wl) ∈ Rdl , where vec denotes vectorization. Finally, let w be the concatenation of
all the vectorized weight matrices, i.e., w := [w1, . . . ,wL] ∈ Rd. We assume that L ≥ 2.

Risk minimization and SGD. In order to assess the quality of a neural network represented by its
weights w, we consider a loss function ` : Y × Y 7→ R+, such that `(y, fw(x)) measures the loss
incurred by predicting the label of x as arg maxj fw(x)[j], when the true label is y. By following a
standard statistical learning theoretical setup, we consider an unknown data distribution µZ over Z ,
and a training dataset with n elements, i.e., S = {z1, . . . , zn}, where each zi =: (xi, yi)

i.i.d.∼ µZ . We
then denote the population and empirical risks as R(w) := E(x,y)∼µZ [`(y, fw(x))] and R̂(w) :=
1
n

∑n
i=1 `(yi, fw(xi)).

Since µZ is unknown, we cannot directly attempt to minimizeR in practice. One popular approach
to address this problem is the empirical risk minimization strategy, where the goal is to solve the
following optimization problem: minw∈Rd R̂(w). To tackle this problem, SGD has been one of the
most popular optimization algorithms, which is based on the following simple recursion:

w{k+1} = w{k} − η∇R̃k+1(w{k}), where ∇R̃k(w) := (1/b)
∑

i∈Ωk
∇`(yi, fw(xi)). (2)

Here, w{k} denotes the weight vector at iteration k ∈ N+, η > 0 is the step-size (or learning rate),
∇R̃k(·) is the stochastic gradient, and Ωk is the mini-batch with size b, drawn with or without
replacement from J1, nK.

Heavy-tailed distributions and the α-stable family. In this study, we will mainly deal with
heavy-tailed random variables. While there exist different definitions of heavy tails in the literature,
here, we call a random variable heavy-tailed if its distribution function has a power-law decay, i.e.,
P(X ≥ x) ∼ cx−α as x→∞, for some c > 0 and α ∈ (0, 2). Here, the tail index α determines the
tail thickness of the distribution, i.e., as α get smaller, the distribution becomes heavier-tailed.

An important subclass of heavy-tailed distributions is the family of stable distributions. A random
variable X has symmetric α-stable distribution, denoted by SαS(σ), if its characteristic function is
equal to E[exp(iwX)] = exp(−|σw|α), where α ∈ (0, 2] is again the tail index and σ ∈ (0,∞) is
the scale parameter. An important property of SαS is that whenever α < 2, E|X|p is finite if and
only if p < α. This implies that the distribution has infinite variance as soon as α < 2. In addition to
their wide use in applied fields [Nol20], recently, SαS distributions have also been considered in
deep learning theory [SSG19, PFF20, ZFM+20, ŞSDE20] and optimization [WGZ+21].

3 Compressibility and the Heavy-Tailed Mean-Field Regime
In this section, we will present our first set of theoretical results. We first identify a sufficient condition,
then we prove that, under this condition, the compression errors of different pruning techniques
become arbitrarily small as the network size increases.

3.1 The heavy-tailed mean-field regime
Due to the peculiar generalization behavior of neural networks trained with SGD, recent years
have witnessed an extensive investigation of the theoretical properties of SGD in deep learning
[Lon17, DR17, KL18, ZZL19, AZLL19, ŞSDE20, Neu21, CDE+21, BLGŞ21]. We will now men-
tion two recently established theoretical properties of SGD, and our main contribution is studying the
compressibility properties of the network under the assumption that these two seemingly unrelated
‘phenomena’ occur simultaneously.

The heavy tail phenomenon. Several recent studies [MM19, SSG19, ŞGN+19, ŞZTG20, ZFM+20,
ZKV+20, CWZ+21] have empirically illustrated that neural networks can exhibit heavy-tailed
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behavior when optimized with SGD. Theoretically investigating the origins of this heavy-tailed
behavior, [HM20] and [GŞZ21] later proved several theoretical results on online SGD, with rather
surprising implications: due to the ‘multiplicative’ structure of the gradient noise (i.e.,∇R̃k(w)−
∇R̂(w)), as k → ∞, the distribution of the SGD iterates w{k} can converge to a heavy-tailed
distribution with infinite second-order moment, and perhaps more surprisingly, this behavior can
even emerge in simple linear regression with Gaussian data. The authors of [GŞZ21] further showed
that, in the linear regression setting, the tail index α is monotonic with respect to the step-size η and
batch-size b: larger η and/or smaller b result in smaller α (i.e., heavier tails).

Propagation of chaos and mean-field limits. Another interesting property of SGD appears when
the size of the network goes to infinity. Recently, it has been shown that, under an appropriate
scaling of step-sizes, the empirical distribution of the network weights converges to a fixed mean-
field distribution, and the SGD dynamics can be represented as a gradient flow in the space of
probability measures [MMN18, CB18, SS20, DBDFŞ20]. Moreover, [DBDFŞ20] showed that a
propagation of chaos phenomenon occurs in this setting, which indicates that when the network
weights are initialized independently (i.e., a-priori chaotic behavior), the weights stay independent as
the algorithm evolves over time (i.e., the chaos propagates) [Szn91].

Our focus in this paper is the setting where both of these phenomena occur simultaneously: we
assume that as the size of the network goes to infinity, the SGD iterates become independent and
their distribution converges to a heavy-tailed distribution. To formalize this setting, let us introduce
the required notations. For an integer ml < dl, let wl,(1:ml) denote the first ml coordinates of wl,
and for ml ≥ dl set wl,(1:ml) = wl. Furthermore, parametrize the dimension of each layer dl with a
parameter ρ ∈ R, i.e., dl = dl(ρ), such that for all l = 1, . . . , L, we have:

dl(ρ) ∈ N+, and limρ→∞ dl(ρ) =∞. (3)

This construction enables us to take the dimensions of each layer to infinity simultaneously [NP21].
Condition 1 (Heavy-tailed mean-field limit condition). The SGD recursion (2) satisfies the heavy-
tailed mean-field limit (HML) condition, if the dimensions obey (3) and if there exist heavy-tailed
probability measures {µ?l }Ll=1 on R with tail indices {αl}Ll=1, such that µ?l ({0}) = 0 for all l and
for any m1, . . . ,mL ∈ N+, the joint distribution of

(
w
{k}
1,(1:m1), . . . ,w

{k}
L,(1:mL)

)
weakly converges to (µ?1)⊗m1 ⊗ · · · ⊗ (µ?L)⊗mL , (4)

as ρ, k →∞, where µ⊗ ν denotes the product measure and µ⊗n denotes the n-fold product measure.

Informally, the HML condition states that in the infinite size and infinite iteration limit, the entries of
the weight matrices will become independent, and the distribution of the elements within the same
layer will be identical and heavy-tailed. We acknowledge that the above condition may not be always
satisfied, and theoretical evidence for this condition is provided in rather seemingly simpler settings
such as linear regression [GŞZ21] and/or two-layer neural networks [DBDFŞ20]. However, we will
empirically illustrate the behavior described by the HML condition in Section 5 in certain scenarios.
Note that, in (4), the particular form of independence in the limit is not crucial and we will discuss
weaker alternatives in Section 3.3.

We further note that [DBDFŞ20] proved that a similar form of (4) indeed holds for SGD applied
on single hidden-layered neural networks, where the limiting distributions possess second-order
moments (i.e., not heavy-tailed) and the independence is column-wise. Recently, [PFF20] investigated
the infinite width limits of fully connected networks initialized from a SαS distribution and proved
heavy-tailed limiting distributions. On the other hand, heavy-tailed propagation of chaos results have
been proven in theoretical probability [JMW08, LMW20]; however, their connection to SGD has not
been yet established. We believe that (4) can be shown to hold under appropriate conditions, which
we leave as future work.

3.2 Analysis of compression algorithms
In this section, we will analyze the compression errors of three different compression schemes under
the HML condition. All three methods are based on pruning, which we formally define as follows.
Let x be a vector of length d, and consider its sorted version in descending order with respect to the
magnitude of its entries, i.e., |xi1 | ≥ |xi2 | ≥ · · · ≥ |xid |, where {i1, . . . , id} = {1, . . . , d}. For any
k ≤ d, the k-best term approximation of x, denoted as x(k) = (x

(k)
1 , . . . , x

(k)
d ), is defined as follows:
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for l ∈ J1, dkeK, x(k)
il

:= xil and for l /∈ J1, dkeK, x(k)
il

:= 0. Informally, we keep the k-largest entries
of x with the largest magnitudes, and ‘prune’ the remaining ones. Current results pertain to one-shot
pruning with no fine-tuning; other settings are left for future work (cf. [EKT20]).

In this section, we consider that we have access to a sample from the stationary distribution of the
SGD, i.e. w{∞}, and for conciseness we will simply denote it by w. We then consider a compressed
network ŵ (that can be obtained by different compression schemes) and measure the performance of
the compression scheme by its ‘relative `p-compression error’ (cf. [AUM11, GCD12]), defined as:
‖ŵ −w‖p/‖w‖p. Importantly for the following results, in the supplement, we further prove that a
small compression error also implies a small perturbation on the network output.

Magnitude pruning. Magnitude pruning has been one of the most common and efficient algorithms
among all the network pruning strategies [HPTD15, BOFG20, KLG+21]. In this section, we consider
the global and layer-wise magnitude pruning strategies under the HML condition.

More precisely, given a network weight vector w ∈ Rd and a remaining parameter ratio κ ∈ (0, 1),
the global pruning strategy compresses w by using w(κd), i.e., it prunes the smallest (in magnitude)
(1− κ)d entries of w. Also, note that 1/κ corresponds to the frequently used metric compression
rate [BOFG20]. On the other hand, the layer-wise pruning strategy applies the same approach to
each layer separately, i.e., given layer-wise remaining parameter ratios κl ∈ (0, 1), we compress each
layer weight wl ∈ Rdl by using w

(κldl)
l . The following result shows that the compression error of

magnitude pruning can be made arbitrarily small as the network size grows.

Theorem 1. Assume that the recursion (2) satisfies the HML condition.

(i) Global magnitude pruning: if the weights of all layers have identical asymptotic distributions
µ?l ≡ µ? with tail index α?l = α, for all l ∈ J1, LK, then for every ε > 0, ε > 0, κ ∈ (0, 1), and
p ≥ α, there exists d0 ∈ N, such that ‖w(κd) −w‖p ≤ ε‖w‖p holds with probability at least
1− ε, for d ≥ d0.

(ii) Layer-wise magnitude pruning: for every ε > 0, εl > 0 and κl ∈ (0, 1), where l ∈ J1, LK,

and p ≥ maxl αl, there exists dl,0 ∈ N, such that ‖w(κldl)
l − wl‖p ≤ εl‖wl‖p holds with

probability at least 1− ε, for dl ≥ dl,0.

This result shows that any pruning ratio of the weights is achievable as long as the network size
is sufficiently large and the network weights are close enough to an i.i.d. heavy-tailed distribution.
Empirical studies report that global magnitude pruning often works better than layer-wise magnitude
pruning [BOFG20], except when it leads to over-aggressive pruning of particular layers [WZG20].

The success of this strategy under the HML condition is due to a result from compressed sensing
theory, concurrently proven in [GCD12, AUM11], which informally states that for a large vector of
i.i.d. heavy-tailed random variables, the norm of the vector is mainly determined by a small fraction
of its entries. We also illustrate this visually in the supplementary document.

