Singing Voice Separation: A Study on Training Data - Télécom Paris
Communication Dans Un Congrès Année : 2019

Singing Voice Separation: A Study on Training Data

Romain Hennequin
  • Fonction : Auteur
Jimena Royo-Letelier
  • Fonction : Auteur
Andrea Vaglio
  • Fonction : Auteur

Résumé

In the recent years, singing voice separation systems showed increased performance due to the use of supervised training. The design of training datasets is known as a crucial factor in the performance of such systems. We investigate on how the characteristics of the training dataset impacts the separation performances of state-of-the-art singing voice separation algorithms. We show that the separation quality and diversity are two important and complementary assets of a good training dataset. We also provide insights on possible transforms to perform data augmentation for this task.
Fichier principal
Vignette du fichier
Singing_voice_separation_a_study_on_training_data_camera_ready_version.pdf (258.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02372076 , version 1 (20-11-2019)

Identifiants

Citer

Laure Prétet, Romain Hennequin, Jimena Royo-Letelier, Andrea Vaglio. Singing Voice Separation: A Study on Training Data. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, Brighton, United Kingdom. pp.506-510, ⟨10.1109/ICASSP.2019.8683555⟩. ⟨hal-02372076⟩
138 Consultations
536 Téléchargements

Altmetric

Partager

More