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Abstract. Motivated by a security application on physically unclonable func-
tions, we evaluate the probability distributions and Rényi entropies of signs of
scalar products of i.i.d. Gaussian random variables against binary codewords
in {±1}n. The exact distributions are determined for small values of n and
upper bounds are provided by linking this problem to the study of Boolean
threshold functions. Finally, Monte-Carlo simulations are used to approximate
entropies up to n = 10.

1. Introduction

Suppose we are given a (nonlinear) (n,M) code C with M codewords ci 2
{±1}n and n i.i.d. standard Gaussian variables X1, X2, . . . , Xn ⇠ N (0, 1). Let
X = (X1, X2, . . . , Xn) and consider the scalar products

(1) ci ·X =
nX

j=1

ci,jXj (i = 1, 2, . . . ,M)

and the associated sign bits

(2) Bi = sgn(ci ·X) 2 {±1} (i = 1, 2, . . . ,M).

The question addressed in this paper is the following: What is the joint entropy of
the sign bits

(3) H(C) = H(B1, B2, . . . , BM )?

In particular, can we evaluate the maximum entropy H(n) = maxC H(C) attained
for the full universe code C = {±1}n? Despite appearances, this problem turns out
to be largely combinatorial as shown below.
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1.1. Notations and definitions.

Definition 1.1 (Challenge code). Let n > 0,M > 0 be two integers. A (n,M)
challenge code C is a subset C ✓ {�1,+1}n of cardinality M . The elements of this
subset are called codewords, and the i-th codeword is denoted by ci. By an abuse
of notation, we identify the challenge code with the n ⇥ M matrix C, called the
challenge matrix, which rows contain all codewords exactly once. The i-th row is
ci, and conversely, for any codeword c 2 C, i(c) denotes its row index.

The motivation for this problem comes from hardware security. Modern secure
integrated circuits make use of hardware primitives called physically unclonable
functions (PUFs) that can generate unique identifiers from challenges, such as de-
scribed, for example, by Maes [14]. More formally, a PUF is a function that takes
several challenges c1, c2, . . . , cM (the so-called challenge code) as inputs and returns
the bitvector identifier (b1, b2, . . . , bM ) [19]. PUFs exploit small, uncontrollable
physical variations of the manufacturing process that cannot be replicated, hence
the name “physically unclonable”.

Definition 1.2 (Physically unclonable function (PUF)). Let C be an (n,M) chal-
lenge code. Let x = (x1, . . . , xn) 2 Rn such that the scalar product c · x 6= 0 for all
codewords c 2 C. Then the physically unclonable function (PUF) with parameter
x is the function fx : C ! {�1,+1} defined as

(4) fx(c) = sgn(c · x),
where sgn is the sign function and · denotes the usual scalar product. Equivalently,
fx is given by the sign vector b = (b1, b2, . . . , bM ) 2 {�1,+1}M such that

(5) bi = sgn(ci · x) (i = 1, . . . ,M).

The following notion of randomized PUF coincides with that of a PUF at a
design stage, when it is not yet instantiated by a foundry fabrication process (cf.
[7, Fig. 1]).

Definition 1.3 (Randomized PUF). For a fixed (n,M) challenge code, we define
the random PUF as fX , where X = (X1, X2, . . . , Xn) and Xi are i.i.d. standard
normal random variables Xi ⇠ N (0, 1).

The corresponding random sign vector is then B = (B1, . . . , BM ), where

(6) Bi = sgn(ci ·X) (i = 1, . . . ,M)

with probability distribution

Pb = P[B = b] = P[B1 = b1, B2 = b2, . . . , BM = bM ] (b 2 {�1,+1}M ).

We denote |supp(Pb)| the cardinality of the support of Pb.

To assess the security of a PUF, it is necessary that the entropy of the identi-
fier’s distribution is su�ciently high. The most natural definition is the Shannon
entropy, characterizing the uncertainty about the PUF distribution. Depending
on the desired application, other kinds of entropies may be relevant. The most
conservative view is to consider the min-entropy H1, which can be interpreted as
the “cloning” entropy in the worst case, when the PUF to clone is obtained with
probability maxb2{±1} Pb. When using a PUF to generate a key, the min-entropy
also characterizes the security of the key, as shown for example in [9]. In other
settings, the collision entropy allows for a more accurate security bound on the key
derivation, as suggested by Skorski [20] and Dodis et al. [10]. It accounts for PUF
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uniqueness, since it is related to the probability that no two generated keys are the
same. In contrast, the max-entropy H0 has no obvious practical interest apart from
being an easily computable upper-bound of the Shannon entropy (and of all other
Rényi entropies).