An important question here is that, to achieve a fixed relative error εl, how would the smallest κl differ
with varying tail-indices αl, i.e., whether “heavier tails imply more compression”. In our experiments,
we illustrate this behavior positively: heavier-tailed weights are indeed more compressible. We partly
justify this behavior for a certain range of p in the supplement; however, a more comprehensive
theory is needed, which we leave as future work.

Singular value pruning. In recent studies, it has been illustrated that the magnitudes of the eigen-
values of the sample covariance matrices (for different layers) can decay quickly, hence pruning the
singular values of the weight matrices, i.e., only keeping the largest singular values and corresponding
singular vectors, is a sensible pruning method. Exploiting the low-rank nature of fully connected
and convolutional layer weights in network compression has been investigated theoretically and
empirically [AGNZ18, YLWT17]. Here we will present a simple scheme to demonstrate our results.

More precisely, for the weight matrix at layer l, Wl, consider its singular value decomposition,
Wl = UΣV>, and then, with a slight abuse of notation, define W

[κlhl−1]
l := UΣ(κlhl−1)V>,

where Σ(κlhl−1) is the diagonal matrix whose diagonal entries contain the dκlhl−1e largest singular
values (i.e., prune the diagonal of Σ). Accordingly, denote w

[κlhl−1]
l := vec(W

[κlhl−1]
l ).
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The next theorem shows that under the HML condition with an additional requirement that the limiting
distributions are SαS , the eigenvalues of the (properly normalized) sample covariance matrices will
be indeed compressible and the pruning strategy achieves negligible errors as the network size grows.

Theorem 2. Assume that the recursion (2) satisfies the HML condition, L ≥ 3, and for all l ∈
J2, L− 1K, µ?l ≡ SαlS(σl) with some σl > 0. Then, for every ε > 0, εl > 0, and κl ∈ (0, 1), there
exists {hl,0,}Ll=1, such that the following inequalities hold for every hl ≥ hl,0 and p ≥ maxl αl/2:

‖λ(κlhl−1)
l − λl‖p ≤ ε2

l ‖λl‖p, and ‖w[κlhl−1]
l −wl‖ ≤ εl‖wl‖, (5)

with probability at least 1− ε, where λl ∈ Rhl−1 denotes the vector of eigenvalues corresponding to
the sample covariance matrix h−2/αl

l W>
l Wl.

We shall note that the proof of Theorem 2 in fact only requires the limiting distributions to be
‘regularly varying’ [TTR+20] and symmetric around zero, which covers a broad range of heavy-tailed
distributions beyond the α-stable family [BDM+16]. The sole reason why we require the SαS
condition here is to avoid introducing further technical notation.

In Theorem 2, p needs to be greater than or equal to α/2, in contrast to the condition p ≥ α in
Theorem 1. The reason is that Theorem 2 is based on pruning the eigenvalues of the normalized
covariance matrix and moreover in general if a matrix A ∈ Rn×m has elements [A]i,j that are
independent and identically distributed from the symmetric α-stable distribution, then by [TTR+20,
Theorem 2.7], as m→∞, the eigenvalues of m−2/αATA weakly converge to independent random
variables, that are identically distributed from a positive stable distribution with tail index α/2.

Node pruning. The last pruning strategy that we consider is a structured pruning strategy, that
corresponds to the removal of the whole columns of a fully connected layer weight matrix. Even
though below we consider pruning based on the norms of the weight layer columns, the same
arguments apply for pruning rows; see supplement for further discussion.

The idea in column pruning is that, for a given layer l, we first sort the columns of the weight matrix
Wl ∈ Rhl×hl−1 with respect to their `p-norms for a given p ≥ maxl αl. Then, we remove the entire
columns that have the smallest `p-norms. More precisely, let Wl(i) ∈ Rhl be the i-th column of
Wl, for i ∈ J1, hl−1K, and suppose that ‖Wl(i1)‖p ≥ ‖Wl(i2)‖p ≥ · · · ≥ ‖Wl(ihl−1

)‖p, where
{i1, . . . , ihl−1

} = {1, . . . , hl−1}. Then, we define the k-best column approximation of Wl, denoted
as W

{k},p
l ∈ Rhl×hl−1 , as follows: for j ∈ J1, dkeK, W

{k},p
l (ij) := Wl(ij) and for j /∈ J1, dkeK,

W
{k},p
l (ij) := 0. Denote also w

{k},p
l := vec

(
W
{k},p
l

)
.

Theorem 3. Assume that the recursion (2) satisfies the HML condition. Then, for every ε > 0,
εl > 0, κl ∈ (0, 1), where l ∈ J2, LK, and p ≥ maxl αl, there exists hl−1,0 ∈ N, such that
‖w{κlhl−1},p

l −wl‖p ≤ εl‖wl‖p holds with probability at least 1− ε, for every hl−1 ≥ hl−1,0.

This theorem indicates that we can remove entire columns in each layer, without considerably affecting
the network weights, as long as the network is large enough. In other words, effectively the widths of
the layers can be reduced. Structured pruning schemes are commonly used in CNNs where filters,
channels, or kernels can be pruned by norm-based or other criteria [LKD+17, HZS17, HPTD15].

3.3 A note on the limiting independence structure in the HML condition

We conclude this section by discussing the particular independence condition in the limit, which
appears in Condition 1. We shall underline that the element-wise independence is not a necessity and
under weaker conditions, we can still obtain Theorems 1-3 with identical or almost identical proofs.
For instance, the proof of Theorem 3 remains the same when the columns of Wl are i.i.d. vectors
with dependent components; hence, the element-wise independence is indeed not needed, but is used
for the clarity of presentation. More generally, in all three theorems, the main requirement is to ensure
a weak dependence between the components of the weight vector. More precisely, for Theorems 1,
2, 3, we respectively need (1) the entries of Wl or (2) its singular values, or (3) the `p-norms of its
columns to be stationary and ergodic with a heavy-tailed distribution. Under this condition, the same
proof strategies will still work by invoking [SD15, Theorem 1], instead of [GCD12, Proposition 1].
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4 Generalization Bounds
So far, we have shown that the heavy-tailed behavior in the weights of a network together with
their independence result in compressibility. In this section, we further show that these phenomena
bring forth a better generalization performance bound in the network. More precisely, we establish a
generalization bound such that if a network is more compressible, then the corresponding compressed
network has a smaller generalization error bound. Throughout the section, we will focus on layer-wise
magnitude pruning; yet, our results can be easily extended to the other pruning strategies. Note
that similar results have already been proven in [AGNZ18, SAM+20, SAN20, HJTW21]; yet, they
cannot be directly used in our specific setting, hence, we prove results that are customized to our
setup. More precisely, although these works, similar to our result, are based on the assumption of
the “compressibility” of the network and moreover the generalization gap of the population risk with
respect to the empirical margin risk is considered in [AGNZ18, HJTW21], they cannot be applied
directly to the `p-compressibility based strategies discussed in the previous section. We should
emphasize that our results, as well as the previous mentioned works, are merely upper bounds on the
generalization performance of the network.

Our generalization bounds are derived by applying the previously developed techniques as in
[AGNZ18, NBS18]. In particular, we follow the approach of [AGNZ18] by further adapting the
technique for the magnitude pruning strategy and allowing the compressed network weights to take
unbounded continuous values. As in [AGNZ18], we consider the 0-1 loss function with margin
γ ≥ 0, `γ : Y × Y 7→ {0, 1}, for the multiclass classifier fw, given as follows:

`γ(y, fw(x)) =

{
1, if fw(x)[y]−max

j 6=y
fw(x)[j] ≤ γ,

0, otherwise.
(6)

Still denoting w = w{∞}, the population and empirical risks associated with `γ are denoted as
Rγ(w) and R̂γ(w), respectively. By having the dataset S ∼ µ⊗nZ , we assume the weights w are
sampled according to the stationary distribution Pw|S of SGD. Denote the joint distribution of (S,w)

by PS,w := µ⊗nZ Pw|S .

In the following theoretical results, we will assume that we have access to a random compressible
neural network that is amenable to the layer-wise magnitude pruning strategy with high probability.
This assumption is essentially the outcome of Theorem 1 under the HML condition together with an
additional uniformity requirement on dl,0 over S1.

H 1. For ε ≥ 0, ε > 0, and {κl}Ll=1 : κl ∈ (0, 1), there exists {dl,0}Ll=1 : dl,0 ∈ N independent of
S, such that for dl ≥ dl,0, l ∈ J1, LK, the relation ‖ŵl − wl‖ ≤ ε‖wl‖ holds for all l ∈ J1, LK
simultaneously with probability at least 1− ε, where ŵl := w

(κldl)
l and the probability is w.r.t. PS,w.

In the following result, we relate the population risk of the compressed network to the empirical
margin risk of the original (uncompressed) network. For notational convenience, for δ, τ > 0, let

R(δ) := inf{R : P(‖w‖ ≥ R) ≤ δ}, and L(τ, δ) :=
√

2BL
(

2R(δ)/
√
L
)L−1

/τ, (7)

where the probability is with respect to the joint distribution PS,w.

Theorem 4. Assume H1 holds. Then for n : n/ log(n) ≥ 10L, {dl}Ll=1 : dl ≥ dl,0, and any δ, τ > 0,
with probability at least 1− 2e−κd/2 − δ − ε,

R0(ŵ) ≤ R̂γ(δ,τ)(w) +
(

12L(τ, δ)R(δ) +
√
d
)√

(κ+ εκ) log(n)/n, (8)

where R(δ) and L(τ, δ) are defined in (7), κ := 1
d

∑L
l=1dκldle,2

εκ := (2hb(κ)− κ log(κ))/ log(n), and γ(δ, τ) := τ +

√
2B

τ

(
R(δ)/

√
L
)L(

(1 + ε)L − 1
)
.

1Note that the uniformity assumption is mild and can be avoided by combining Theorem 1 with Egoroff’s
theorem with additional effort, as in [ŞSDE20].

2The binary entropy hb(κ) (in nats) is defined as −κ log(κ)− (1− κ) log(1− κ) for κ ∈ [0, 1], with the
convention hb(0) = hb(1) = 0. Note that 0 ≤ hb(κ) ≤ log(2).
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Figure 1: Mean estimated tail index (α̂) vs. η/b for each trained model. x-axes are log-scaled.

This result establishes a generalization bound such that, for a fixed relative compression error ε, if a
network is more compressible, i.e. if κ is smaller, then its corresponding compressed network has a
smaller generalization error bound, as the bound is scaled by the factor ≈√κ.

In our proof, we prove an intermediate result, inspired by [NTS15] and stated in the supplement,
which bounds the perturbation of the network output after compression. This guarantees that the risks
of the original and pruned networks can be made arbitrarily close, as long as the relative compression
error is small enough.

To have a better understanding of the constants in Theorem 4, in the next result, we consider a special
case where the weights follow a stable distribution, and we make the above bound more explicit.

Corollary 1. Assume that for l ∈ J1, LK and i ∈ J1, dlK, the conditional distribution of wl,i
i.i.d.∼

SαlS(σl) with αl ∈ (1, 2). Further, assume that the scale parameters satisfy the following property:

σ2 :=
∑L

l=1
(dl/d)(σl/σαl)

2 =
[
(4−1/α

√
L/3)σ0d

−(1/2+1/α)
]2
, (9)

where σαl := (2Γ(−αl) cos((2− αl)π/2))
1/αl , α:= minl αl, and σ0 is a constant, and also {αl}Ll=1

and σ are independent from S. Then, for every ε > 0 and κl ∈ (0, 1), l ∈ J1, LK, there exists dl,0 ∈ N,
such that for dl ≥ dl,0, n : n/ log(n) ≥ 10L, and every τ > 0, with probability at least 1−3d−α/(2L),

R0(ŵ) ≤ R̂γ(w) +
(
aσL0 /τ + 1

)√
(κ+ εκ)d log(n)/n, (10)

where {ŵl}l = {w(κldl)
l }l, γ := τ + bεσ

L
0

√
d/τ , a := 6

√
2B2LL3/2, and bε :=√

2B
(
(1 + ε)L − 1

)
.

