DrumGAN: Synthesis of drum sounds with timbral feature conditioning using Generative Adversarial Networks - Télécom Paris
Communication Dans Un Congrès Année : 2020

DrumGAN: Synthesis of drum sounds with timbral feature conditioning using Generative Adversarial Networks

Résumé

Synthetic creation of drum sounds (e.g., in drum machines)is commonly performed using analog or digital synthesis,allowing a musician to sculpt the desired timbre modify-ing various parameters. Typically, such parameters controllow-level features of the sound and often have no musicalmeaning or perceptual correspondence. With the rise ofDeep Learning, data-driven processing of audio emergesas an alternative to traditional signal processing. This newparadigm allows controlling the synthesis process throughlearned high-level features or by conditioning a modelon musically relevant information. In this paper, we ap-ply a Generative Adversarial Network to the task of au-dio synthesis of drum sounds. By conditioning the modelon perceptual features computed with a publicly availablefeature-extractor, intuitive control is gained over the gen-eration process. The experiments are carried out on a largecollection of kick, snare, and cymbal sounds. We showthat, compared to a specific prior work based on a U-Netarchitecture, our approach considerably improves the qual-ity of the generated drum samples, and that the conditionalinput indeed shapes the perceptual characteristics of thesounds. Also, we provide audio examples and release thecode for reproducibility.1
Fichier principal
Vignette du fichier
2020-ISMIR_DrumGAN.pdf (340.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire J'avais téléchargé le mauvais fichier (le poster au lieu du papier). J'ai maintenant placé le bon document. Merci de l'avoir noté.

Dates et versions

hal-03233337 , version 1 (04-06-2021)

Identifiants

  • HAL Id : hal-03233337 , version 1

Citer

Javier Nistal Hurlé, Stefan Lattner, Gael Richard. DrumGAN: Synthesis of drum sounds with timbral feature conditioning using Generative Adversarial Networks. 21 st International Society for Music Information Retrieval Conference (ISMIR), Aug 2020, Toronto, Canada. ⟨hal-03233337⟩
304 Consultations
249 Téléchargements

Partager

More