Definitions for the di↵erent kinds aforementioned entropies are given below. Each
depends on the choice of a challenge code C.

Definition 1.4 (Rényi entropies [17]). For ↵ � 0, the Rényi entropy of order ↵ is
defined as

H↵(C) =
1

1� ↵
log2

X

b2{±1}M

P↵
b .

As special cases (taking the limits when ↵ approaches 1 or infinity) we have

H0(C) = log2 |supp(Pb)| (max-entropy)

H1(C) = H(C) =
X

b2{±1}M

Pb log2
1

Pb
(Shannon entropy)

H2(C) = � log2
X

b2{±1}M

P2
b (collision entropy)

H1(C) = � log2 max
b2{±1}M

Pb (min-entropy).

A well-known property of the Rényi entropies is that H↵ is non-increasing in ↵.
Thus, for any code C, H1(C)  H2(C)  H(C)  H0(C). It is also easily seen
that H2(C)  2H1(C).

Definition 1.5 (Full entropy). For any ↵ � 0, we define the full entropy H↵(n) as
the Rényi entropy for the (n, 2n) challenge code that contains all possible codewords.

The full entropy is highest among all codes, as shown in the following lemma.

Lemma 1.6 (Full entropy is maximal). For any ↵ � 0 and any challenge code C,

H↵(n) � H↵(C).

Proof. We prove a stronger result: For any challenge matrix C of an (n,M) chal-
lenge code and challenge matrix C 0 of an (n,M + 1) challenge code where the first
M lines are identical to C, H↵(C 0) � H↵(C).

Let b be a sign vector associated with C such that Pb > 0, and let b+ (resp. b�)
the sign vector associated with C 0 equal to (b1, . . . , bM , 1) (resp. (b1, . . . , bM ,�1)).
By definition of C 0, one has Pb = Pb+ + Pb� .

Assume ↵ > 1. To prove that P↵
b � P↵

b+ + P↵
b� , consider

Pb+

Pb
and

Pb�
Pb

. Since

0  Pb+

Pb
,
Pb�
Pb

 1, we know that (
Pb+

Pb
)↵  Pb+

Pb
and (

Pb+

Pb
)↵  Pb+

Pb
. Therefore,

(7) (
Pb+

Pb
)↵ + (

Pb�

Pb
)↵  Pb+

Pb
+

Pb�

Pb
= 1.

which implies P↵
b+ + P↵

b�  P↵
b . Summing over all Pb we obtain

(8)
X

b2{±1}M

P↵
b =

X

b2{±1}M

(Pb+ + Pb�)
↵ �

X

b2{±1}M

P↵
b+ + P↵

b� �
X

b2{±1}M+1

P↵
b .

The assertion follows by taking the logarithm on both sides of this inequality and
multiplying by the negative constant 1

1�↵ .
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The case ↵ < 1 is similar: The inequalities (7) and (8) are reversed because
x↵ � x for x 2 [0, 1], but the constant 1

1�↵ is positive. Therefore, the same
assertion follows. The cases ↵ = 1 and ↵ = 1 are established by taking limits.

Notice that the maximum entropy H↵(n) is always attained by a (n, 2n�1) chal-
lenge code, by the following symmetry argument: since sgn(c ·x) = � sgn ((�c) · x),
the set {±1}n can be partitioned into two opposite sets where codewords in the
second set bring no additional entropy. Indeed, adding a codeword c to a code
C which already contains �c does not change the probabilities of the sign vec-
tors, only their labeling. This leaves all Rényi entropies unchanged. Therefore, it
is possible to obtain the maximum entropy with any (n, 2n�1) code C satisfying
c 2 C =) �c 62 C.

Table 1 summarizes the notations used in the remainder of this paper.

Table 1. Summary of Notations.