To simplify our presentation, we have set the ‘scale’ of the distribution as a decreasing function of
dimension, which intuitively states that the typical magnitude of each entry of the network will get
smaller as the network grows. We observe that for a fixed ε and d, the bound improves as pruning
ratio, 1− κ, increases. This result is of interest in particular since it is observed experimentally (and
in part, theoretically) that heavier-tailed weights are more compressible, and hence due to this result
have better generalization bounds. This provides an alternative perspective to the recent bounds that
aim at linking heavy tails to generalization through a geometric approach [ŞSDE20].

Finally, in the supplement, we further show that the uncompressed network also inherits this good
generalization performance bound, which is consistent with the results of [HJTW21, KLG+21]: if a
network is more “compressible”, not only the generalization performance for the compressed network
but also for the original network improves. The generalization bound adapted to `p- compressibility
based strategies, discussed in the previous section, is highlighted in Section S2 of the supplement.

5 Experiments
In this section, we present experiments conducted with neural networks to investigate our theory. We
use three different model architectures: a fully connected network with 4 hidden layers (FCN4), a
fully connected network with 6 hidden layers (FCN6), and a convolutional neural network with 8
convolutional layers (CNN). Hidden layer widths were 2048 for both FCN models. All networks
include ReLU activation functions and none include batch normalization, dropout, residual blocks, or
any explicit regularization term in the loss function. Each model is trained on MNIST [LCB10] and
CIFAR10 [Kri09] datasets under various hyperparameter settings, using the default splits for training
and evaluation. The total number of parameters were approximately 14M for FCN4-MNIST, 19M for
FCN4-CIFAR10, 23M for FCN6-MNIST, 27M for FCN6-CIFAR10, and 9M for both CNN models.
All models were trained with SGD until convergence with constant learning rates and no momentum.
The convergence criteria comprised 100% training accuracy and a training negative log-likelihood
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less than 5× 10−5. The training hyperparameter settings include two batch-sizes (b = 50, 100) and
various learning rates (η) to generate a large range of η/b values. See the supplement for more details.

By invoking [GŞZ21, Corollary 11] which shows the ergodic average of heavy-tailed SGD it-
erates converges to a multivariate stable distribution, after convergence, we kept running SGD
for 1000 additional iterations to obtain the average of the parameters to be used in this estima-
tion. The tail index estimations were made by the estimator proposed in [MMO15, Corollary 2.4],
which has been used by other recent studies that estimate tail index in neural network parame-
ters [ŞSDE20, GŞZ21, ZFM+20]. The ergodic averaging does not change the tail index of the
parameters, and was employed to facilitate tail index estimation by enabling the utilization of the
aforementioned estimator. The rest of the experiments have been conducted without ergodic averag-
ing. We also observe that the results with/without ergodic averaging are virtually identical in both
tail index estimation tasks and pruning experiments. In all pruning methods, the parameters were
centered before pruning is conducted with the median value to conform with the tail index estimation.

Figure 2: Empirical distribution of a CNN layer trained
on MNIST. (Left) Overlaid histograms of a random par-
tition of the weights, showing an identical distribution.
(Right) Comparing the network weights to samples sim-
ulated i.i.d. from a symmetric α-stable distribution with
the same tail index α ≈ 1.95. y-axes are log-scaled.

Training hyperparameters and layer statis-
tics. We first verify that models trained with
higher learning rate to batch-size ratio (η/b) lead
to heavier-tailed parameters, replicating the re-
sults presented in [GŞZ21]. For each trained
model, we compute the mean of separately es-
timated tail indices for all layers, so that each
model is represented by a single value. This
averaging is a heuristic without a clear theoret-
ical meaning, and has been also used by recent
works in the literature [GŞZ21, MM19]. Results
presented in Figure 1 demonstrates that higher η/b leads to heavier tails (lower α̂).

Also of interest are the distribution of the resulting parameters from training. Figure 2 (left) demon-
strates a representative example of the parameters from an CNN layer trained on MNIST, where
two overlaid histograms representing empirical distributions of a random partition of the parameters
are almost identical. On the right in the same figure, this distribution is compared to a simulated
symmetric α-stable distribution that has the same tail index (≈ 1.95). The figure demonstrates that
the two distributions have similar qualitative properties.
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Figure 3: Estimated tail index (α̂) vs. pruning ratio (1− κ), relative compression error = 0.1, p = 2
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Figure 4: Relative test accuracy vs. pruning ratio for layer-wise magnitude pruning. Colors denote
mean estimated tail index (α̂).

Tail index and prunability. In this section we examine whether networks with heavier-tailed layers,
trained with higher η/b ratios, are more prunable and whether they generalize better. As a baseline
test, we first examine whether neural network layers which are heavier-tailed can be pruned more
given a fixed maximum relative compression error. Figure 3 demonstrates for an error of 0.1 that
this is indeed the case. We next test our hypothesis that posit models with heavy-tailed parameters to
be more prunable. Both the results pertaining to layer-wise magnitude pruning and singular value
pruning, demonstrated in Figures 4 and 5 show that this is indeed the case. Here, relative test accuracy
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Figure 5: Relative test accuracy vs. pruning ratio for singular value pruning. Colors denote mean
estimated tail index (α̂).

stands for test accuracy after pruning / unpruned test accuracy. The results show that models with
heavier-tailed parameters (shown with darker colors) are starkly more robust against pruning. Similar
results with global magnitude pruning can be seen in the supplement.

0.00 0.25 0.50 0.75 1.00
Pruning ratio (1 - )

0.25

0.50

0.75

1.00

Re
la

tiv
e 

te
st

 a
cc

ur
ac

y CNN, CIFAR10

0.00 0.25 0.50 0.75 1.00
Pruning ratio (1 - )

Re
la

tiv
e 

te
st

 a
cc

ur
ac

y CNN, MNIST

1.87
1.89
1.92
1.95
1.97
2.00

M
ea

n 
es

tim
at

ed
 ta

il 
in

de
x 

(
)

Figure 6: Relative test accuracy vs. prun-
ing ratio for structured pruning. Colors
denote mean estimated tail index (α̂).

For structured pruning, we prune 3×3 kernel parameters
in CNN models. The results (Figure 6) show a similar,
hypothesis conforming pattern. Results for FCNs, pre-
sented in the supplement, were underwhelming; perhaps
unsurprisingly as structured pruning is not as commonly
used in FCNs [O’N20]. More successful attempts could
be due to alternative scoring methods [SAM+20]; our
approach might require wider layers to conform with
theoretical conditions.

Tail index and generalization. Following our theoreti-
cal results, we examine whether the heavier-tailed networks lead to better generalization performance.
Consistent with our hypothesis, Figure 7 shows that models with the highest tail index have con-
sistently the worst test performances. The same conclusion applies to generalization performance
as training accuracy is 100% for all models. See supplementary material for additional experiment
results and discussion of the findings.
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Figure 7: Test accuracy vs. mean estimated tail index (α̂) for each model. Color: training η/b ratio.

6 Conclusion

We investigated the conditions under and the mechanism through which various pruning strategies
can be expected to work, and confirmed the relationship between pruning and generalization from our
theoretical approach. Future directions for research include formally identifying settings in which
HML condition holds, eliciting the relationship between α̂ and κmore clearly, and further examination
of structured pruning in FCNs. Extending our work to other pruning strategies and network structures
is also another important future direction. For example, it has recently been observed that gradients
also exhibit heavy-tailed behavior [ŞGN+19, ZKV+20, ZFM+20]; we suspect that our theory might
be applicable in the case of gradient-based pruning as well. The extension of our analyses to other
network structures such as recurrent layers or ResNet blocks [HZRS15] would also be valuable.
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Heavy Tails in SGD and Compressibility of Overparametrized
Neural Networks

SUPPLEMENTARY DOCUMENT

This document provides the supplementary material associated with the NeurIPS 2021 paper entitled
“Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks”. We organize the
document as follows:

• Section S1 describes the experimental setup used in our simulations, together with some
additional experiment results and discussion.

• In Section S2, a generalization bound for an uncompressed network, given that this network
is compressible, is presented.

• Section S3 provides an upper-bound on the change in the network output when there is a
small change in the network weights.

• In Section S4, the relation between compressibility and the tail index is discussed.

• Proofs of the main results of the paper are presented in Section S5.

• Finally, the technical lemmas are proved in Section S6.

S1 Details of the Experiments and Additional Results

Here we provide a more detailed explanation for our experimental setting, as well as the results and
discussion we omitted from the main paper due to space restrictions.

S1.1 Datasets

The experiments were conducted in a supervised learning setting where the task is classification of
images. Each model is trained on CIFAR10 [Kri09] and MNIST [LCB10] datasets. The MNIST is an
image classification dataset where the data is comprised of 28×28 black and white handwritten digits,
belonging to one class from 0 to 9. We use the traditional split defined in the dataset where there
are 60000 training and 10000 test samples. CIFAR10 is also image classification dataset comprising
32 × 32 color images of objects or animals, making up 10 classes. There are 50000 training and
10000 test images, this is the split that we use in the experiments.

S1.2 Models

As described in the main text, in our experiments we use three models: a fully connected network with
4 hidden layers (FCN4), a fully connected network with 6 hidden layers (FCN6), and a convolutional
neural network (CNN). Hidden layer widths are 2048 for the two FCN models. All networks include
ReLU activation functions and none of them include batch normalization, dropout, residual layers,
or any explicit regularization term in the loss function. The convolutional architecture for the CNN
model for the CIFAR10 dataset progresses as below:

64,M, 128,M, 256, 256,M, 512, 512,M, 512, 512,M,

where integers stand for 2-dimensional convolutional layers (and the corresponding number of filters)
with a kernel size of 3 × 3, and M stands for 2 × 2 max-pooling with a stride of 2. Our CNN
architecture follows that of VGG11 model [SZ15] except after the layers presented above we have
only a single linear layer with a softmax output. For the MNIST experiment the first max-pooling
layer was omitted as the dimensions of the MNIST images disallow the previous structure to be used.
Table 1 includes the number of parameters for each model-dataset combination.

S1.3 Training and hyperparameters

All models were trained with SGD until 100% training accuracy and a training negative log-likelihood
less than 5 × 10−5 is acquired, with constant learning rates and no momentum. The training
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FCN4 FCN6 CNN
CIFAR10 18,894,848 27,283,456 9,222,848
MNIST 14,209,024 22,597,632 9,221,696

Table 1: Parameter counts for all model-dataset combinations.

hyperparameters include two batch-sizes (b = 50, 100) and a variety of learning rates (η) to generate
a large range of η/b values. See the table below for the range of η/b values created for each
experiment setting. The ranges vary somewhat since different η/b values might lead to heavy-tailed
behavior (or divergence) under different settings. Table 2 presents these ranges for all experiments.
See the source code for all experiment settings that were presented in the main results.

