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SILP: A Stochastic Imitative Learning Protocol for
Multi-Carrier Spectrum Access

Stefano Iellamo, Marceau Coupechoux, and Zaheer Khan

Abstract—Decentralized wireless networks require efficient
channel access protocols to enable wireless nodes (WNs) to
access dedicated frequency channels without any coordination.
In this paper, we develop a distributed spectrum access protocol
for the case where the WNs are equipped with multiple radio
transceivers. We consider the case where the channels are
identical and duly separated so that each of the users’ antenna
can access only one of the available channels. To model the
competition amongst WNs, we formulate a particular multi-
agent multi-carrier spectrum access game, where each WN has to
decide at each iteration how many antennas and which frequency
channels it has to access. To study the resulting equilibrium, we
solve a multi-objective optimization problem and design a bi-
level learning algorithm which is proven to converge towards a
socially efficient and max-min fair equilibrium state.

I. INTRODUCTION

In decentralized wireless networks, a fundamental while
challenging task is the design of distributed spectrum
(channel) access mechanisms enabling wireless nodes (WN)
to access the available channels in an efficient way without
any coordination. In this paper, we develop and analyze
a spectrum access control mechanism, where each user is
able to access multiple channels at the same time (e.g., by
means of multiple antennas) and aims at maximizing its
marginal contribution over the accessed channels. To this
end, it follows a two-dimensional revision protocol based on
imitation and learning that can orient the network towards an
efficient and fair equilibrium state.

When multiple channels can be accessed by a network of
WNss via random access MAC protocols (such as CSMA/CA
or ALOHA) it is common practice for the WNs to access all
of them. Such operation can however bring congestion so that
it is important to find a way to tell the WNs how many and
which channels to access in order to keep the system working
at the optimal operation point. Moreover, the resources should
be allocated in a fair manner so that all WNs get an equal
split of the system total delivered throughput.

In this paper we propose a spectrum access protocol which
allows the WNs to take decisions distributedly and to drive
the system towards a fair and effective equilibrium point. Our
solution is of generic applicability and requires only the WNs
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to be able to access and aggregate multiple channels (common
feature in today’s WN and user terminals). Hence, there are
many possible practical use cases one could mention: for
example, it could be combined with standards relying on
random access MAC protocols (like e.g., Wi-Fi and Zigbee)
to prevent congestion and maximize offered throughput and
fairness.

The multi-resource spectrum access problem we consider
can be viewed as a power set congestion game where the
players’ strategy can be any subset of the available resources.
Such games were firstly studied in the seminal works of
Rosenthal [1] and Monderer [2], where it was shown that if
the costs (or payoffs) for using a given resource is the same for
all players and are only dependent on the number of players
including that resource in their strategy (i.e., on the congestion
level), then the resulting congestion game possesses at least
a Pure Nash Equilibrium (PNE). In [3] it is shown that
any power set graphical congestion game, where each player
calculates the level of congestion for using a resource by taking
into account only neighboring players using that same resource
(an interference graph is often used for this purpose), possess
at least one PNE, and that such equilibrium can be reached
by means of lazy best response sequential updates. In [4] the
authors define a new class of games, power set congestion
games with load-dependent failures: they redesign the players’
utility function as the sum of the payoffs associated to the used
resources minus the cost for using them. While the latter is
solely dependent on the congestion level like for the classical
case, the payoff for using a certain resource is constant but
can go to zero with a certain probability if the resource fails.
For this model the authors of [4] propose an algorithm that
converges to a PNE and which is guaranteed to exist if the
failure probability does not depend on the congestion level
and, in general, if costs are non-decreasing.

Another class of games, where players have to select
multiple resources are network congestion games, where
the resources are the road segments to be chosen in order
to reach a given destination node departing from a given
source node. In this case the strategy is limited to the sets
of resources forming a source-destination path, meaning
that the selection of one resource within a strategy profile
may be dependent on the selection of other resources. It has
been proved that weighted network congestion games and
(unweighted) network congestion games with player specific
costs can represent every finite game, and that the intersection
of these two classes can represent all exact potential games

[5].



Fairness and efficiency of multi-resource allocation has been
studied in the context of cloud computing where resource
providing entities have to allocate resources (e.g., bandwidth,
compute servers, sensors) to their users in a fair manner and
schedule tasks efficiently. Differently to our case, the resource
providers receive resource requests from the users and they
(not the users) have to decide the allocation of resources and
tasks in a fair and efficient manner; with global information
settings and by limiting the information exchange between
them. In [6] and [7] for instance, the authors build on the
concepts of a-proportional fairness and dominant resource
fairness in order to strike a balance between efficiency and
fairness of the allocated resources.

