Learnable Descriptors for Visual Search - Télécom Paris
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2021

Learnable Descriptors for Visual Search

Andrea Migliorati
  • Fonction : Auteur
  • PersonId : 1100600
Gianluca Francini
  • Fonction : Auteur
  • PersonId : 1100601
Riccardo Leonardi
  • Fonction : Auteur
  • PersonId : 1100602

Résumé

This work proposes LDVS, a learnable binary local descriptor devised for matching natural images within the MPEG CDVS framework. LDVS descriptors are learned so that they can be sign-quantized and compared using the Hamming distance. The underlying convolutional architecture enjoys a moderate parameters count for operations on mobile devices. Our experiments show that LDVS descriptors perform favorably over comparable learned binary descriptors at patch matching on two different datasets. A complete pair-wise image matching pipeline is then designed around LDVS descriptors, integrating them in the reference CDVS evaluation framework. Experiments show that LDVS descriptors outperform the compressed CDVS SIFT-like descriptors at pair-wise image matching over the challenging CDVS image dataset.
Fichier principal
Vignette du fichier
09238464 (1).pdf (3.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03245174 , version 1 (28-02-2022)

Identifiants

Citer

Andrea Migliorati, Attilio Fiandrotti, Gianluca Francini, Riccardo Leonardi. Learnable Descriptors for Visual Search. IEEE Transactions on Image Processing, 2021, 30, pp.80 - 91. ⟨10.1109/tip.2020.3031216⟩. ⟨hal-03245174⟩
32 Consultations
120 Téléchargements

Altmetric

Partager

More