FCN4 FCN6 CNN
CIFAR10 5× 10−5 to 2.7× 10−3 2.5× 10−5 to 4× 10−3 1× 10−5 to 1.5× 10−3

MNIST 5× 10−5 to 1.14× 10−2 5× 10−5 to 8.8× 10−3 1× 10−5 to 6.35× 10−3

Table 2: η/b ranges for all experiments.

S1.4 Tail index estimation

We use the following multivariate tail index estimator proposed by [MMO15].
Theorem S5 ([MMO15, Corollary 2.4]). Let {Xi}Ki=1 be a collection of i.i.d. random vectors
where each Xi is multivariate strictly stable with tail index α, and K = K1 × K2. Define Yi ,∑K1

j=1Xj+(i−1)K1
for i ∈ J1,K2K. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑

i=1

log ‖Yi‖ −
1

K

K∑

i=1

log ‖Xi‖
)
. (S1)

converges to 1/α almost surely, as K2 →∞.

This estimator has been used in previous research such as [ŞGN+19] and [TNT18]. We center the
observations using the median values before the estimation. Using the alternative univariate tail index
estimator [MMO15, Corollary 2.2] in the same paper has no qualitative effects on our results, an
additional benefit of our choice is additional analyses it makes possible as presented in Section S1.6.2.
Comparisons with alternative tail index estimators with symmetric α-stable assumption revealed no
dramatic differences between various estimators [SU20].

S1.5 Pruning details

We first provide a review of the pruning methods we use. All three notions of pruning in our
experiments correspond to the magnitude-wise ordering of certain parameters and the ‘pruning’ of
a certain ratio of parameters that correspond to smallest magnitudes3. When the parameters that
are pruned are the weight parameters themselves, this corresponds to magnitude-based pruning
or magnitude pruning as known in the literature, which can be conducted layer-wise or globally
[BOFG20]. Singular value pruning, as described here, corresponds to pruning of the smallest singular
values (and, by implication, the related singular vectors) in the SVD of specific layers. To apply
the SVD to CNN layers, we reshape the parameter tensors into matrices of shape (# channels) × (#
filters ×3× 3). Lastly node pruning corresponds to the pruning of the whole columns in the weight
matrices. Again, CNN counterpart of node pruning is open to interpretation; we choose to prune
specific kernels according to the their norms.

Before any pruning is done, the parameters to be pruned are centered with the estimated median of the
observations, in order to conform with our tail index estimation methodology. We chose median due

3Note that a more relaxed definition of pruning would be ‘systematic removal of model parameters’ to allow
for different scoring methods in pruning [BOFG20]. However, we proceed with our specific definition since this
allows us to communicate our theoretical and experimental results more concisely.
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to its robustness against extreme observations especially with a small sample - however our results
were qualitatively unchanged when the mean was used in the centering. After the pruning (in all three
methods), the median was added to the pruned parameter vectors before testing the performance of
the resulting model. Note that the median (or mean) was usually very small in norm and omitting
centering made no qualitative effect on the results.

Lastly, while ‘remaining parameter ratio’ (κ) or ‘pruning ratio’ (1− κ) are easy to interpret in the
case of magnitude pruning or node pruning, in SVD κ would equal (number of singular value and
vector parameters left) / (number of weight parameters in the layer), and pruning ratio would be
determined accordingly.

S1.6 Additional results and discussion

Here we present additional results and discussion that were referenced in the main text but were not
presented due to space restrictions.

S1.6.1 Causal interpretation of the relationships in question

An appropriate question regarding our theoretical and experimental findings would be: Is a causal
interpretation of the hypothesized relations warranted? Although the relationship among training
hyperparameters, parameter tail index, compressibility, and generalization is inevitably multifaceted,
we believe that there are grounds to interpret the relations causally in this context.

To be more specific, [GŞZ21, Theorem 4, Proposition 5] shows that the tail index is fully determined
by η, b, and the Hessian of the problem in the context of quadratic optimization: the tail index changes
monotonically with respect to both η and b. In this paper we establish the relationship empirically
in the context of neural networks, replicating the results presented in [GŞZ21]. We also show that
the existence of heavy-tailed network parameters leads to compressibility (Theorems 1, 2, and 3),
and thus to arbitrarily small perturbation in the network outputs when pruned (Lemma S1). We
also demonstrate that the more compressible the network is, the smaller its generalization bound is
(Theorem 4).

Using a different, geometric framework, [ŞSDE20, Appendix S1.2] (arxiv:2006.09313) experimen-
tally demonstrated that a lower tail index leads to a better generalization, where they directly varied
the tail index and monitored the generalization error, as the reviewer requested. Given these results
and our experimental findings, we believe that a causal interpretation of the relationships in question
is not without support.

Investigation of tail index and prunability with synthetic data. Experimental manipulation of
tail index directly in the case of neural networks trained with real data is hard to formulate and conduct.
However, to examine this issue further, we conducted a number of experiments with synthetic data.

In this setting, we created neural networks that were structural analogues of FCN6 networks presented
in the original experiments, that is, feedforward neural networks of 6 hidden layers and a width of
2048 units for each hidden layer, with ReLU activation functions after each hidden layer. For the
experiments, for each αi ∈ {1.50, 1.55, 1.60, . . . , 2.00}, we randomly sampled the parameters of
these networks independently from a SαS distribution with an αi tail index parameter. After the
sampling of the layer parameters, each layer was converted to a unit length vector, in order to avoid
the possibly confounding effects of scale between different tail indices. This procedure excluded the
much smaller final layer, which was sampled as in the initialization of the original experiments.

We also created random data for these experiments, in the shape of the MNIST training data, sampled
independently from a standard normal distribution. For each network, the labels for these data were
created by passing the synthetic data through the synthetic network and choosing the label with the
maximum final value. Then, for each network created, we conducted layer-wise magnitude pruning
for different values of κ, and evaluated the performance of the pruned versions of the networks with
their original performances. This was repeated 10 times, and Figure ?? presents the mean of these
accuracy values for each tail index (α) and pruning ratio (1− κ) combination.

The results confirm our hypothesis: networks with lower tail indices are more prunable, that is, more
robust to pruning in terms of performance. This replicates the conclusion of the original experiments,
where a similar conclusion was reached with networks trained on real data. We leave the extension of
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these experiments for different data generation schemes, layer structures, and pruning types to future
work.

S1.6.2 Investigating the HML condition in synthetic experiments

Recall that in Figure 3 we examined, for a given relative compression error, whether lower tail index
is associated with higher prunability. The results demonstrated that this was indeed the case. Here we
compare our empirical results with some synthetic results to get additional insights regarding whether
HML condition is actually observed in our networks.

For this experiment, we randomly sample tail indices αi ∼ U(1.75, 2), where i ∈ {1, . . . , 250}.
Then for each αi, we sample three different ‘weight matrices’: Wind,i,Wcol,i,Wlay,i ∈ R500×500.
The elements of Wind,i are sampled independently from a SαS with tail index αi; this corresponds
to the case where weight parameters are statistically independent as prescribed by the HML condition.
On the other hand, columns of the Wcol,i are independently sampled from a 500-dimensional
multivariate elliptically contoured SαS with tail index αi. A d-dimensional elliptically contoured
multivariate SαS has the characteristic function

E[exp(i〈ω,X〉)] = exp(−‖ω‖α),

where X,ω ∈ Rd and 〈·, ·〉 stands for inner product. This means that while the columns of the matrix
are independent, column elements can be correlated. Lastly, all elements of Wlay,i are sampled
from a (500× 500)-dimensional elliptically contoured multivariate SαS, creating a case where all
elements of the matrix can be correlated. We repeat the analysis presented in Figure 3 for all three
sets of sampled synthetic layer weights, and present the results in Figure S1.
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Figure S1: Tail index (α) vs. pruning ratio (1 − κ), with relative compression error = 0.1, for
synthetically generated weight matrices.

The results demonstrate two interesting phenomena. First, a comparison of these results with Figure 3
shows that our empirical results show the most similarity with results obtained with Wind,i, showing
support for the existence of the HML condition. Another observation is that as the layer parameters
become correlated, the prunability advantage conferred by heavier tails disappears. This observation
both supports the existence of HML condition in overparametrized neural networks and invites
further discussion on the importance of propagation of chaos phenomenon in such architectures for
compressibility and generalization [DBDFŞ20].

S1.6.3 Global magnitude pruning and node pruning results

In Figure S2 present the global magnitude pruning results for magnitude pruning. The results are
qualitatively very similar to those of the layer-wise magnitude pruning. Figure S3 presents the results
of node pruning on FCNs. As mentioned in the main text, the less impressive results might have
to do with the layer widths not being sufficient for our theoretical conditions. A more favorable
approach to structured pruning in FCNs would factor in the fact that removal of columns from a layer
is also equivalent to the removal of corresponding rows from the previous layer. When computing
the pruning ratio, factoring in these corresponding rows would produce more benevolent results.
However, we have not done this in our experiments since this is not necessarily implied by our theory.

S1.7 Hardware and other resources

The experiments were conducted on an internal server of a research institute. Nvidia Titan X, 1080
Ti, and 1080 model GPU’s were used roughly equally in running the experiments. Our published
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Figure S2: Relative test accuracy vs. pruning ratio for global magnitude pruning. Color: mean α̂.
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Figure S3: Relative test accuracy vs. pruning ratio for node pruning in FCNs. Color: mean α̂.

results involve 215 trained models, each of which included GPU-heavy workload, with an average
completion time of approximately 2 hours. Around 30 models diverged (thus were not used in the
results) and in most cases were trained for less than an hour. Total GPU-time could correspondingly
be estimated to equal 460 hours. We also conducted tail index estimation and pruning experiments
on these networks, however the computational load of these experiments are negligible compared to
those of the training of the algorithms, with an estimated CPU time of 48 hours for all estimation and
pruning tasks that were published.

As can be seen in the accompanying code, the experiments were conducted using Python programming
language. The deep learning framework PyTorch [PGM+19] as well as some of its tutorials4 were
used in implementing the experiments.

S2 Generalization bound for the uncompressed network

In this section, in the continuation of Section 4, we establish a generalization bound for an uncom-
pressed network, if this network is compressible using the layer-wise magnitude pruning strategy.

Theorem S6. Assume H1 holds. Then for n : n/ log(n) ≥ max(9L, 81ε−2κ), {dl}Ll=1 : dl ≥ dl,0
and d ≥ 10, and any δ, τ > 0, with probability at least 1− 2e−d/2 − δ − ε,

R0(w) ≤ R̂τ (w) + max
(

2, 24ρε(κ, d)L(τ, δ)R(δ)/
√
d
)√

d log(n)/n. (S2)

where R(δ) and L(τ, δ) are defined in (7), κ := 1
d

∑L
l=1dκldle,

ρε(κ, d) := min
(
ε1−κ exp

(
hb(κ) + h

(1)
b (κ, d)

)
, 1
)
≤ min

(
3ε1−κ, 1

)
,

h
(1)
b (κ, d) :=

dd/2e
d

max(hb(dκd/2e/dd/2e), hb(bκd/2c/dd/2e)).