In the wake of this literature, we introduce in this paper
spectrum access policies based on learning by imitation, a
behavior rule widely applied in human societies consisting of
imitating successful behaviors. Firstly studied in economics
(see, e.g., [8], [9] and references therein), imitation rules
have been recently adopted to design distributed evolutionary
algorithms for wireless and cognitive radio networks [10],
[11]. The problem of distributed spectrum access has been
widely addressed in the literature of cognitive radio networks
(CRNs). A first set of papers assumes that the number of
secondary users (SUs) is smaller than the number of channels.
In this case, the problem is closely related to the classical
Multi-Armed Bandit (MAB) problem [12]. Some work has
investigated the issue of adapting traditional MAB approaches
to the CRN context, among which Anandkumar et al. proposed
two algorithms with logarithmic regret, where the number of
SUs is known or estimated by each SU [13]. Complementary,
other works assume large population of SUs and study the
system dynamics under asymptotic assumptions. In [14] and
[15], the authors propose respectively a distributed learning
procedure for spatial spectrum access which is proven to
converge to a Nash Equilibrium (NE) in the asymptotic case,
and a channel switch strategy aimed at maximizing expected
throughput. Spatial spectrum access games can be seen as
graphical congestion games and are also studied in [16] where
players are allowed to select a subset (of fixed cardinality)
of the available channels (their strategy is the transmission
attempt probability for each selected channel). The authors
show that simple algorithms based on best response updates
and log-linear learning can be used for the non-cooperative
and cooperative case respectively (i.e., the users aim to maxi-
mize their own throughput or the resource allocation fairness
respectively).

Different from this literature, we study a model where a
set of wireless nodes have to decide how many and which
channels to access in order to maximize the system offered
throughput and the allocation fairness. To this end, we propose
a spectrum access protocol allowing to distributedly converge
to a social optimum and fair equilibrium state.

With this paper, our contribution is quad-fold:

o We formulate the multi-carrier spectrum access problem
as a multi-objective optimization problem, where the
sum data rate as well as the system fairness have to be
maximized.
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Fig. 1. System model: Wireless Nodes equipped with multiple antennas are
accessing frequency channels. Active antennas equally share the bandwidth
on a channel. The total throughput on a channel is a concave function of the
number of active antennas on it.

o Faced to the challenge of solving the problem in a
distributed way, we re-formulate the problem using a bi-
level game theoretical framework.

« We propose a spectrum access protocol which we prove
to converge to a stochastically stable equilibrium which
is both max-min fair and socially-efficient.

o We validate our theoretical results by simulation and
compare our solution with two state-of-the-art algorithms
from the literature [3], [17].

The paper is organized as follows: In Section II we present
the system model and formulate the multi-objective optimiza-
tion problem in Section III. In Section IV we re-formulate the
problem using a game theoretical framework. We describe and
analyze our learning algorithms in Sections V and VI, respec-
tively. In Section VII we validate our theoretical results by
simulation. Section VIII concludes the paper. In Appendix I,
we provide a mathematical background on models of evolution
with noise. All proofs are given in Appendix II.

II. SYSTEM MODEL AND ACCESS PROTOCOL
A. Network Model

In this paper, we consider a set A/ of N of Wireless Nodes
(WN) pairs made of a transmitter and a receiver trying to
access the radio spectrum (Fig. 1). Such spectrum consists
of a set C of C identical frequency channels, each with
bandwidth B. A WN transmitter ; € N is equipped with
A < C reconfigurable antennas. Every antenna can be in any
of the following modes: active, i.e., it is accessing one of the
channels in C or sensing, i.e., it is performing measurements on
a channel. We assume that at least one antenna is always active
for all WNs. We assume a full buffer traffic model, in which
WNs have always data to transmit and a complete interference
graph, in which all WNs can hear each other. In practice,
this means that the considered network is of small or medium
size. When accessing a channel, WNs share the medium using
a random access protocol, e.g., CSMA/CA and thus get a
share of the available bandwidth for their transmissions, see
Figure 1.

Notations of the paper are summarized in Table 1.



TABLE I
NOTATIONS

General

Set of Wireless Nodes (WN)
Set of channels
Set of antennas

Internal Game G*"

WN j strategy set Sé;
WN j strategy set at a Pareto PNE S5
Strategy profile s = (81..‘5]»,..,51\7}
Strategy profile at a Pareto PNE &
Set of strategies S
Number of iterations T
WN j marginal contribution (MC) on channel i w;:}"
WN j MC on channel i at a Pareto PNE wﬂl@
WN j utility UJ?"
System state at ¢ 2" (t)
Union of PNE NE3
External Game G°UT
Strategy profile r
‘WN j strategy T
WN j throughput on channel % w?;“t
WN 4 utility U;ut
System state at x 20Ut ()
Limit Set (LS) w
Union of max-throughput LSs ¥
Enlarged union of Pareto LSs oF

B. Frame Structure

We assume that on every channel time is divided into
blocks of equal duration and every block is divided in T
slots (Figure 2). During a block, we impose that the mode
of an antenna (active or sensing) is fixed. During a slot, the
channel accessed or sensed by an antenna is fixed. Accessed
or sensed channels can thus change only at slot boundaries and
antenna modes can change only at block boundaries. As shown
in Figure 2, transmit packets are augmented with a header
containing a field for the MC-flag (1 bit), for the number 7;
of active antennas ([log,(A)] bits), and for the WN ID.

C. Throughput

At a given time instant, let §; < C be the subset of channels
accessed by WN j and s = {Sy, ..., Sy} the channel allocation
profile of all WNs. The profile s is an element of [C]<4, i.e.,
all the subsets of C with cardinality less or equal to A.

