Communication Dans Un Congrès Année : 2019

Learning Methods for RSSI-based Geolocation: A Comparative Study

Kevin Elgui
  • Fonction : Auteur
Pascal Bianchi
  • Fonction : Auteur
  • PersonId : 846458
François Portier
  • Fonction : Auteur
  • PersonId : 902270
Olivier Isson
  • Fonction : Auteur

Résumé

In this paper, we investigate machine learning approaches addressing the problem of geolocation. First, we review some classical learning methods to build a radio map. In particular, these methods are splitted in two categories, which we refer to as likelihood-based methods and fingerprinting methods. Then, we provide a novel geolocation approach in each of these two categories. The first proposed technique relies on a semi-parametric Nadaraya-Watson estimator of the likelihood, followed by a maximum a posteriori (MAP) estimator of the object's position. The second technique consists in learning a proper metric on the dataset, constructed by means of a Gradient boosting regressor: a k-nearest neighbor algorithm is then used to estimate the position. Finally, all the proposed methods are compared on a data set originated from Sigfox network. The experiments show the interest of the proposed methods, both in terms of location estimation performance, and of ability to build radio maps.
Fichier principal
Vignette du fichier
Learning_Methods_for_RSSI_based_Geolocation (4).pdf (3.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02367908 , version 1 (03-12-2019)

Identifiants

  • HAL Id : hal-02367908 , version 1

Citer

Kevin Elgui, Pascal Bianchi, François Portier, Olivier Isson. Learning Methods for RSSI-based Geolocation: A Comparative Study. 27th European Signal Processing Conference (EUSIPCO), Sep 2019, A Coruña, Spain. ⟨hal-02367908⟩
159 Consultations
599 Téléchargements

Partager

More