Note that the function h
(1)
b (κ, d) ≤ log(2)(1/2 + 1/d). Hence ε1−κehb(κ)+h

(1)
b (κ,d) ≤

ε1−κelog(2)(3/2+1/d) ≤ 3ε1−κ, for d ≥ 12. Besides, ρε(1, d) = 1 and ρε(0, d) = ε. Moreover, when
both d and κd are even numbers, then h(1)

b (κ, d) = 1
2hb(κ) and ρε(κ) := ρε(κ, d) is increasing with

respect to κ. To show the latter claim, consider the derivative of g(κ) := ε1−κ exp
(

3
2hb(κ)

)
with

respect to κ. This derivative is equal to zero at κ∗ = 1/
(
1 + ε2/3

)
and is positive for κ < κ∗. In

addition, g(κ∗) =
(
1 + ε2/3

)3/2
> 1. Hence, ρε(κ) = min(g(κ), 1) is increasing with respect to

κ. In Figure S4, ρε(κ) = min
(
ε1−κ exp

(
3
2hb(κ)

)
, 1
)
, together with its upper bound min

(
3ε1−κ, 1

)
are plotted for different values of ε.

4HTTPS://GITHUB.COM/PYTORCH/VISION/BLOB/MASTER/TORCHVISION/MODELS/VGG.PY
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Figure S4: ρε(κ) for different values of ε.

It can be observed that if a network is more compressible, then not only the compressed network,
but also the original network has a better generalization bound. This result is consistent with the
findings of [HJTW21, KLG+21]. In [HJTW21], it is shown that if two networks are “close” enough,
a good generalization bound on one of them, would imply a good bound on the other one as well. In
[KLG+21], it is shown that “prunability” of a network captures well the generalization property of
the network.

Finally, it should be noted that when the weights of the network follow a stable distribution, similar
results to Corollary 1 can be established for the original network.

S3 Perturbation Bound

The goal of pruning is to find compressed weights ŵ with low dimensionality that are close enough
to the original weights w, which is measured in this work by the relative error ‖ŵ −w‖/‖w‖. The
following perturbation result guarantees that such pruning strategies also result in small perturbations
on the output of the network. The proof is based on the technique given in [NBS18].
Lemma S1. Let w, ŵ ∈ Rd be two fully connected neural networks. Assume that there exists
{εl}Ll=1 : εl ≥ 0, such that ‖ŵl −wl‖ ≤ εl‖wl‖, for all l ∈ J1, LK. Then, the following inequality
holds:

‖fŵ(x)− fw(x)‖ ≤ B
[∏L

l=1
(1 + εl)− 1

][∏L

l=1
‖wl‖

]
, (S3)

for all x ∈ XB . In particular, if εl = ε for all layers and ‖w‖ ≤ R, then

‖fŵ(x)− fw(x)‖ ≤ B
[
(1 + ε)

L − 1
](
R/
√
L
)L
. (S4)

For derivation of the above bound on the network outputs, the worst case in the propagation of the
errors of each layer is assumed, which results into an exponential dependence on the depth of the
network, similarly to [NBS18].

S4 Compression rate and tail index

In this work, different pruning strategies have been investigated by exploiting the compressibility
properties of heavy-tailed distributions. In this section, we show that moreover, in some certain sense,
heavier-tailed distributions are more compressible. However, we must underline that this result is
neither comprehensive, nor directly usable in our framework, as we will discuss after stating it.

Before stating the result, let us define the following quantity. For ε > 0 and w ∈ Rd, let

κp(w, ε) := min
{
κ :
(
‖w(κd) −w‖p/‖w‖p

)
≤ ε
}
. (S5)

Proposition S1. Suppose that w1 ∈ Rd and w2 ∈ Rd are independent vectors of i.i.d. heavy-tailed
random variables with tail indices α1 and α2, respectively. If α1 > α2, then for any κ, ε, δ > 0 and
p < max(α1, α2), there exists d0(δ), such that for d ≥ d0(δ),

E
[
‖w(κd)

1 −w1‖p/‖w1‖p
]

+ δ > E
[
‖w(κd)

2 −w2‖p/‖w2‖p
]
, (S6)
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Figure S5: Histogram of |x| for a sequence of i.i.d. random variables distributed according to SαS(1),
where α = 1.7.

and

E[κp(w1, ε)] + δ > E[κp(w2, ε)]. (S7)

The above proposition shows that for a fixed p-norm of the normalized compression error with p < α,
the heavier-tailed distributions are more compressible. The caveat here is that for p ≥ max(α1, α2),
all terms in (S6) and (S7) go to zero due to Lemma S2 and hence (S6) and (S7) trivially hold.
Therefore, unfortunately we cannot use Proposition S1 in our framework since we are mainly
interested in the case where p ≥ max(α1, α2). Investigating the level of compressibility as a function
of the tail index is a natural next step for our study.

S5 Proofs of the Main Results

In this section we provide proofs of our main results. We shall begin with stating the following result
from [GCD12], which will be repeatedly used in our proofs.

S5.1 Existing Theoretical Results

Many of our results are based on the compressibility of i.i.d. instances of heavy-tailed random
variables. Here, we state a known result regarding this fact.

Lemma S2 ([GCD12, Proposition 1, Part 2] ). Let x ∈ R be a random variable and assume that
E|x|α = ∞ for some α ∈ R+. Then for all p ≥ α, 0 < κ ≤ 1 and any sequence κd such that
limd→∞

κd
d = κ, the following identity holds almost surely:

lim
d→∞

(
‖x(κd) − x‖p/‖x‖p

)
= 0, (S8)

where x = (x1, . . . , xd) is a vector of i.i.d. random variables of length d.

A similar result was concurrently proven in [AUM11]. As stated before, this result informally states
that for a large vector of i.i.d. heavy-tailed random variables, the norm of the vector is mainly
determined by a small fraction of its entries. To show this visually, we have generated 104 i.i.d.
random variables {xi}i with SαS(1) distribution where α = 1.7. Then, we have plotted the
histogram of |x| in Figure S5. As can be seen in the figure, the norm of the whole vector is mainly
determined by few number of samples.

S5.2 Proof of Theorem 1

Proof. (i) As {dl}Ll=1 grow, due to HML condition and assumptions of this part of the theorem, w
converges in distribution to a heavy-tailed random vector, denoted as x = (x1, . . . , xd) ∈ Rd,
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with i.i.d. elements and tail index α ∈ (0, 2). Hence, for any ε > 0, ε > 0, κ ∈ (0, 1), and
p ≥ α there exists {d′l,0}Ll=1 : d′l,0 ∈ N such that for dl ≥ d′l,0, l ∈ J1, LK,

P
[(
‖x(κd) − x‖p/‖x‖p

)
≤ ε
]
− P

[(
‖w(κd) −w‖p/‖w‖p

)
≤ ε
]
≤ ε. (S9)

Moreover due to Lemma S2, there exists d′′0 ∈ N such that for d ≥ d′′0 ,

P
[(
‖x(κd) − x‖p/‖x‖p

)
≤ ε
]

= 1 (S10)

The results follows from (S9) and (S10) and by choosing dl,0 ≥ d′l,0, for l ∈ J1, LK, such that∑L
l=1 dl,0 ≥ d′′0 .

(ii) The proof is similar to the previous part. As {dl}Ll=1 grow, due to HML condition, for
l ∈ J1, LK, wl converges in distribution to a heavy-tailed random vector, denoted as xl =
(xl,1, . . . , xl,dl) ∈ Rdl , with i.i.d. elements and tail index αl ∈ (0, 2). Hence, for any ε > 0,
{εl}Ll=1 : εl > 0, {κl}Ll=1 : κl ∈ (0, 1), and p ≥ maxl αl there exists {d′l,0}Ll=1 : d′l,0 ∈ N such
that for dl ≥ d′l,0, l ∈ J1, LK,

P
[(
‖x(κldl)

l − xl‖p/‖xl‖p
)
≤ εl

]
− P

[(
‖w(κldl)

l −wl‖p/‖wl‖p
)
≤ εl

]
≤ ε. (S11)

Moreover due to Lemma S2, there exists {d′′l,0}Ll=1 : d′′l,0 ∈ N such that for dl ≥ d′′l,0,

P
[(
‖x(κldl)

l − xl‖p/‖xl‖p
)
≤ εl

]
= 1 (S12)

The results follows from (S12) and (S11) and by choosing dl,0 ≥ max(d′l,0, d
′′
l,0).

S5.3 Proof of Theorem 2

Proof. Fix l ∈ J2, L− 1K and recall that Wl ∈ Rhl×hl−1 with dl = hl × hl−1. Define

Xl :=
1

h
2/αl
l

W>
l Wl (S13)

and denote the eigenvalues of Xl by λl = [λl,1, . . . , λl,hl−1
].

Let Ul ∈ Rhl×hl−1 be a matrix whose entries are independent and identically distributed from a
symmetric stable distribution with tail index αl. Note that Wl converges in distribution to Ul, as
network dimension goes to infinity, due to HML condition and the assumptions of the theorem.
Similarly, define

X′l :=
1

h
2/αl
l

U>l Ul (S14)

and denote the eigenvalues of X′l by λ′l = [λ′l,1, . . . , λ
′
l,hl−1

].

As Wl converges in distribution to Ul, then λl,k also weakly converges to λ′l,k, due to Weyl’s
inequality ([Bha97, Page 63]). Hence, for any ε > 0, {εl}L−1

l=2 : εl > 0, and {κl}L−1
l=2 : κl ∈ (0, 1),

there exists {ĥl,0}L−1
l=1 , such that for every l ∈ J2, L − 1K, and hi ≥ ĥi,0 for all i ∈ J1, lK, the

following holds
∣∣∣∣∣P
[
‖λ(κihi−1)

i − λi‖p
‖λi‖p

≤ ε2
i

]
− P

[
‖λ
′(κihi−1)
i − λ′i‖p
‖λ′i‖p

≤ ε2
i

]∣∣∣∣∣ ≤
ε

2
. (S15)

Moreover, since each [U]i,j is independent and identically distributed from a symmetric stable
distribution with tail index αl, by [TTR+20, Theorem 2.7], as hl → ∞, for each k = 1, . . . , hl−1,
the eigenvalue λ′l,k weakly converges to a random variable ξl,k, where the collection {ξl,k}hl−1

k=1

is independent and identically distributed from a positive stable distribution with tail index αl/2.
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Denote by ξl := [ξl,1, . . . , ξl,hl−1
] ∈ Rhl−1 the random vector containing the limiting i.i.d. random

variables.

We will now construct a sequence of {hl,0}L−1
l=1 such that the claims will follow for hl ≥ hl,0. Let

us start from the second layer, i.e., set l = 2. Then, by Lemma S2, for any ε2 > 0, κ2 ∈ (0, 1), and
p ≥ α2/2, there exists h′1,0 ∈ N+, such that h1 ≥ h′1,0 implies:

P

[
‖ξ(κ2h1)

2 − ξ2‖p
‖ξ2‖p

≤ ε2
2

]
= 1. (S16)

Let h1,0 = h′1,0 ∨ ĥ1,0. Having fixed h1 ≥ h1,0, we now iterate the following argument from l = 2
to l = L− 1 sequentially. Due to the weak convergence of the eigenvalues, we have:

lim
hl→∞

P

[
‖λ
′(κlhl−1)
l − λ′l‖p
‖λ′l‖p

≤ ε2
l

]
= P

[
‖ξ(κlhl−1)
l − ξl‖p
‖ξl‖p

≤ ε2
l

]
(S17)

= 1. (S18)

Hence, combining with (S15), for any ε > 0, there exists h′′l,0 ∈ N+, such that hl ≥ h′′l,0 ∨ ĥl,0
implies

P

[
‖λ(κlhl−1)

l − λl‖p
‖λl‖p

≤ ε2
l

]
≥ 1− ε. (S19)

If l = L− 1, set hl,0 = h′′l,0 ∨ ĥl ∨ hl−1. If l ≤ L− 2, repeat the previous argument to find a h′l,0,
such that hl ≥ h′l,0 implies

P

[
‖ξ(κl+1hl)
l+1 − ξl+1‖p
‖ξl+1‖p

≤ ε2
l+1

]
= 1, (S20)

and set hl,0 = h′l,0 ∨ h′′l,0 ∨ ĥl,0 ∨ hl−1. This proves the first claim.

