SILP: A Stochastic Imitative Learning Protocol for Multi-Carrier Spectrum Access - Télécom Paris
Journal Articles IEEE Transactions on Cognitive Communications and Networking Year : 2019

SILP: A Stochastic Imitative Learning Protocol for Multi-Carrier Spectrum Access

Abstract

Decentralized wireless networks require efficient channel access protocols to enable wireless nodes (WNs) to access dedicated frequency channels without any coordination. In this paper, we develop a distributed spectrum access protocol for the case where the WNs are equipped with multiple radio transceivers. We consider the case where the channels are identical and duly separated so that each of the users' antenna can access only one of the available channels. To model the competition amongst WNs, we formulate a particular multi-agent multi-carrier spectrum access game, where each WN has to decide at each iteration how many antennas and which frequency channels it has to access. To study the resulting equilibrium, we solve a multi-objective optimization problem and design a bi-level learning algorithm which is proven to converge towards a socially efficient and max-min fair equilibrium state.
Fichier principal
Vignette du fichier
tccn19.pdf (2.04 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02167730 , version 1 (28-06-2019)

Identifiers

Cite

Stefano Iellamo, Marceau Coupechoux, Zaheer Khan. SILP: A Stochastic Imitative Learning Protocol for Multi-Carrier Spectrum Access. IEEE Transactions on Cognitive Communications and Networking, 2019, 5 (4), pp.990-1003. ⟨10.1109/TCCN.2019.2924925⟩. ⟨hal-02167730⟩
131 View
152 Download

Altmetric

Share

More