Notation Explanation
n number of delay elements in a PUF
Xi Gaussian random variable representing the delay di↵erence of

the i-th delay element (i 2 [1, n])
X X = (X1, X2, . . . , Xn)
xi realization of Xi

M number of challenges
C challenge code, a matrix defined by its rows (ci)i2[1,M ]

sgn sgn(x) = 1 if x > 0, sgn(x) = �1 if x < 0, and sgn(0) = 0.
Bi Bi = sgn(ci ·X)
B B = (B1, B2, . . . , BM )
bi realization of Bi

b realization of B
Pb Pb = P[B = b]

1.2. Motivation. Definitions 1.2 and 1.3 correspond to a particular PUF that ex-
ploits the variability of n distinct delay elements (a so-called “Loop PUF”), where
X1, X2, . . . , Xn are independent Gaussian delay di↵erences. This type of PUF has
been first described by Cherif et al. [5]. A previous modelization of the Loop PUF,
obtained via Monte-Carlo simulations of the possible circuit behaviors, showed a
distribution of delays close to a Gaussian distribution, as shown in Figure 1. Other
types of simulations also suggest a Gaussian distribution of process variations, and
thus delay di↵erences, in electronic circuits [4]. This motivates the choice of mod-
eling the delay di↵erences of the Loop-PUF as independent Gaussian variables.

Because they share the mathematical model with the Loop-PUF, definitions 1.2
and 1.3 also apply to the Arbiter PUF [11], for which the Gaussian model has been
confirmed [15, 22], and to the RO-sum PUF [25].

These process variations can then be exploited in di↵erent ways. For example,
it is possible to build authentication protocols based on PUFs: an authentication
server queries a PUF via a set of challenges and checks the PUF answer against
a whitelist. In this way, counterfeit or overproduced chips can be detected. This
requires no implementation of costly asymmetric cryptography primitives, and is
therefore adapted to low-cost IoT devices. The PUF can also be used to generate a
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Figure 1. Distribution of delays obtained via circuit simulation

secret cryptographic key that is required for secure storage or communications with
other devices. Using a PUF is more secure than directly storing the cryptographic
key into memory, from where it might potentially be read or written by an attacker.

1.3. State of the art.

1.3.1. Results on the min-entropy. An upper bound of the min-entropy has been
derived for the so-called RO-sum PUF by Delvaux et al. in [8]. Since this PUF
shares the same mathematical bound as the Loop-PUF, this result is also relevant
for our analysis. The following upper-bound is valid for odd values of n:

(9) H1(n)  � log2

0

@1

2

0

@1�
r

n� 1

n

(n�3)/2X

i=0

(2i)!

(i!)2(4n)i

1

A

1

A .

This expression is not easy to interpret, but we have the following bound for prac-
tical values of n:

(10) H1(n)  4n for n  251.

The min-entropy is therefore at most linear in n for n  251. Because of the
inequality H2  2H1, valid for any distribution, we deduce the following bound on
the collision entropy:

(11) H2(n)  8n for n  251.

1.3.2. Exact values for small n. Exact results for the entropy and probability dis-
tribution of the Loop-PUF have been obtained in certain special cases. Rioul et al.
showed in [18] that the optimal challenge code when M  n is given by a Hadamard
code1 C for which one can attain a uniform distribution of the Loop-PUFs, giving

H(C) = n.

The exact calculation of the PUF distribution of n delay elements for M � n can
be carried out only for very small values of n. Rioul et al. [18] give the exact

1When such a Hadamard code exists, which implies that n = 1, 2 or a multiple of 4.
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values of the Loop-PUF distribution, and thus H(C) for all n,M  3 using well-
known closed-form formulas for orthant probabilities of bi- and trivariate normal
distributions (see Lemma 2.1).

1.3.3. Results on the max-entropy. The max-entropy H0(n) is simply the logarithm
of the number of di↵erent Loop-PUFs of n delay elements. This number has been
computed for small values of n  10, because it actually corresponds to the number
of so-called Boolean Threshold Functions (BTF) of n � 1 variables. This number
was determined up to n = 8 by Winder [24], up to n = 9 by Muroga et al. [16]
and finally up to n = 10 by Gruzling [12]. Asymptotic estimates have also been
published [26]. These results are recalled in Section 3.