To prove the second claim, first notice that we can set p = 1 as maxl αl < 2, hence p = 1 ≥ αl/2 for
all l. Now, fix l ∈ J2, L− 1K, and for a given hl−1 and hl, consider the singular value decomposition
of Wl as:

Wl = UΣV>, (S21)

and define W
[κlhl−1]
l := UΣ(κlhl−1)V>, where Σ(κlhl−1) is the diagonal matrix whose diagonal

entries contain the dκlhl−1e largest singular values (i.e., prune the diagonal part of Σ). By using
(S19) and the fact that the Schatten 2-norm coincides with the Frobenius norm, we have:

‖Wl‖2 = h
1/αl
l ‖λl‖1, and ‖W[κlhl−1]

l −Wl‖2 = h
1/αl
l ‖λ(κlhl−1)

l − λl‖1. (S22)

Hence, we conclude that for hl ≥ hl,0, the following inequality holds for l ∈ J2, L− 1K:

P

[
‖W[κlhl−1]

l −Wl‖
‖Wl‖

≤ εl
]
≥ 1− ε. (S23)

This concludes the proof.

S5.4 Proof of Theorem 3

Proof. For l ∈ J2, LK, let vl,i = ‖Wl(i)‖p, where Wl(i) ∈ Rhl is the i-th column of Wl ∈
Rhl×hl−1 for i ∈ J1, hl−1K. Note that by definition, for any κl ∈ (0, 1)

‖vl‖p = ‖wl‖p, and ‖v(κlhl−1)
l − vl‖p = ‖w{κlhl−1},p

l −wl‖p.
Hence, it suffices to show that for any ε > 0 and εl > 0, there exists hl−1,0 such that for hl−1 ≥
hl−1,0,

P
[(
‖v(κlhl−1)

l − vl‖p
)
/‖vl‖p ≤ εl

]
≥ 1− ε. (S24)
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As network dimensions grow, due to HML condition, wl,j , j ∈ J1, dlK converges in distribution to an
i.i.d. heavy-tailed random variable with tail index αl. Hence, as {hl−1}Ll=2 grows, vl,i also converges
in distribution to a heavy-tailed random variable, denoted as xl = (xl,1, . . . , xl,hl−1

) ∈ Rhl−1 , with
i.i.d. elements and tail index αl ∈ (0, 2). Thus, there exists {h′l−1,0}Ll=2 : h′l−1,0 ∈ N such that for
hl−1 ≥ h′l−1,0, l ∈ J2, LK,

P
[(
‖x(κlhl−1)

l − xl‖p/‖xl‖p
)
≤ εl

]
− P

[(
‖v(κlhl−1)

l − vl‖p/‖vl‖p
)
≤ εl

]
≤ ε. (S25)

Moreover due to Lemma S2, there exists {h′′l−1,0}Ll=2 : h′′l−1,0 ∈ N such that for hl−1 ≥ h′′l−1,0,

P
[(
‖x(κlhl−1)

l − xl‖p/‖xl‖p
)
≤ εl

]
= 1 (S26)

The results follows from (S12) and (S11) and by choosing hl−1,0 ≥ max(h′l−1,0, h
′′
l−1,0).

S5.5 Proof of Theorem 4

Let

D(y, fw(x)) := fw(x)[y]−max
j 6=y

fw(x)[j].

Define the surrogate loss function `γ,τ : Y × Y 7→ [0, 1], with margin loss γ ≥ 0 and continuity
margin τ > 0, for the multiclass classifier fw as:

`γ,τ (y, fw(x)) :=





1, if D(y, fw(x)) ≤ γ,
1− D(y,fw(x))−γ

τ , if γ < D(y, fw(x)) ≤ γ + τ,

0, if γ + τ < D(y, fw(x)).

(S27)

Note that `γ(y, fw(x)) = `γ,0(y, fw(x)). Population and empirical risks of a hypothesis w are
denoted byRγ,τ (w) and R̂γ,τ (w), respectively.

Proof. Recall that for all l ∈ J1, LK, ŵl := w
(κldl)
l . Denote by A the event that w is compressible,

i.e. when for all l ∈ J1, LK, ‖ŵl − wl‖ ≤ ε‖wl‖. Denote its complement by AC and note that
P(AC) ≤ ε, where the probability is with respect to PS,w.

Fix δ, τ > 0. We show that with probability of at least 1− 2e−κd/2 − δ − ε:

R0,τ (ŵ) ≤ R̂0,τ (ŵ) +
(

12L(τ, δ)R(δ) +
√
d
)√ (κ+ εκ)d log(n)

n
, (S28)

and moreover ‖w‖ ≤ R(δ) and ‖ŵl −wl‖ ≤ ε‖wl‖ for all l ∈ J1, LK, simultaneously. Then, under
the latter two conditions,

R0(ŵ) ≤ R0,τ (ŵ),

R̂0,τ (ŵ) ≤ R̂γ(δ,τ)(w),

using Lemma S1, Definition S27, and Lemma S3 that bounds the Lipschitz coefficient of the network.
This completes the proof.

Lemma S3. Suppose that for l ∈ J1, LK and a given υl > 0, we have ‖wl −w′l‖ ≤ υl.

i. Then, for any (x, y), the following relations hold:

‖fw(x)− fw′(x)‖ ≤ B
L∏

l=1

(‖wl‖+ υl)−B
L∏

l=1

‖wl‖,

∣∣`0,τ (y, fw(x))− `0,τ (y, fw′(x))
∣∣ ≤
√

2

τ
‖fw(x)− fw′(x)‖.
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ii. In particular, if υl = υ ≤ R/
√
L for l ∈ J1, LK and if ‖w‖ ≤ R, then

‖fw(x)− fw′(x)‖ ≤ BL
(

2R√
L

)L−1

υ,

∣∣`0,τ (y, fw(x))− `0,τ (y, fw′(x))
∣∣ ≤ BL

√
2

τ

(
2R√
L

)L−1

υ =: L(τ, δ)υ.

Hence, it remains to show (S28) together with the conditions ‖w‖ ≤ R(δ) and ‖ŵl −wl‖ ≤ ε‖wl‖,
for l ∈ J1, LK, hold with probability at least 1− 2e−κd − δ − ε. Now, first whenever ‖ŵ‖ ≤ R(δ),
we discretize ŵ. Let

Ŵ(R(δ), d, κ) :=
{
ŵ ∈ Rd

∣∣‖ŵ‖ ≤ R(δ), ‖ŵ‖0 ≤ κd
}
,

where ‖ŵ‖0 denotes the number of non-zero components of ŵ. Assume that W̃(R(δ), d, κ) is a
discretization of this space with υ > 0 precision, i.e. for every ŵ ∈ Ŵ(R(δ), d, κ), there exists
w̃ ∈ W̃(R(δ), d, κ) satisfying ‖w̃ − ŵ‖ ≤ υ. Among all such coverings, consider the one with
minimum number of Nυ points.

Lemma S4. Nυ ≤ edhb(κ)
(

3R(δ)
υ

)κd
.

Note that in general ‖ŵ‖ ≤ ‖w‖. Let l := c1(δ, τ)
√

(κ+εκ)d log(n)
n and υ = al

4L(τ,δ) , where

a := 12L(τ,δ)R(δ)

12L(τ,δ)R(δ)+
√
d

. Then

P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋃
‖w‖ > R(δ)

⋃
AC
)

≤ P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

)
+ P(‖w‖ ≥ R(δ)) + P

(
AC
)

≤ P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

)
+ δ + ε

≤ P

(
sup

ŵ∈Ŵ(R(δ),d,κ)

∣∣R0,τ (ŵ)− R̂0,τ (ŵ)
∣∣ ≥ l/2

)
+ δ + ε

(a)

≤ P

(
max

w̃∈W̃(R(δ),d,κ)

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣ ≥ l(1− a)/2

)
+ δ + ε

(b)

≤ Nυ max
w̃∈W̃(R(δ),d,κ)

P
(∣∣R0,τ (w̃)− R̂0,τ (w̃)

∣∣ ≥ l(1− a)/2
)

+ δ + ε

(c)

≤ 2Nυ exp
(
−nl2(1− a)2/2

)
+ δ + ε

(d)

≤ 2 exp

(
−nl2(1− a)2/2 + κd log

(
12L(τ, δ)R(δ)

al

)
+ dhb(κ)

)
+ δ + ε, (S29)

where (a) is derived since

∣∣R0,τ (ŵ)− R̂0,τ (ŵ)
∣∣ ≤

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣+ 2L(τ, δ)υ =

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣+ al/2.

by Lemma S3, given that υ ≤ R/
√
L, and the triangle inequality. The inequality (b) is obtained by

applying the union bound, (c) is derived using Hoeffding’s inequality and since loss is bounded by 1,
and (d) is due to Lemma S4.
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It remains to show that the term in the exponent in (S29) is upper bounded by−κd/2 and υ ≤ R/
√
L.

−nl2(1− a)2/2 + κd log

(
12L(τ, δ)R(δ)

al

)
+ dhb(κ) (S30)

=− c1(δ, τ)2(1− a)2κd log(n)

2
+
κd

2
log(n) (S31)

+ κd log

(
12L(τ, δ)R(δ)

ac1(δ, τ)
√
d

)
(S32)

− c1(δ, τ)2(1− a)2εκd log(n)

2
− κd

2
log(κ+ εκ) + dhb(κ) (S33)

− κd

2
log log(n). (S34)

It can be verified that (S31) and (S32) are non-positive when c1(δ, τ) ≥
(

12L(τ, δ)R(δ) +
√
d
)
/
√
d.

Moreover, with this choice of c1(δ, τ), (S33) is non-positive for εκ = (2hb(κ)− κ log(κ))/(log(n)).
Finally, (S33) is less than −κd/2, for n ≥ 16.

Finally with the chosen value of υ, υ ≤ R/
√
L holds if n/ log(n) ≥ 10L. This completes the

proof.

S5.6 Proof of Corollary 1

For notation convenience, let SαSn(σ) ≡ SαS(σασ), where n stands for normalized and σα :=

(2Γ(−α) cos((2− α)π/2))
1/α. First, we state the Corollary for a more general case, and then we

state the proof of this general result.

Corollary S2. Assume that for l ∈ J1, LK and i ∈ J1, dlK, the conditional distribution of wl,i
i.i.d.∼

SαlSn(σl) with αl ∈ (1, 2). Further assume that σ2 :=
∑L
l=1(dl/d)σ2

l and {αl}Ll=1 do not depend
on S. Then for every ε > 0, κl ∈ (0, 1), l ∈ J1, LK, and β > 0, there exists dl,0 ∈ N, such that for
every n : n/ log(n) ≥ 10L and τ > 0, with probability at least 1− 3d−β ,

R0(ŵ) ≤ R̂γ(w) +
(
a(α)σLd

L(α+2β+2)
2α /τ +

√
d
)√

(κ+ εκ) log(n)/n, (S35)

where {ŵl}l = {w(κdl)
l }l, α:= minl αl, a(α) := 6

√
2B6L4L/α/L(L−3)/2, γ := τ +

bε(α)σLd
L(α+2β+2)

2α /τ , and bε(α) :=
√

2B3L4L/α
(
(1 + ε)L − 1

)
/LL/2.

