Communication Dans Un Congrès Année : 2016

Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples

Résumé

We propose a sparsity-based simplification method for Spectral Domain Optical Coherence Tomography (SD-OCT) images of cardiac samples, displaying layers of tissue. Inspired by the Compressed Sensing (CS) theory, we implement a dedicated sparse sampling of SD-OCT samples achieving image simplification suited for layers segmentation, which is the target application. We validate a straightforward segmentation approach on the variance map of the simplified images against manual delineation on raw SD-OCT images of in-vitro biological samples from four human hearts. We also correlate average layer thickness with histopathological measures. Finally, we compare our simplified images to state of the art denoising approaches.
Fichier non déposé

Dates et versions

hal-02288466 , version 1 (14-09-2019)

Identifiants

Citer

William Meiniel, Yu Gan, Christine P. Hendon, J.-C. Olivo-Marin, Andrew D. Laine, et al.. Sparsity-based simplification of spectral-domain optical coherence tomography images of cardiac samples. EEE International Symposium on Biomedial Imaging, Apr 2016, Prague, Czech Republic. pp.373-376, ⟨10.1109/ISBI.2016.7493286⟩. ⟨hal-02288466⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

More