The throughput achieved by WN j is the sum of the
throughputs achieved by every active antenna!. On a given
channel 7 € C, we assume that the random access protocol
is fair and thus depends only on the number of contending
antennas. Let p(n;) the throughput achieved by every antenna
on channel ¢ when n; active antennas are contending. We
assume that the function p(n;) is decreasing and that n;p(n;)
is concave as a function of n;. The total throughput on a
channel has thus a unique maximum denoted nopr. For a
WN desiring to selfishly maximize its throughput, there is an
incentive to activate all its antennas. From a system point of
view however, if all WNs activate all their antennas, this may
result in a high congestion, so that the overall throughput is
not maximized.

'If WNs are secondary users opportunistically accessing channels where
a primary user has strict priority, throughput should be understood as the
throughput achieved with the remaining resources left by the primary user.
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Fig. 2. Frame structure utilized by the WNs on a channel.

III. MULTI-OBJECTIVE FORMULATION

In this section, we first formulate our problem as a multi-
objective maximization problem and we characterize its solu-
tion.

A. Multi-Objective Maximization Problem

For a given channel allocation profile s, the throughput of
WN j is given by u;(s) = Zie.sj p(n;(s)), where n;(s) =
2jen Wi € S;}, and 1{-} is the indicator function. The
system throughput is given by U(s) Djen uj(s). We
consider the max-min fairness criterion and we define the
fairness of a profile s as follows: 7)(s) = minjea u;(s). Our
multi-objective maximization problem is now:

Jnax, (U(s),m(s)) (1)
Definition 1. A feasible solution s' € [C]<4 Pareto dominates
another solution s? € [C]S4 if U(s') = U(s?), n(s!) = n(s?)
and one of the inequalities is strict. A solution s° is called
Pareto optimal if there does not exist another solution that
dominates it.

Remark: As all channels are identical, all WNs have the
same number of antennas and all antennas active on a given
channel get the same throughput, we approximate the fairness
criterion as follows 7)(s) ~ minjep |S;|. Because the problem
is discrete, a WN with less active antennas may indeed have a
higher throughput than another with more antennas at a Pareto
optimal allocation profile.

For a given channel allocation profile s, let ys(k) be the
number of channels with k& < N active antennas on them.
Note that ZIILO ys(k) = C and recall that we have assumed
that all WNs have at least one antenna active and that the
function n — np(n) is concave with a unique maximum,
denoted nopr.

Lemma 1. For the non-trivial case nopr > 0, a Pareto
optimal allocation profile s has the following properties:



o If AN = Cnopr and N < Cnopr, then ys(nopr) =
C and ys(k) = 0 for k # nopr. The number of active
antennas per user is | S"QET | or |SMQET | 4 1 and the
sum of active antennas is Cnopr. In this case, there are
enough antennas to fill all channels at nopr.

e If N > Cnopr, then all WNs will activate exactly one
antenna, and there will be C — mod(%) channels with
| & | WNs and the remainder mod(%:) channels with [
WNs. In this case, there is at least one channel with more
than nopr antennas.

o Otherwise, if AN < Cnopr, all WNs will activate all of
their antennas, and there will be C' —mod (AN channels

AN

with [%J WNs and the remainder mod(“5-) channels

with [ “5-| WNs. In this case, there is at least one channel
with fewer than nopr antennas.

Proof. See Appendix II-A. O

As a consequence, a Pareto optimal solution can be com-
puted by a central entity provided that N, A and nppr are
known. Moreover, the central entity would be also expected
to provide each WN with the number of antennas it has to
activate. In the rest of this paper, we look for a distributed
approach in which the WNs don’t know N and we rely on
game theory to reformulate the problem. The cases where
nopr is known and unknown are both studied.

IV. BI-LEVEL GAME THEORETICAL FORMULATION

In this section, we reformulate the problem as a spectrum
access game in order to reach this solution in a distributed
way.

A. Bi-Level Approach

The problem of maximizing and load balancing the through-
put in multi-resource system in a distributed way is a difficult
one. Unlike [3], which proposes distributed algorithms allow-
ing convergence to a PNE, we aim to design a distributed
algorithm allowing convergence to an equilibrium point which
is Pareto optimal, i.e., efficient and fair.

Our approach is to decouple the problem into an internal
game G and an external game G out Tn the internal game, the
number of active antennas is fixed per WN and the strategies
consist in the set of accessed channels. The internal game
is thus a channel allocation game. In the external game, the
strategies consist of the number of active antennas. Every slot
within a block is an iteration of the internal game, whereas
every block is an iteration of the external game. The utilities of
the external game at the end of a block depend on the utilities
obtained after the 7' slots of this block in the internal game.

B. Internal Game G

The internal game is played at every slot ¢ over a block
duration® (see Figure 2).