Unfortunately, the quadratic behavior in n of the max-entropy H0(n) somehow
overestimates the security of the PUFs, since it is much higher than the min-entropy,
which is approximatively linear in n.

1.4. Our contributions. In this work, we extend previous results in two direc-
tions.

First, we provide the exact values of the distribution of the Loop-PUF (for all
possible challenges) for n = 3 and n = 4. This allows us to compute the exact values
of all entropies in these cases. Such an exact computation comes as a surprise since
no closed-form expression exists for the orthant probabilities of an M -dimensional
Gaussian vector for M � 4. In our computation, we leverage on the discrete nature
of the challenge code to determine these probabilities up to M = 8.

Second, we introduce a novel algorithm for the simulation of equivalence classes
(SEC). The SEC algorithm also finds all equivalence classes of challenge codewords
corresponding to the same value of joint probabilities Pb. Interestingly, this problem
is purely of discrete combinatorial nature. The actual values of the corresponding
probabilities are then estimated by Monte Carlo simulation, which allows us to
compute all relevant entropies. We provide the resulting values of the entropies
H0(n), H(n), and H2(n) up to n = 10.

The remainder of the paper is organized as follows. Section 2 presents exact
values of the distributions and entropies for the cases n = 3 and n = 4. Section 3
recalls results obtained from the study of Boolean threshold functions which will be
used later on. The SEC algorithm is presented in Section 4 along with the entropies
up to n = 10. Section 5 concludes.

2. Closed-form expressions

2.1. Preliminaries. In order to determine the closed-form expressions of the PUF
distributions up to n = 4, we need the following lemmas.

Lemma 2.1 (Orthant probabilities for the bi- and trivariate normal distribution).

Let n > 0, c1 and c2 two challenges, and Y1 = c1 ·X,Y2 = c2 ·X. Let ⇢ = E[Y1Y2]
n

the correlation coe�cient of Y1 and Y2. Then

(12) P[Y1 > 0, Y2 > 0] = P++ =
1

4
+

arcsin(⇢)

2⇡
.

Let c3 be a third challenge vector and Y3 = c3 · X, and denote the correlation
coe�cients between Yi and Yj by ⇢i,j =

E[YiYj ]
n . Then

P[Y1 > 0, Y2 > 0, Y3 > 0] = P+++

=
1

8
+

arcsin(⇢1,3) + arcsin(⇢1,2) + arcsin(⇢2,3)

4⇡
.

(13)
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The bivariate case was already known to Hermite [21]. The extension to the
trivariate case is a lesser known extension and can be found, for instance, in [3]. A
short proof of both formulas is given by Rioul et al. in [18].

Lemma 2.2 (Zero probabilities). Let b = (bi)i2[1;M ] be a sign vector. Then Pb = 0

if and only if there exists ↵ = (↵1, . . . ,↵M ) 2 RM\{0}M such that sgn(↵i) = bi
when ↵i 6= 0 and

PM
i=1 ↵ici = 0.

Proof. Suppose that such a vector ↵ exists. There is at least one component that
is di↵erent from 0. Without loss of generality, suppose that ↵1 6= 0. We then have

c1 = � 1

↵1

MX

i=2

↵ici.

In particular, this implies that

X · c1 = � 1

↵1

MX

i=2

↵i(ci ·X).

Now, if 8i > 1, such that ↵i 6= 0, sgn(↵i) = sgn(ci ·X), the sign of the right-hand
side of the expression is the opposite sign of ↵1. Thus, ↵1 = � sgn(c1 ·X), which
contradicts our hypothesis.

Conversely, suppose that Pb = 0. Therefore, the Gaussian vector (ci · X)i is
degenerate, and its support is included in a sub-space of RM of dimension < M . In
particular, it is included in some hyperplane of equation

PM
i=1 aixi = 0, where the ai

are not all 0. Since Pb = 0, this hyperplane is disjoint from the orthant defined by
the signs of b, that is the set x1b1 > 0, x2b2 > 0, . . . , xMbM > 0. Therefore, we have
that all aibi have the same sign, that we can take positive. Since the support is
included in the hyperplane defined before, we must have

MX

i=1

ai(ci ·X) = (
MX

i=1

aici) ·X = 0

for all X 2 Rn, and therefore
PM

i=1 aici = 0. By setting ↵i = ai, the ↵i have the
same signs as the bi and are not all 0, which concludes the proof.