Proof. First, given any S, we bound the term RS(δ), defined as

RS(δ) := inf
{
R : P

(
‖w‖ ≥ R

∣∣S
)
≤ δ
}
. (S36)

Lemma S5. If for l ∈ J1, LK, xl is an i.i.d. dl-dimensional vector with with SαlSn(σl) distributions
and αl ∈ (1, 2), then for δ < 2d(2−maxl αl)

α

inf{R : P(‖x‖ ≥ R) ≤ δ} ≤ 3σ
√
d

(
4d

δ

)1/α

,

where σ :=
√∑L

l=1(dl/d)σ2
l and α := minl αl.

Hence, RS(δ) ≤ 3σ
√
d
(

4d
δ

)1/α
. Since σ, α, and maxl αl do not depend on S, then this bound is the

same for all S. Thus, for δ < 2d(2−maxl αl)
α,

R(δ) ≤ 3σ
√
d

(
4d

δ

)1/α

. (S37)

Next, due to Lemma S2, the assumption H 1 holds for any ε > 0 and {κl}Ll=1 : κl ∈ (0, 1) and some
{dl,0}Ll=1 : dl,0 ∈ N, with ε = 0. Note that dl,0 does not depend on S as {αl}Ll=1 is independent
of S. The proof follows now by Theorem 4 with δ = d−β and using the relation (S37) when
2dβ+1

0 (2−maxl αl)
α ≥ 1 and d0/ log(d0) ≥ β/κ.
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S5.7 Proof of Theorem S6

Proof. The proof of this theorem is similar to the proof of Theorem 4. Fix δ, τ > 0. We show that
with probability of at least 1− 2e−d/2 − δ − ε:

R0,τ (w) ≤ R̂0,τ (w) + max
(

2, 24ρε(κ, d)L(τ, δ)R(δ)/
√
d
)√

d log(n)/n, (S38)

whereR0,τ (·) and R̂0,τ (·) are defined in (S27). The claim follows then by noting that

R0(w) ≤ R0,τ (w),

R̂0,τ (w) ≤ R̂τ (w),

due to (S27).

Recall that for all l ∈ J1, LK, ŵl := w
(κldl)
l . Denote by A the event that w is compressible, i.e. when

for all l ∈ J1, LK, ‖ŵl −wl‖ ≤ ε‖wl‖. Denote its complement by AC and note that P(AC) ≤ ε,
where the probability is with respect to Pw.

In the following, first we discretize w whenever ‖w‖ ≤ R(δ). Let

W(R(δ), ε, d, κ) :=
{

w ∈ Rd
∣∣‖w‖ ≤ R(δ), ‖w(κd) −w‖ ≤ εR(δ)

}
.

Assume thatW ′(R(δ), ε, d, κ) is the discretization of this space with υ > 0 precision, i.e. for every
w ∈ W(R(δ), ε, d, κ), there exists w′ ∈ W ′(R(δ), ε, d, κ) satisfying ‖w′ −w‖ ≤ υ. Among all
such coverings, consider the one with minimum number of N ′υ points.

Lemma S6. For d ≥ 10, if υ < εR(δ), then N ′υ ≤
(

3ρε(κ,d)R
υ

)d
.

Similar to the proof of Theorem 4 and by letting l := c2(δ, τ, κ)
√

d log(n)
n and υ = al

4L(τ,δ) , where

a := 12ρε(κ,d)L(τ,δ)R(δ)

12ρε(κ,d)L(τ,δ)R(δ)+
√
d

,

P
(∣∣R0,τ (w)−R̂0,τ (w)

∣∣ ≥ l
)

≤ P
(∣∣R0,τ (w)− R̂0,τ (w)

∣∣ ≥ l
⋃
‖w‖ > R(δ)

⋃
AC
)

≤ P
(∣∣R0,τ (w)− R̂0,τ (w)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

⋂
A
)

+ δ + ε

≤ P

(
sup

w∈W(R(δ),ε,d,κ)

∣∣R0,τ (w)− R̂0,τ (w)
∣∣ ≥ l/2

)
+ δ + ε

(a)

≤ N ′υ max
w′∈W′(R(δ),ε,d,κ)

P
(∣∣R0,τ (w′)− R̂0,τ (w′)

∣∣ ≥ l(1− a)/2
)

+ δ + ε

(b)

≤ 2 exp

(
−nl

2(1− a)2

2
+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

al

))
+ δ + ε, (S39)

where (a) holds when υ ≤ R/
√
L and (b) holds using Lemma S6 if υ < εR(δ).

It remains to show that the term in the exponent in (S39) is upper bounded by −d/2, υ < εR(δ), and
υ ≤ R/

√
L. To show the first claim, we can write

−nl
2(1− a)2

2
+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

al

)
=− c2(δ, τ, κ)2(1− a)2d log(n)

2
+
d

2
log(n)

(S40)

+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

ac2(δ, τ, κ)
√
d

)
(S41)

− d

2
log log(n). (S42)
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It can be verified that (S40) and (S41) are non-positive when c2(δ, τ, κ) =(
12ρε(κ, d)L(τ, δ)R(δ) +

√
d
)
/
√
d and (S42) is less than −d/2, for n ≥ 16.

To verify υ < εR(δ), where υ = al
4L(τ,δ) , we have

υ =
12ρε(κ, d)L(τ, δ)R(δ)

12ρε(κ, d)L(τ, δ)R(δ) +
√
d
× 12ρε(κ, d)L(τ, δ)R(δ) +

√
d√

d
×
√
d log(n)/n

4L(τ, δ)

= 3ρε(κ, d)R(δ)
√

log(n)/n

≤ 9ε1−κR(δ)
√

log(n)/n
(a)

≤ εR(δ),

where (a) holds when εκ ≥ 9
√

log(n)/n.

Moreover, with the chosen value of υ, υ ≤ R/
√
L holds if n/ log(n) ≥ 9L. Finally note that(

12ρε(κ, d)L(τ, δ)R(δ) +
√
d
)
≤ max(24ρε(κ, d)L(τ, δ)R(δ), 2

√
d). This completes the proof.

S5.8 Proof of Proposition S1

Proof. For ease of notations, for κ, ε > 0 and w ∈ Rd, let

εp(w, κ) := ‖w(κd) −w‖p/‖w‖p and hence κp(w, ε) := min{κ : εp(w, κ) ≤ ε}. (S43)

Let x = (|w1|, . . . , |wd|) and let xd,i be the corresponding ordered sequence, i.e.

xd,1 ≥ xd,2 ≥ · · · ≥ xd,d.
Let

yd =
1

ad
(xd,1, xd,2, . . . , xd,d, 0, 0, . . .) ∈ R∞,

where ad is a normalizing constant defined in [LWZ81, Equation 3]. Moreover let ei, i = 1, 2, . . ., be
i.i.d. standard exponential random variables with partial sum Γi :=

∑i
l=1 el and let zi(α) := Γ

−1/α
i .

Then, due to [LWZ81, Lemma 1],

lim
d→∞

yd
d
= (z1(α), z2(α), . . .).

where d denotes convergence in distribution.

First, we show that for any κ > 0, εp
(
zd(α), κ

)
is increasing with respec to α. This term can be

written as

εp
(
zd(α), κ

)p
=

d∑
l=dκde+1

zl(α)p

d∑
l=1

zl(α)p
=

d∑
l=dκde+1

Γ
− p
α

l

d∑
l=1

Γ
− p
α

l

=:
u

v
.

Taking the derivative with respect to α gives

∂εp
(
zd(α), κ

)p

∂α
=
vu′ − v′u

v2
,

where

vu′ − v′u =
p

α2



(

d∑

l=1

Γ
− p
α

l

)


d∑

l=dκde+1

Γ
− p
α

l log(Γl)


−

(
d∑

l=1

Γ
− p
α

l log(Γl)

)


d∑

l=dκde+1

Γ
− p
α

l






=
p

α2

dκde∑

l1=1

d∑

l2=dκde+1

Γ
− p
α

l1
Γ
− p
α

l2
(log(Γl2)− log(Γl1))

a.s.
> 0.
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This shows that εp
(
zd(α), κ

)
is almost surely strictly increasing with respect to α, and consequently

κp
(
zd(α), ε

)
is almost surely increasing with respect to α.

Since εp(w, κ) is a bounded function and almost surely continuous with respect to w, E
[
εp
(
wd
i , κ
)]

converges also to E[εp(z
∞
i (αi), κ)], for i = 1, 2. To show (S6), choose d0(δ) large enough, such that

∣∣∣∣E
[
εp
(
wd

1 , κ
)]
− E[εp(z

∞
1 (α1), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
wd

2 , κ
)]
− E[εp(z

∞
2 (α2), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
zd1, κ

)]
− E[εp(z

∞
1 (α1), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
zd2, κ

)]
− E[εp(z

∞
2 (α2), κ)]

∣∣∣∣ ≤
δ

4
.

Then,

E
[
εp
(
wd

2 , κ
)]
− E

[
εp
(
wd

1 , κ
)]
< δ + E

[
εp
(
zd2(α2), κ

)]
− E

[
εp
(
zd1(α1), κ

)]
< δ.

Similarly, (S7) can be concluded.

S6 Proofs of the Technical Lemmas

In this section, we give proofs of all the unproved lemmas stated in the paper.

S6.1 Proof of Lemma S1

Proof. Inequality (S3) can be concluded from part i. of Lemma S3, stated in Section S5.5, by letting
υl = εl‖wl‖. Inequality (S4) can be concluded from (S3) and since when ‖w‖ ≤ R, then

L∏

l=1

‖wl‖ ≤
(
R√
L

)L
.

S6.2 Proof of Lemma S3

Proof. i. Similar to [NBS18], we will show the first inequality by induction. Let f lw(x) denote the
output of the lth layer: f1

w(x) = W1x and f lw(x) = Wlφ
(
f l−1
w (x)

)
. We show that for i ∈ J1, LK,

following relations hold:

‖f iw(x)− f iw′(x)‖ ≤ B
i∏

l=1

(‖wl‖+ υl)−B
i∏

l=1

‖wl‖.

The induction base i = 0 holds trivially. Assume that it holds till layer i. We show that it holds for
layer i+ 1 as well. Note that with our notations wl = vec(Wl) and consequently ‖Wl‖ = ‖wl‖.
∥∥f i+1

w′ (x)− f i+1
w (x)

∥∥
=
∥∥W′

i+1φ
(
f iw′(x)

)
−Wi+1φ

(
f iw(x)

)∥∥
=
∥∥(Wi+1 + W′

i+1 −Wi+1

)(
φ
(
f iw(x)

)
+ φ

(
f iw′(x)

)
− φ

(
f iw(x)

))
−Wi+1φ

(
f iw(x)

)∥∥
≤
∥∥(W′

i+1 −Wi+1

)
φ
(
f iw(x)

)∥∥+
∥∥Wi+1

(
φ
(
f iw′(x)

)
− φ

(
f iw(x)

))∥∥
+
∥∥(W′

i+1 −Wi+1

)(
φ
(
f iw′(x)

)
− φ

(
f iw(x)

))∥∥
(a)

≤ υi+1B

i∏

l=1

‖wl‖+ (‖wi+1‖+ υi+1)

(
B

i∏

l=1

(‖wl‖+ υl)−B
i∏

l=1

‖wl‖
)

= B

i+1∏

l=1

(‖wl‖+ υl)−B
i+1∏

l=1

‖wl‖.
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where (a) is concluded since φ is 1-Lipschitz, φ(0) = 0, and since due to the structure of fw,
‖f iw(x)‖ can be upper bounded as

‖f iw(x)‖ ≤ ‖x‖
i∏

l=1

‖wi‖ ≤ B
i∏

l=1

‖wi‖.