Definition 2 (Internal game G'*). For any vector of number of
active antennas r = [r1,...,rn], r; € {1,..., A}, the internal

>The dependence on t of the utilities and strategies are omitted when it is
clear from the context.

game G (r) is a 3-tuple (N, {C"7 } jenr, {U}"} jenr), where N
is the set of players, C"7 and U;" are the strategy set and
the utility of player j, respectively. The strategy S; < C™7 of
player j is the set of channels accessed by j and is such that
|S;| = rj. For a strategy profile s = {S1, ..., Sn}, the utility
of player j is defined as:

Un(s) = ) mir(s), @)
1€S;
where
T (s) = ni(s)p(ni(s)) — (ni(s) — Dp(ni(s) = 1)  (3)

and n;(s) = > e 1{i € Sj}

Note that WZJ” is the marginal contribution of player j on
channel ¢ in terms of throughput and thus its utility is the sum
of the marginal contributions on the accessed resources. The
sum throughput of the system U(s) is a welfare function as
defined in [18]. When this function is separable and utilities
are marginal contributions, there exists at least one PNE that
maximizes the welfare function [18]. As we will show in
Section VI, such PNEs also share equally the throughput
among active antennas.

Lemma 2 ([18]). The internal game G (r) is a distributed
welfare game with potential function Y. .ni(s)p(n(s)).
There exists at least one PNE, which maximizes the sum
throughput of the system and which is a global maximizer
of the potential function.

C. External game G°“

The external game G°“ is played over iteration blocks x>
(see Figure 2). For this game a player j strategy at « is the
number r;(x) of active antennas. At the end of each iteration
block k, the utility of a player in G°“ is the throughput
achieved at the end of the internal game with profile s (k7).
See Figure 3 for an overview of the bilevel approach.

Definition 3 (External game G°“). The external game G°“!
is a 3-tuple (N, {1, ..., AN, {U“)}jenr), where N is the
set of players and {1, ..., A} is the strategy set for a player.
A strategy rj € {1, ..., A} is the number of antennas activated
by player j. For a strategy profile v = [r1,...,rN], the utility
of player j is defined as:

U ) = uy(x, )

“4)

where u; and s™ are the throughput and the profile achieved
by player j in the internal game at the end of the current
block.

Definition 4 (Power set congestion game [2]). A power set
congestion game is a congestion game where 1) players’ pure
strategy is any subset of the resources, 2) the payoff associated
to the use of each resource is the same for all players and it
depends solely on the number of players using that resource,
3) players’ utility function is the sum of the payoffs for using
each resource included in the pure strategy.

3The dependence of utilities and strategies on « is omitted when it is clear
from the context
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Fig. 3. Bi-level Approach with internal and external games and algorithms.

Lemma 3 (Theorem 3.1 of [2]). The external game G°“* can
be viewed as a power set congestion game. As a consequence,
it is a potential game possessing at least one PNE.

V. LEARNING ALGORITHM

In this section, we propose a learning algorithm to reach
a PNE of the external game and achieve an efficient solution
for the system, which is also fair for the players. We split the
algorithm into a MAIN part and two sub-routines: MASAP
(Multi-Antenna Spectrum Access Protocol) for the internal
game and SILP (Stochastic Imitative Learning Protocol) for
the external game.

A. MAIN

The MAIN algorithm is played at every player. It proceeds
by iterations. At each block boundary, the routine MASAP is
called to play the internal game at every slot until the next
block. Then the routine SILP is called to play the external
game. The output of MASAP consists in a flag and a set.

The binary flag MC-flag (for marginal contribution flag) is
red if the player has obtained at least one negative marginal
contribution during the internal game and white otherwise. The
set H; is a set of WNs headers observed by player j during
the internal game.

Algorithm 1 MAIN: Multi-carrier spectrum access (executed
at each WN 7)
1: Initialization: Set T and define functions €(¢) and €(k).
Randomly choose ;.
while true (at each iteration block k > 1) do
{MC-flag(j), H;} — MASAP(r;) (Algorithm 2)
rj < SILP(r;, MC-flag(j),H,;) (Algorithm 3)
end while

B. MASAP for Gi"

We now detail MASAP (Multi-Antenna Spectrum Access
Protocol, Algorithm 2).

« The algorithm is executed at every WN j, proceeds by
iterations and take decisions at the end of every slot.

« During a slot ¢, no channel switch is allowed and WN j
accesses the chosen set of channels S;.

« At the end of each iteration ¢, each WN j calculates its
marginal contribution WZJ” on every channel ¢ € S; (line
8). It may deduce it from the number of WNs on the
channel, see Section VII for implementation details.

o The strategy for the next iteration ¢ + 1 is chosen
according to a learning rule based on exploitation and
exploration (mutation). In the literature of evolutionary
models with noise, a mutation or tremble is defined as a
random strategy selection occurring with small probabil-
ity eventually tending to zero. In our case, a mutation is
a switch from a worst performing channel towards a best
known channel which is not already occupied by any of
7’s active antennas at the current iteration. In other words,
upon mutation a WN revises its strategy by dropping one
of the most congested channel and accessing one of the
least known congested one.

o If the WN performed a mutation at the last iteration, it
exploits its knowledge of the previous iteration and come
back to channel ¢ if it is worth (lines 10-14).

« Otherwise, it performs exploration, i.e., a mutation, with a
probability €(¢) tending to zero (lines 15-18). This phase
could be completely random in the choice of the target
channel. We however introduce the heuristic that allows
to speed up the convergence in practice (line 17).

o At the end of the block, when t = T'— 1 and t = T
(lines 20-28), the WN collects the information about the
channels on which the marginal contribution is negative.
On these channels, there are too many active antennas
with respect to the objective of maximizing the system
throughput. This information will be communicated to
the external game through the MC-flag. At ¢t =T — 1,
the WN observes its own channels (lines 20-21), while
at t = T, it collects the same information from a subset
of WNss chosen at random (lines 23-28) by observing the
packets headers.

