Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization - Télécom Paris
Pré-Publication, Document De Travail Année : 2019

Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization

Résumé

Although ADAM is a very popular algorithm for optimizing the weights of neural networks, it has been recently shown that it can diverge even in simple convex optimization examples. Several variants of ADAM have been proposed to circumvent this convergence issue. In this work, we study the ADAM algorithm for smooth nonconvex optimization under a boundedness assumption on the adaptive learning rate. The bound on the adaptive step size depends on the Lipschitz constant of the gradient of the objective function and provides safe theoretical adaptive step sizes. Under this boundedness assumption, we show a novel first order convergence rate result in both deterministic and stochastic contexts. Furthermore, we establish convergence rates of the function value sequence using the Kurdyka-Łojasiewicz property.
Fichier principal
Vignette du fichier
rate_convergence_adam.pdf (309.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02366337 , version 1 (15-11-2019)
hal-02366337 , version 2 (18-11-2022)

Identifiants

Citer

Anas Barakat, Pascal Bianchi. Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization. 2019. ⟨hal-02366337v1⟩
90 Consultations
269 Téléchargements

Altmetric

Partager

More