Next, we show the second inequality.
∣∣`0,τ (z, fw)− `0,τ (z, fw′)

∣∣ ≤ 1

τ

∣∣∣∣fw(x)[y]−max
j 6=y

fw(x)[j]− fw′(x)[y] + max
j′ 6=y

fw′(x)[j′]

∣∣∣∣

≤ 1

τ
|fw(x)[y]− fw′(x)[y]|+ 1

τ

∣∣∣∣max
j 6=y

fw(x)[j]−max
j′ 6=y

fw′(x)[j′]

∣∣∣∣

≤ 1

τ
|fw(x)[y]− fw′(x)[y]|+ 1

τ
max
j 6=y
|fw(x)[j]− fw′(x)[j]|

(a)

≤
√

2

τ
‖fw(x)− fw′(x)‖,

where (a) is derived using the relation x+ y ≤
√

2(x2 + y2), for x, y ∈ R+.

ii. To show the first inequality, note that due to symmetry, R.H.S. of part i. is maximized when
‖wl‖ = R/

√
L, for l ∈ J1, LK. Hence,

‖fw(x)− fw′(x)‖ ≤ B
((

R√
L

+ υ

)L
−
(
R√
L

)L)
. (S44)

Next, we show that if a ≥ b ≥ 0 and n ∈ N, then

an − bn ≤ n(a− b)an−1. (S45)

We show this by induction. It trivially holds for n = 1. Suppose that it holds till n ≤ i− 1. We show
that it holds for n = i, as well.

– if i is even, then

ai − bi =
(
a
i
2 − b i2

)(
a
i
2 + b

i
2

) (a)

≤ i

2
(a− b)ai/2−1 × 2ai/2 = i(a− b)ai−1,

where (a) is derived using the induction assumption.
– if i is odd, then

ai − bi = (a− b)
i−1∑

k=0

akbi−1−k ≤ i(a− b)ai−1.

Thus, using (S44) and (S45) and since υ ≥ R/
√
L,

‖fw(x)− fw′(x)‖ ≤ BL
(

2R√
L

)L−1

υ.

This completes the proof for the first inequality. Finally, the second inequality trivially follows from
the first one and part i.

S6.3 Proof of Lemma S4

Proof. Note that there exists
(
d
κd

)
different ways to choose κd coordinates with zero values. Next,

each of the resulting κd-dimensional sub-space can be discretized using at most
(

3R(δ)
υ

)κd
number

of points due to [Wu20, Theorem 14.2.]. Using the following lemma completes the proof.

Lemma S7 ([Gal68, Exercise 5.8.b.]). For n,m ∈ Z+ and m ≤ n,
(
n
m

)
≤ enhb(m/n).
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S6.4 Proof of Lemma S5

Proof. First we show that in general when random variables yi, i ∈ J1,mK are independent and∑m
i=1 ai ≤ a, then

P

(
m∑

i=1

yi ≥ a
)
≤

m∑

i=1

P(yi ≥ ai).

We prove this for the case of m = 2, and the general case follows by an induction.

P(y1 + y2 ≥ a) = P(y1 + y2 ≥ a, y1 ≥ a1) + P(y1 + y2 ≥ a, y1 < a1)

≤ P(y1 ≥ a1) + P(y1 + y2 ≥ a, y1 < a1)

≤ P(y1 ≥ a1) + P(y2 ≥ a− a1, y1 < a1)

≤ P(y1 ≥ a1) + P(y2 ≥ a2).

Next, since stable distributions are continuous distributions, hence P (‖x‖ ≥ R(δ)) = δ.

Now, to show the idea, first show that if x is an i.i.d. d-dimensional vector with SαSn(σ) distributions
and α ∈ (1, 2), then for δ < 2d(2− α)α, R(δ) can be bounded as

R(δ) ≤ 3σ
√
d

(
4d

δ

)1/α

. (S46)

To show this,

δ = P
(
‖x‖2 ≥ R2(δ)

)
≤

d∑

i=1

P
(
‖xi‖2 ≥ R2(δ)/d

)

=

d∑

i=1

P
(
‖xi‖ ≥ R(δ)/

√
d
) (a)

≤ 4d

(
3σ
√
d

R(δ)

)α
, (S47)

where (a) holds when R(δ) ≥ 4σ
√
d/(2 − α) due to the following inequality from [BŁM20,

Theorem 19]. The result is stated for a SαS(σα) ≡ SαSn(1) distribution, where σα :=

(2Γ(−α) cos((2− α)π/2))
1/α. Here, we state the result for arbitrary SαSn(σ). If y ∼ SαSn(σ)

and α ∈ (1, 2), then for a ≥ 4σ/(2− α)

P(y ≥ a) ≤ 16

3

(
2σ

a

)α
≤ 4

(
3σ

a

)α
.

Re-arranging (S47) and considering the condition R(δ) ≥ 4σ
√
d/(2− α), yields

R(δ) ≤ max

(
3σ
√
d

(
4d

δ

)1/α

,
4σ
√
d

(2− α)

)
.

Hence, (S46) holds, at least when

3σ
√
d

(
4d

δ

)1/α

≥ 4σ
√
d

(2− α)
,

which is satisfied when δ < 2d(2− α)α.

Now, to show the lemma, let al := dσ2/σ2
l . Then, similar steps concludes

δ ≤
L∑

l=1

dl∑

i=1

P
(
‖xl,i‖ ≥

R(δ)√
al

)
(a)

≤ 4

L∑

l=1

dl∑

i=1

(
3σ
√
d

R(δ)

)αl
(b)

≤ 4d

(
3σ
√
d

R(δ)

)α
, (S48)

where (a) holds when R(δ) ≥ maxl 4σ
√
d/(2− αl) and (b) holds when R(δ) ≥ 3σ

√
d. Note that

3σ
√
d ≤ 4σ

√
d/(2− αl). Finally, similarly, (S46) holds if δ < 2d(2−maxl αl)

α.
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S6.5 Proof of Lemma S6

Proof. To upper bound N ′υ , first consider the spaceW ′′, defined as5

W ′′ :=
⋃

A
|A|=κd

W ′′A,

W ′′A :=
{
w ∈ Rd

∣∣‖wA‖ ≤ R(δ), ‖wAC‖ ≤ εR(δ)
}
.

Since each of W ′′A is a convex space, then if υ < εR(δ), by [Wu20, Theorem 14.2.], it can be
discretized with υ-precision using at most

(
3

υ

)d Vol(W ′′A)

Vol(Bd)
=

(
3

υ

)d πκd/2Rκd

Γ(κd/2+1) ×
π(1−κ)d/2(εR)(1−κ)d

Γ((1−κ)d/2+1)

πd/2Rd

Γ(d/2+1)

=

(
3ε(1−κ)R

υ

)d
Γ(d/2 + 1)

Γ(κd/2 + 1)Γ((1− κ)d/2 + 1)
,

number of points, where Bd is the d-dimensional unit ball. Now, sinceW(R(δ), ε, d, κ) ⊆ W ′′,

N ′υ ≤
(
d

κd

)(
3ε(1−κ)R

υ

)d
Γ(d/2 + 1)

Γ(κd/2 + 1)Γ((1− κ)d/2 + 1)
,

(a)

≤ e
d
(
hb(κ)+h

(1)
b (κ)

)(
3ε(1−κ)R

υ

)d

(b)
=

(
3ρε(κ, d)R

υ

)d
, (S49)

where (a) is concluded from Lemma S7 and the following lemma and (b) is concluded since one way
to discretizeW(R(δ), ε, d, κ) is to consider the whole sphere with radius R, which needs at most
(3R/υ)d, due to [Wu20, Theorem 14.2.].

Lemma S8. For n,m ∈ Z+, n ≥ m, and n ≥ 10,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)
≤ edn/2emax(hb(dm/2e/dn/2e),hb(bm/2c/dn/2e)).

S6.6 Proof of Lemma S8

Proof. For m = 0 or m = n, the claim holds with equality. Let 1 ≤ m ≤ n− 1. When n and m are
even, then the lemma can be concluded from Lemma S7. Assume, at least one of n and m are odd
numbers. We consider two cases of n being odd and even separately.

Note that for a ∈ N, [Rob55]

Γ(a+ 1) =
√

2πa aae−aera , (S50)

where 1/(12a+ 1) < ra < 1/(12a). Moreover,

Γ

(
a+

1

2

)
=

√
π(2a)!

4aa!

(∗)
=
√

2π aae−aesa , (S51)

where (∗) is derived using (S50) with sa being bounded as

1

24a+ 1
− 1

12a
< sa <

1

24a
− 1

12a+ 1
.

5For a set A = {i1, . . . , ir} ⊆ J1, dK, denote xA := (xi1 , xi2 , . . . , xir ).

18



Odd n: Let n = 2k + 1 and m = 2q, where 1 < q ≤ k. Then,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)

(a)
=

esk+1−(rq+sk+1−q)(k + 1)k+1

√
2πq qq(k + 1− q)k+1−q

(b)

≤ (k + 1)k+1

qq(k + 1− q)k+1−q

< e(k+1)hb(q/(k+1))

< edn/2emax(hb(m/2dn/2e),hb(m/2dn/2e)), (S52)

where (a) is derived using (S50) and (S51), and (b) is derived, since

sk+1−(rq + sk+1−q) <
1

24k + 24
− 1

12k + 13
− 1

12q + 1
− 1

24(k − q) + 25
+

1

12(k − q) + 12

≤ 1

24k + 24
− 1

12k + 13
− 1

12k + 1
− 1

25
+

1

12

<
1

12
− 1

25
≤ 0.05.

The case of m being odd is similar.

Even n: Let n = 2k and m = 2q + 1, where 1 < q < k and k ≥ 5. Then,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)

(a)
=

e1+rk−(sq+1+sk−q)
√
k kk√

2π(q + 1)q+1(k − q)k−q
(b)
<

1.17
√
k kk

(q + 1)q+1(k − q)k−q (S53)

where (a) is derived using (S50) and (S51) and (b) is derived since

rk − (sq+1 + sk−q) <
1

12k
− 1

24q + 25
+

1

12q + 12
− 1

24(k − q) + 1
+

1

12(k − q)

≤ 1

6k
− 1

24k + 1
− 1

25
+

1

12
< 0.07,

where the last step holds for k ≥ 5.

Next, for k ≥ 5, either q+ 1 ≥ 1.17
√
k or k− q ≥ 1.17

√
k. Otherwise, we would conclude

k + 1 < 2.34
√
k, which is a contradiction for k ≥ 5.

– If q + 1 ≥ 1.17
√
k, then (S53) is upper bounded by

1.17
√
k kk

(q + 1)q+1(k − q)k−q ≤
kk

(q + 1)q(k − q)k−q

≤ kk

qq(k − q)k−q
≤ ekhb(q/k) = e

n
2 hb(2bm/2c/n).

– If k − q ≥ 1.17
√
k, then (S53) is upper bounded by

1.17
√
k kk

(q + 1)q+1(k − q)k−q ≤
kk

(q + 1)q+1(k − q)k−q−1

≤ kk

(q + 1)q+1(k − q − 1)k−q−1

≤ ekhb((q+1)/k) = e
n
2 hb(2dm/2e/n).
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