C. SILP for Gout

In this section, we provide detail of the Stochastic Imitation
Learning Protocol (SILP) used in G°“¢ that achieves a fair and
socially-efficient PNE. The algorithm is based on the concept
of imutation, which is a mixed of the concepts of mutation
and imitation. Like a mutation, it occurs with a decreasing
probability €(x) tending to zero. Like in an imitation, a
decision is taken by observing the strategies of a subset of
other players. In our case, imutations can be seen as mutations
where the next strategy is not chosen uniformly at random but
rather differs from the previous one by at most one active
antenna based on the observed number of active antennas of
other WNss.



Algorithm 2 MULTI ANTENNA SPECTRUM ACCESS PROTO-
coL (MASAP, executed at each WN j)

Algorithm 3 STOCHASTIC IMITATION LEARNING PROTO-
COL (SILP, EXECUTED AT EACH WN j)

1: Input: Number of active antennas r; for player j.

Output: MC-flag(j), H;.

Initialization:

mi7(0) < 0, forall i e C

MC-flag(y) < ’white’

Set m; € N. % m; € {1,2,3} in simulations.

Randomly choose S; < C with |S;| = ;.

mutation «— 0 % is 1 if a mutation has been performed

for t =1to T do
for i € S; do

Compute 7;7 (t).

end for

13: if mutation = 1 %j did perform mutation at ¢ — 1
switching from channel ¢’ to i then

14: if 77" (t — 1) > m}7(t) then

15: % j migrates its antenna from i to ¢’

16: S; — S5 u {i'\{i}

17: end if

18: mutation < 0

19: else

20: % j migrates a worst performing antenna towards
a best known channel.

21: Let ¢ €
argmin g s n;(t)

22: With probability ¢(¢) do

23: Sj «— Sj ) {22}\{11}

24: mutation < 1

25: end if

26: ift=T-1 &HiESj, S.t. Wij(t) < 0 then

27: MC-flag(j) « ’'red’

28: end if

29: if t = T then

30: Sense and observe the header of a set Z; of m;
WNs chosen at random.

31 Store the headers in the set H; (contains MC-flag
and number of active antennas).

32: if 35’ € Z; s.t. MC-flag(j')="red’ then

33; MC-flag(j) « ’'red’

34: end if

35: end if

36: end for

R A A T ol

_ = =
M -2

argmax;cs n;(t) and i €

SILP algorithm is shown in Algorithm 3 and can be sum-
marized as follows:

o The algorithm is executed at every WN j and proceeds
by iterations at the end of every block.

« During a block the number of active antennas is fixed to
i (K).

« There is an imutation when the number of active antennas
has changed in the last iteration (lines 2-3).

« If the WN has not performed imutation (line 5), it takes
a decision depending on the MC-flag and the numbers of
antennas of other players. If the MC-flag is *white’, this
means that the system throughput is likely to increase by
activating an antenna. This will however be done only if
fairness is improved (lines 7-9). If the MC-flag is 'red’

1: Input: MC-flag(j), H; (from MASAP), r;

2. if rj(k — 1) # rj(x) then imutation < 1

3: else tmutation < 0

4: end if

5: if imutation = O then

6: With probability €(x) do

7: if r; (k) < minrj,eﬁ_](,i){rj/(lﬂ)} && MC-
flag(j)="white’ && r;(k) < C then

8: % If system throughput can be increased and j has
less active antennas than observed WNs

9: ri(k+1) «rj(k) +1

10: else

11: if ’I"j(li) = maxrj,eyj(n){rj/(/f)} && MC-
flag(j)="red’ && r;(k) > 1 then

12: % If system throughput cannot be increased
and j has more active antennas than others

13: ri(k+1) —rj(k)—1

14: end if

15: end if

16: else

17: it 7j(k) > max, ey, -ni{ry(k — 1)} && MC-
flag(j)="red’” && r;(k) > r;(k — 1) then

18: % By increasing the number of active antennas,
system throughput has decreased and j has more antennas
than others had

19: ri(k+1) —rj(k)—1
20: end if
21: end if

on the contrary, the number of active antennas should be
decreased (lines 11-13).

« If the WN has performed imutation at the last iteration
by increasing its number of active antennas and the MC-
flag is 'red’ (line 17), this means that WN j is potentially
responsible for decreasing the system throughput. In this
case, it should decrease its number of active channels
(line 19).

VI. CONVERGENCE ANALYSIS
A. G™: MASAP Equilibria and Convergence

We model the dynamics generated by MASAP as a model
of evolution with noise (or mistakes model). A background on
the latter is provided in Appendix I. Let us define the state of
the system as follows:

Definition 5 (System State). We define the state z'"(t) of the
system at iteration t as:

Zn(t) = {S;(t),S;(t— 1)}]‘6./\/’

or equivalently:

2M(t) = (s(t),s(t — 1))

Definition 6 (Single-Player Single-Antenna Improvement).

