Challenge Codes for Physically Unclonable Functions with Gaussian Delays: A Maximum Entropy Problem - Télécom Paris
Article Dans Une Revue Advances in Mathematics of Communications Année : 2020

Challenge Codes for Physically Unclonable Functions with Gaussian Delays: A Maximum Entropy Problem

Résumé

In this paper, motivated by a security application on physically unclonable functions, we evaluate the distributions and Rényi entropies of signs of scalar products of i.i.d. Gaussian random variables against binary codewords 2 {±1} n. The exact distributions are determined for small values of n and upper bounds are provided by linking this problem to the study of Boolean threshold functions. Finally, Monte-Carlo simulations are used to approximate the distribution up to n = 10.
Fichier principal
Vignette du fichier
201910schaubriouldangerguilleyboutros.pdf (617.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02300795 , version 1 (27-08-2021)

Identifiants

  • HAL Id : hal-02300795 , version 1

Citer

Alexander Schaub, Olivier Rioul, Jean-Luc Danger, Sylvain Guilley, Joseph J. Boutros. Challenge Codes for Physically Unclonable Functions with Gaussian Delays: A Maximum Entropy Problem. Advances in Mathematics of Communications, 2020, Special Issue: Latin American Week on Coding and Information, 14 (3), pp.491-505. ⟨hal-02300795⟩
188 Consultations
95 Téléchargements

Partager

More