Cooperating Networks To Enforce A Similarity Constraint In Paired But Unregistered Multimodal Liver Segmentation
Résumé
We propose a method for segmenting two unregistered images from different modalities of the same patient and study at once, while enforcing a similarity constraint between the two segmentation masks. Our method relies on a segmentation network and a registration network, cooperating to get accurate and consistent segmentation masks across modalities, while forcing the segmentor to use all information available. Experiments on a dataset of T1 and T2-weighted liver MRI show that our method enables to get more similar segmentation masks across modalities than manual annotations, without deteriorating the performance (Dice =0.95 for T1, 0.92 for T2).