A strategy profile s' = (S, ..,S},..,Sy) is a single-player

single-antenna improvement over the strategy profile s =



(S1,..,Sj,...Sn) if it coincides with s in every coordinate
except one, say coordinate Sj, the strategy set S]’- in turn
coincides with S; in all elements (i.e., channels) except one,
and the utility of player j is higher under s’ than under s.

Proposition 1. In G and under MASAP all limit sets (LS)
are made of a single state, which is an absorbing state. All
absorbing states are limit sets.

Proof. See Appendix II-B. The definition of LS is given in
Definition 13 in Appendix I-A O

Proposition 2. In G and under MASAP there always exists
an improvement path, made of single-player single-antenna
improvements, which is finite and ends in a PNE.

Proof. See Appendix II-C. O

Let denote Z* the union of all the states corresponding to
the PNEs. As PNEs are absorbing states, every state in Z*
is a limit set. Let R(£2) be the radius of a set 2 as defined
in Definition 18 in Appendix I. Let CR*({2) be the modified
coradius of €2 as defined in Definition 21 in Appendix I-B.
The following Lemma follows directly from Proposition 2.

Lemma 4. For all 2™ ¢ Z* that are LS, it holds that
R(2'™) = 1. Moreover, Z* can be reached from any LS 2"
by stepwise mutations.

Lemma 5. It holds that CR*(Z*) =1

Proof. 1t follows from Lemma 4 and the definition of modified
cost. From any state, we reach a LS at zero cost and then, there
is a path of LSs towards Z*, each with a radius of 1. O

Lemma 6. It holds that R(Z*) > 1.

Proof. We show that a single mutation is not sufficient to leave
the basin of attraction of Z*. As in a LS at a PNE no user
has incentive to deviate unilaterally with one of its antennas,
any single-player single-antenna mutation leads to a decrease
of payoff for the concerned player, say j. Thus, at the next
iteration t+1 of MASAP, WN 7 will switch its antenna, which
performed a mutation at ¢ — 1, back to the previous channel
accessed at t — 1. Hence, one mutation is not enough to quit
the basin of attraction of Z*. O

We can now state the main result of this section:

Theorem 1. For G and under MASAP:

1) The system dynamics converge a.s. to the PNE union Z*
as the temperature €(t) vanishes. The maximum wait until
such union of limit sets is reached from any state outside
its domain of attraction is O(e~ ') as € — 0.

2) At all PNEs the sum data rate of the system is maximized.
Moreover, the throughput allocation to every active an-
tenna is max-min fair, i.e., MASAP load balances the
system throughput amongst active antennas.

3) The computational complexity at the WNs is O(T'C + N)
at every call of the algorithm.

Proof. See Appendix II-D. O

B. G°“: SILP Convergence

Similarly to what has been done for the analysis of G, we
firstly provide a few definitions and propositions which will
pave the way towards the main theorem. Let us define the state
of the system as follows:

Definition 7 (System State). We define the state z°“*(k) of
the system at iteration block k as:

2 (k) = {rj(r), {ry(K),rj (k — 1)}‘7"ezj(n)}j€j\/

In other words, the system state includes for every WN j
its number of active antennas as well as the number of active
antennas of all observed WNs in iterations x and k — 1. We
say that we are in a complete information setting if the set Z;
contains all WNs except j, i.e., Z;(x) = N\{j} for all j and
all k. Otherwise we are in an incomplete information setting.
In this case, we still assume that if a WN has a red MC-flag,
this information is known by every WN*.

In SILP, the unperturbed dynamics is such that the transition
propability from any state to any other state is zero, i.e., all
states are absorbing states. Although this is a very specific
case, the conditions of Lemma 9 showing the existence of a
limit distribution as ¢ — 0 are verified. As a consequence all
states are limit sets.

Definition 8 (Union of max-throughput Limit Sets Y). We
define Y as the union of limit sets including the LSs which
are characterized by maximum system offered throughput.

Definition 9 (Enlarged Union of max-throughput Limit Sets
T*). We define Y* as the union of limit sets including the
LSs in T plus those which can be reached from Y by a single
player imutation.

Definition 10 (Enlarged Union of Pareto Limit Sets Q*). We
define Q* as the union of limit sets including:
o the LSs from Y which are max-min fair.
o the LSs that can be reached from the LSs above by a
single-player imutation

Proposition 3. Regardless of the level of information (com-
plete or incomplete), there always exists a path, i.e., a finite
sequence of stepwise imutations, that leads to Q* from any
LS. Also, there always exists a path that leads to T* from any
LS.

Proof. See Appendix II-E. O
Proposition 4. For any LS w, its radius is R(w) = 1.

Proof. Consider an imutation from w to a state w’. As all
states are absorbing for the unperturbed dynamics, there is no
possible transition from w’ to w. O

Lemma 7. The modified coradii of Q* and Y* are equal to
one. That is, CR*(Q*) = CR*(T*) = 1.