Lemma 2.3 (Equivalence classes). Suppose that after permuting and/or changing
the signs of certain columns of C, one obtains a matrix C 0 that can be obtained by
permuting, and then optionally changing the signs, of certain lines from C. Denote
the corresponding permutation of the lines by � 2 SM , and the following change of
signs of the lines by si 2 {±1}M . Then for any sign vector b = (bi)i2[1;M ], b has
the same probability as

b0 = (s1b�(1), s2b�(2), . . . , sMb�(M)).

Such b and b0 are then said to be in the same equivalence class, or simply equivalent.

Proof. Permuting the columns or changing corresponds to a permutation or sign
changes of the Xi. For any s = (s1, s2, . . . , sn) 2 {�1,+1}n and � 2 Sn, the joint
distribution of X = (Xi)i and (siX�(i)) are the same.
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2.2. Case n = 3. By considering the challenge matrix C3 =
⇣

1 1 1
1 1 �
1 � 1

⌘
, exact prob-

abilities Pb can be derived by using the formula for trivariate Gaussian, recalled in
Equation (13). This yields an entropy of

(14) H(C3) = �
⇣1
4
� 3

arcsin 1
3

2⇡

⌘
log
⇣1
8
� 3

arcsin 1
3

4⇡

⌘
.

For the matrix with four challenges C4 =

 
1 1 1
1 1 �
1 � 1
� 1 1

!
and the two sign vectors +���

and �+++, we have that
P+��� = P�+++ = 0.

By exploiting symmetries, it follows that eight sign vectors satisfy

P++++ = P++�� = P+�+� = P+��+

= P���� = P��++ = P�+�+ = P�++� = p

and for the six remaining sign vectors

P+++� = P++�+ = P+�++ = P���+ = P��+� = P�+��.

Furthermore, by adding complementary challenges, we have that p = p + 0 =

P+��+ + P+��� = P+��· =
1
8 � 3

arcsin 1
3

4⇡ using the generic formula for trivariate
normal distributions.

These findings are summarized in the table below.

Table 2. Distribution for n = 3

Size of equivalence class Probability per element

8 1
8 � 3

arcsin 1
3

4⇡

6
arcsin 1

3
⇡

Therefore,

H(C4) = H(3) =

�
 
1� 6

arcsin 1
3

⇡

!
log

 
1

8
� 3

arcsin 1
3

4⇡

!
� 6

 
arcsin 1

3

⇡

!
log

 
arcsin 1

3

⇡

!
.

(15)

2.3. Case n = 4. Similar techniques have been employed in order to compute

entropies with n = 4. Because
arcsin( 1

2 )
⇡ is a rational number (it is in fact equal to

1
6 ), the results for n = 4 are much simpler, compared to the case n = 3.

In order to compute the distribution for the maximal challenge code, we first
determine the distributions of smaller codes. Sign vectors with zero probability are
determined according to Lemma 2.2. Those of equal probability are found with the
help of Lemma 2.3. Using recurrence relations between the probabilities, we are
then able to deduce the sign vector distribution for larger codes, when adding one
codeword each time.

The first four codewords that are chosen are the lines of a Hadamard matrix of
order 4:

C4 =

✓ 1 1 1 1
1 � 1 �
1 1 � �
1 � � 1

◆
.
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As recalled before, the sign vector distribution is uniform for this challenge ma-
trix.

The results when adding one additional codeword are summarized below. For
the sign vectors, it is understood that the opposite sign vectors are also present in
each probability class.

- Additional codeword ( 1 1 1 � ):

Probability per sign vector Sign vectors
11
192 +++++,++��+,+�+�+,+��+�
1

192 ++++�,++���,+�+��,+��++
1
32 ++�++,++�+�,+�+++,+�++�,+���+,+����
1
16 +++�+

- Additional codeword ( 1 1 � 1 ):

Probability per sign vector Sign vectors
10
192 ++++++,++��+�,+�+�++,+��+�+

1
192

+++++�,++++�+,++��++,++����,

+�+�+�,+�+��+,+��+++,+��+��
1
32 +++�++,+++�+�,+�++++,+�++�+

1
64

++�+++,++�++�,++�+�+,++�+��,

+���++,+���+�,+����+,+�����

- Additional codeword ( 1 � 1 1 ):

