Linear Programming Bounds on the Kissing Number of q-ary Codes - Télécom Paris
Communication Dans Un Congrès Année : 2021

Linear Programming Bounds on the Kissing Number of q-ary Codes

Résumé

We use linear programming (LP) to derive upper and lower bounds on the "kissing number" A d of any q-ary code C with distance distribution frequencies Ai, in terms of the given parameters (n, M, d). In particular, a polynomial method gives explicit analytic bounds in a certain range of parameters, which are sharp for some low-rate codes like the first-order Reed-Muller codes. The general LP bounds are more suited to numerical estimates. Besides the classical estimation of the probability of decoding error and of undetected error, we outline recent applications in hardware protection against side-channel attacks using code-based masking countermeasures, where the protection is all the more efficient as the kissing number is low.
Fichier principal
Vignette du fichier
202109soleliuchengguilleyrioul.pdf (286.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03323516 , version 1 (15-09-2021)

Identifiants

Citer

Patrick Solé, Yi Liu, Wei Cheng, Sylvain Guilley, Olivier Riou. Linear Programming Bounds on the Kissing Number of q-ary Codes. 2021 IEEE Information Theory Workshop (ITW2021), Oct 2021, Kanazawa, Japan. pp.1-5, ⟨10.1109/ITW48936.2021.9611478⟩. ⟨hal-03323516⟩
363 Consultations
203 Téléchargements

Altmetric

Partager

More