Proof. Tt follows from Proposition 3, Proposition 4 and the
definition of modified coradius (see Definition 21 in Ap-
pendix I-B). O

“In practice, as we will see in simulations, this happens with a high
probability since the information is propagated by every antenna of all WNs.
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Fig. 4. Saturation throughput for CSMA/CA with RTS/CTS as a function of
the number of the contending stations operating on the same channel [20]. All
channels deliver the largest amount of throughput when there are 4 contending
WNs on them; the throughput starts to decrease afterwards.

Lemma 8. In the incomplete information case R(QY*) = 1 and
R(Y*) > 1. In the complete information case R(2*) > 1.

Proof. See Appendix II-E. O

Theorem 2. SILP with complete and incomplete information
converges a.s. to 0* and YT* respectively as the noise term
(k) vanishes. The maximum wait until such unions of limit
sets are reached from any state outside their domain of
attraction is O(e ') as € — 0. The computational complexity
of SILP at every WN is O(N) at every call.

Proof. As R(Q*) > CR*(Q*) and R(Y*) > CR*(Y*) in
the complete and incomplete information case respectively
(Lemma 8 and Lemma 7) the result follows from [19]. The
algorithm always executes steps 1-4, and then executes one
of the following: steps 6-9, steps 10-14, steps 16-20. Steps
1-4 involves a comparison and an assignment, its complexity
is thus O(1). The most demanding operation in each of the
other possible steps is finding a minimum or a maximum in
a set of cardinality at most V. As a consequence, the overall
complexity is in O(N) at every call. O

VII. NUMERICAL ANALYSIS
A. Payoff estimation

It has been so far implicitly assumed that marginal con-
tributions are observable and deterministic at each iterations
and only depend on the number of contending WNs. However,
in real implementations the WNs derive their current payoff
relying on environmental factors which may bring uncertainty
and errors.

We here discuss two possible methods for payoff (i.e.,
marginal contribution) estimation which can be used by the
WNs in combination with random access MAC protocols.

Lookup table The WNs are in possession of a lookup ta-
ble matching the number of contending stations with
the corresponding saturation throughput. Thus, with this
method it is enough for the WNs to count the number of
contending WNs on each accessed channel (the header

ID field is public - see Fig. 2) to derive the corre-
sponding marginal contribution. Uncertainty and errors
can be brought in this case by the estimation of the
number of contending stations. In a small or medium size
network and a reasonnable throughput accuracy, only few
tens of bits are required to store a look-up table. As a
consequence, it can be easily pre-launched by the device
manufacturer or downloaded before operation.

Collision count If the WNs do not know neither N nor
nopr, they can estimate the payoff (i.e., the marginal
contribution) wj? of each of their active antenna at
iteration ¢ with the following approximation:

n ~

T~

in _ &ji — Cji
J Je

i

where n; is the number of time slots in one iteration ¢, {;;
and c;; are the total number of j’s correct transmissions
and collisions on channel 7 respectively. Note that the
value obtained by means of the formula above is a lower
bound of the real value (i.e., 773—? < ﬁ;?), as collisions
with more than 2 antennas involved should not be sub-
tracted (intuitively, collision would have occurred anyway
if one of the 3 or more antennas involved had stepped
back from transmitting). However, the presented formula
suits a fully distributed scenario (can be obtained through
own transmission statistics and sensing operations while
not transmitting); Moreover, the approximation is accu-
rate if the probability of multiple collisions is sufficiently
low. This holds true for loads not exceeding too much
the random access protocol saturation point.

Note that the system designer can cope with uncertainty and
errors (e.g., error-prone channels) by extending the duration of
the blocks « at the cost of a slower convergence. Increasing s
indeed implies that more packets are sent per block, so that a
better estimation of the correct payoff can be achieved in both
look-up table and collision count implementation approaches.

B. Simulation settings

We consider a wireless network made of 8 channels and 10
identical WNss, each of which equipped with 8 antennas. The
WNs apply CSMA/CA as random access protocol on each
accessed channel and the parameters are taken according to
[20] (we equip the WNs with a lookup table based on Fig. 4).
Each WN is characterized by a generic strictly decreasing
noise function ¢(.) which tends to 0 in MASAP and to a very
small constant value in SILP.

We compare our algorithm to the lazy best response (lazy
BR) approach proposed in [3] and to the payoff-based version
of the binary log-linear learning (BLLL) algorithm in [17],
[21]. We compare also the performance to the Pareto NE,
obtained using Lemma 1 and by performing an exhaustive
search over the returned solutions.

With lazy BR, the WNss revise their strategy sequentially: at
each iteration block a pre-determined WN updates its strategy
via a best response update that minimizes the number of new
channels occupied minus the number of old channels released
(old and new are with reference to the previous iteration



block). With this technique, we obtain an asynchronous full
information game where 1) a scheduler is necessary for the
WNss to revise their strategies and apply the lazy best response
sequentially and 2) no equilibrium selection is performed in
terms of fairness.

With BLLL, the WN revise their strategy simultaneously at
the end of each iteration. Every WN calculates its own utility,
which in our case is the sum of the marginal contributions
obtained from the accessed channels. A WN strategy consists
of a pair (aj,vj), where v; is a list of channels to access,
of length a;. The strategy is chosen according to the payoff-
based binary log-linear rule with probability 1 — €(¢) and
uniformly randomly with probability €(¢) eventually tending
to zero or to a very small value. For each j, the payoff based
binary log-linear rule consists of observing the utility obtained
at the current and previous iteration and going back to the
previous strategy with a probability proportional to the utility
difference, see [17] for the details of the algorithm.