Probability per sign vector Sign vectors
3
64 +++++++,++��+�+,+��+�++,+�+�++�

1
192

+++++�+,+�+�+��,+��++++,+�+�+++,

+��+��+,++����+,++++++�,++++�++,

+������,++��+��,+���+�+,+��+�+�,

++��+++,+���++�,+�+��+�,+����++
1
96 +���+++,+�����+,+����+�,+���+��

1
64

++�+�++,+�++�++,+++�+�+,+++�++�,

++�++�+,+�++++�,+�++�+�,++�+��+,

+++�+++,+�+++++,+++�+��,++�++++

- Additional codeword (� 1 1 1 ): This code maximizes the entropies. As there
are too many sign vectors per equivalence class to enumerate them all, we give
here only their numbers.

Probability per sign vector Number of sign vectors
1
24 8
1

192 64
1
96 32
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In summary for n = 1, 2, 3, 4:

Table 3. Exact entropies for n  4

n 1 2 3 4

H(n) 1 2 3.6655... 6.2516...
H0(n) 1 2 3.8073... 6.7004...
H2(n) 1 2 3.54615... 5.71049...
H1(n) 1 2 3.20858... 4.58496...

3. Results from the theory of Boolean threshold functions

Boolean threshold functions (BTF) are a special class of Boolean functions that
have been studied at least since the early 1950’s. They have a special significance
in several domains, such as building Boolean circuits [23], but also in the domain
of machine learning [6]. More recently, they have even been studied in game the-
ory [13]. There are several equivalent definitions of BTF. We adopt the following
one.

Definition 3.1 (Boolean Threshold Function). Let n > 0. A Boolean function
g : {�1,+1}n�1 ! {�1,+1} is said to be a Boolean threshold function of n � 1
variables if there exists a vector of n� 1 real numbers, w = (w1, . . . , wn�1), called
the weights of the BTF, as well as a real number w0, called the threshold, such that:

8c 2 {�1,+1}n�1, g(c) =

(
1 when c · w > w0

�1 when c · w < w0
.

We have the following equivalence between BTFs with n� 1 variables and PUFs
with n elements:

Proposition 1. Let C be the (n, 2n�1) challenge code containing all codewords
starting with 1. Then for any sign vector b, Pb > 0 if and only if there exists a BTF
of n� 1 variables represented by b, that is, the BTF g such that

g(c0) = bi(1,c01,c02,...,c0n�1)
(8c0 2 {±1}n�1)

where i(c) represents the index of the codeword c = (1, c0) in the challenge matrix C
(see Definition 1.1).

Proof. First, suppose that Pb > 0. Thus, there exists x 2 Rn such that sgn(c · x) =
bi(c) for all c 2 C. Let w0 = �x1 and for all i 2 [1, n� 1], wi = xi+1 and c0i = ci+1.
Then

c · x > 0 () 1 · x1 +
nX

i=2

ci · xi > 0 ()
nX

i=2

ci · xi > �x1

()
n�1X

i=1

c0i · wi > w0 () c0 · w > w0.

Thus, the BTF g, defined by the weights (w1, . . . , wn) and threshold w0, is such
that g(c0) = 1 exactly where bi(c) = 1.

Conversely, if there is a BTF corresponding to b, as shown above, there is at least
one element x = (x1, . . . , xn) 2 Rn such that bi(c) = sgn(c · x) for all c 2 C. Let
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Eb = {x 2 Rn : bi(c) = sgn(c · x), c 2 C}. Then, by hypothesis, Eb is not empty.
It is also an open set, as the preimage of the open set R+⇤ by the continuous
function x 2 Rn 7! bi(c) (c · x). As a non-empty open set, Eb has non-zero volume.
Furthermore, since the multivariate Gaussian distribution is non-degenerate, it has
a non-zero probability on Eb. Thus, Pb > 0.

Two results from the analysis of BTF are relevant for the study of Loop-PUFs.
First, the exact value for the number of BTF of n� 1 variables has been computed
up to n = 10 [12]. This gives the exact max-entropy for the Loop-PUF up to n = 10,
and thus also an upper bound for the other entropies (Shannon, collision entropy,
min-entropy). Results are shown below.

Table 4. Non-zero probabilities for n = 1 to 10

n Non-zero probabilities Proportion among challenges max-entropy
1 2 1 1
2 4 1 2
3 14 0.875 3.8073
4 104 0.40625 6.7004
5 1882 0.0287 10.8780
6 94572 2.202 · 10�5 16.5291
7 15 028 134 8.147 · 10�13 23.8411
8 8 378 070 864 2.462 · 10�29 32.9640
9 17561539552946 1.517 · 10�64 43.997
10 144130531453121108 1.075 · 10�137 57.000

The number of non-zero probabilities is referenced on Sloane’s On-line Encyclo-
pedia of Integer Sequences (OEIS) as sequence A000609 [1].

Second, asymptotic expressions have also been derived [26]:

(16) lim
n!1

H0(n)

n2
= 1.

Therefore, the max-entropy is close to n2 for large values of n. However, the min-
entropy is only linear in n [8]. Because of this gap in the di↵erent entropies, a more
careful analysis is necessary in order to determine exact values and estimates of the
Shannon and collision entropies.

4. Equivalent probability classes

There is an inherent symmetry in the PUF problem. Indeed, reordering the
random variables X1, ..., Xn does not change the entropy, and neither does replacing
Xi with �Xi because the Gaussian distribution is symmetric. This allows us to find
sign vectors with equal probabilities. For the rest of the section, we will suppose
that M = 2n�1 and choose as challenges the first 2n�1 challenges in lexicographical
order, starting with the all 1 challenge vector, up to c2n�1 = (1,�1,�1, ...,�1).

Let � 2 Sn be a permutation, we define X� = (X�(1), ..., X�(n))
T . Firstly con-

sider � to be a transposition, � = (i j) and suppose i 6= 1, j 6= 1. Because of
the aforementioned considerations, we have that CX and CX� have the same dis-
tribution. Let C� be the matrix obtained from C by applying � on the columns
(here, by swapping columns i and j). By definition, we have that CX� = C�X.
Now, because C contains all rows starting with 1, since 1 /2 {i, j}, C� can also
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be obtained by permuting some rows of C. Let ⇡ be that row permutation, and
b = (b1, b2, ..., b2n�1) a sign vector. Then, because CX and C�X have same dis-
tribution, b and b⇡, where b⇡ is obtained from b by applying ⇡ to the coordinates,
have same probability.

If 1 2 {i, j}, this cannot be directly applied since the lines of C and C� are not
the same anymore. However, we can notice that if we multiply all the columns
of C� by the jth column and call the new matrix C 0

�, then indeed C 0
� is obtained

from C by permuting the lines. Thus, if ⇡ is the corresponding permutation, b
and (c1,jb⇡(1), c2,jb⇡(2), ..., c2n�1,jb⇡(2n�1)) have the same probability. Since every
permutation can be expressed as a composition of transpositions, composing the
aforementioned transformations allows to express any permutation �.

For the sign changes, take s = (1,±1, ...,±1) a vector of n signs, and consider
the vector Xs = (s1X1, s2X2, · · · , snXn)T . Since the Gaussian distribution is
symmetric, we have that CX and CXs have the same distribution. Furthermore,
denote by Cs the matrix obtained from C where the column i is multiplied by si. By
definition, CsX = CXs. Now, Cs can also be obtained from C by permuting some
lines. If ⇡ is the corresponding permutation, b and b⇡ have the same probability.
For a vector s of the form (�1,±1, ...,±1), we can simply look at the permutation
induced by �s = (1,�s2,�s3, ...,�sn).

Definition 4.1. We say that two sign vectors b and b0 are equivalent if b can be
obtained from b0 by the actions of the permutations � and sign changes s. This
defines an equivalence relation on the sign vectors. All sign vectors of a same
equivalence class have same probability.

We were able to determine equivalence classes up to n = 10. For example, for
n = 5, there are 7 equivalence classes, as described below:

Class size Probability per vector Sign vector in class
10 0.0145269 + + ++++++++++++++
160 0.0006334 �+++++++++++++++
320 0.0007351 ��++++++++++++++
960 0.0002285 ���+++++++++++++
80 0.0022002 ����++++++++++++
320 0.0002961 ���+�+++++++++++
32 0.0008077 ���+�+++�+++++++

Our simulation of equivalence classes (SEC) algorithm used to evaluate the Loop-
PUF distribution consists in two steps.

1. During the first step, n independent standard normal variables are repeti-
tively sampled. We then take their absolute values, sort them, and record the
corresponding sign vector. Because changing the signs and re-ordering the Xi

does not change the equivalence class, the two sign vectors corresponding to
the Xi before and after these transformations are equivalent. This way, the
same sign vector is always recorded for each equivalence class. This first step
therefore allows us to estimate the probabilities of all equivalence classes.

2. Second, the algorithm determines the size of each equivalence class. This is
necessary in order to estimate the probabilities of individual sign vectors. We
use the same method as employed to evaluate the number of Boolean threshold
functions, which is described, for instance, by Gruzling [12], section 3.1.2. The
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estimated probability of a sign vector is then simply the number of occurrences
of the equivalence class, divided by the total number of simulations and by
the number of elements in that class.

This allows us to estimate the entropy up to n = 10. Note that the number of
equivalence classes corresponds to the sequence A001532 on Sloane’s OIES [2].

Table 5. Estimated Entropies for n = 1 to n = 10.

n Equivalence classes Shannon entropy Collision entropy
1 1 1 1
2 1 2 2
3 2 3.665 3.545
4 3 6.250 5.708
5 7 10.015 8.456
6 21 15.189 11.600
7 135 21.956 14.890
8 2470 30.564 18.548
9 175428 41.038 22.231
10 52980624 53.47 26.06

All results obtained so far are summarized in Figure 2.

Figure 2. Comparison of entropies up to n = 10.

For cryptographic applications, a key should typically have at least 80 bits of
entropy. Therefore, a PUF with n = 10 is insu�cient. However, given our findings,
a PUF with n = 12 or n = 13 is very likely to exceed this value, which is very
interesting from an implementation complexity perspective.

5. Conclusions and perspectives

The exact values for the probabilities of all the sign vectors were determined for
n up to 4. The methods employed might be applied for larger values of n. It is
not known, however, if enough equations can be obtained this way to compute the
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probabilities of all sign vectors. The success of this method might also depend on
the order in which challenges are added to the challenge code.

While a naive method would have complexity O(22
n�1

), the SEC algorithm allows
to estimate entropies reliably up to n = 10. For larger values of n, however, the SEC
algorithm might not be feasible. Using (16) and a quadratic fit on the logarithm
of the number of BTF, we can estimate the number of non-zero probabilities for
n = 11 to be about 277. The size of each equivalence class does not exceed 2nn!, the
number of pairs of permutations and sign changes. There are thus at least 1.8 ·1012
equivalence classes for n = 11. Estimating their probabilities individually becomes
intractable in time but also in space. Asymptotic formulas for the entropy and
collision entropy are therefore necessary to assess the security of the Loop-PUF for
larger values of n.

As a perspective, determining the entropies of the Loop-PUF when considering
smaller challenge matrices would be of practical interest. Indeed, using less chal-
lenges would decrease the time necessary, for instance, to generate a cryptographic
key from the PUF. The question of how many challenges to choose, and which ones
maximize the entropies, should be addressed in future research. One such solution
is a greedy approach, experienced by Rioul et al. in [18]. This leads to a piecewise-
Hadamard matrix for the challenge matrix, and an almost linear increase in entropy
when considering less than 2n codewords.

Despite the relatively simple formulation, the problem of computing the maximal
entropy of all possible sign vectors generated by n Gaussian variables has very high
complexity, at the order of 22

n�1

. Thanks to a careful analysis of that problem, we
were able to obtain exact expressions up to n = 4, and tight approximations up
to n = 10. However, an exact solution for larger values seems out of reach. Even
determining the asymptotic behavior remains an open problem. While it is known
that the max-entropy is quadratic in n, and the min-entropy approximately linear
in n, asymptotic expressions for the Shannon and collision entropy have not been
determined yet. In particular, the Shannon entropy seems to be quadratic in n,
which is a very good result for chip designers, since it would allow the production
of high security circuits while keeping the number of elements per circuit small.
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