For comparison, we assume that SILP iteration blocks, lazy
BR iterations and BLLL iterations have equal duration. Unless
specified, the SILP curves assume a complete information
setting.

C. Simulation results

Fig. 5 displays a realization of the MASAP algorithm in
terms of aggregate system throughput as a function of the
iteration ¢. As one can see, the PNE is reached fairly quickly
(by the 60th iteration).

In Fig. 6 and Fig. 7 the SILP algorithm is compared to lazy
BR and BLLL in terms of total system throughput. In the SILP
case, we see that as soon as the noise vanishes a stochastically
stable limit set contained in the Enlarged Union of Pareto LSs
is attained. With best response update, convergence is much
quicker and a PNE is attained after just 6 iteration blocks.
Differently, BLLL does not converge completely by the set
horizon. This is due to the fact that the WNs strategy set is
very large and the probability that a unilateral single player
strategy revision is improving (in other words, the probability
that a unilateral strategy deviation causes a system throughput
increase) is very low. Notice that the SILP curve depicted
in Fig. 7 displays a slightly lower average throughput at the
equilibrium wrt lazy BR. This can be explained by recalling
that the Enlarged Union of Pareto limit sets (Definition 10)
contains not only the Pareto-efficient LS, but also some LSs
which are in the immediate proximity (they can be reached
if, starting from a Pareto LS, a WN activates an additional
antenna).

Since a Pareto allocation is achieved when the total system
throughput is maximum and equally distributed among WN,
we choose the Jain’s fairness index [22] to study the fairness of
our algorithm. The Jain’s fairness index 7 (.) ranges between
0 and 1 and is maximum if the available resources are
perfectly aligned. The index is calculated at each iteration « as

out\2
T (k,ULuE L U = % Fig. 8 and Fig. 9 show
that the equilibrium selection is very effective. In fact, SILP

converges to a very high fairness index within 10 iteration
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Fig. 6. Aggregate system throughput vs. number of iterations for SILP, BLLL,
lazy BR and at Pareto NE for one realization.

blocks, while lazy BR and BLLL fairness has a decreasing
trend from the initial state.

Fig. 10 shows the fairness degradation in the incomplete
information case, i.e., when the WNs have the ability to
imitate only a limited number of other WNs. In the incomplete
information setting, we assume that every WN is able to
observe 1, 3 or 5 other WNs (chosen uniformly at random
at each iteration block in our simulation). We notice here that
there is indeed a degradation in terms of Jain’s fairness index,
but this degradation is quite limited, especially if compared
with the fairness achieved by lazy best response (Fig. 9).
Moreover, the convergence time is not affected. Note that we
don’t report the system throughput trend under incomplete
information regime. Indeed, even by imitating only one WN
it is possible to achieve a very good information on all the
channels, so that the curves result practically superimposed.
This occurs because a WN flag is representative for all its
accessed channels.

Fig. 11 depicts the number of active antennas per user as a
function of the iteration block x. We see that at the Pareto
equilibrium the total number of active antennas oscillated
between 32 and 33 when €(¢) becomes very small. This is
in line with our definition of Enlarged Union of Pareto limit
sets (Definition 10).

VIII. CONCLUSION

We have considered the problem faced by a set of wireless
nodes having to decide how many and which channels to
access in order to maximize the system offered throughput
and the allocation fairness. The sets of wireless nodes and
frequency channels are assumed homogeneous and we have
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formulated the multi-carrier spectrum access problem as a
multi-objective optimization problem, and have derived the
centralized solution. We have then reformulated the problem
as a distributed spectrum access game and have designed a
bi-level learning algorithm which we have proven to converge
towards an equilibrium state where both fairness and system
throughput are maximized. A possible future work is the
implementation of the proposed approach in a test-bed to
confront theory and practice.

APPENDIX I
BACKGROUND

A. Model of Evolution with noise

Definition 11 (Model of evolution with noise [19]). A model of
evolution with noise or mistakes model is a triple (Z, P, P(¢))
where:

1) Z is the state space of a stochastic process X and is
supposed to be finite;

2) P = (pzz')(z,2)ez2 is a Markov transition matrix defined
on Z;

3) P(€) = (p22/(€))(z,2)ez> is a family of Markov transition
matrices on Z indexed by € € [0,€) s.t.
a) P(e) is ergodic for e > 0;
b) P(e) is continuous in € and P(0) = P;
c) there is a cost function ¢ : Z?> — R U {0} s.t. for

any pair of states (z,z'), lim._,o %’ff) exists and is

strictly positive for ¢, < o0 and p,,:(€) = 0 for small
€if cpp = 0.

Definition 12 (Unperturbed and perturbed Markov chain). In
a model of evolution with noise (Z, P, P(€)), (Z, P) is called
the unperturbed Markov chain and, for any €, (Z, P(¢)) is
a perturbed Markov chain. The family of perturbed Markov
chains indexed by € is called a regular perturbation.

Remark. The fact that P(e) is ergodic ensures that from any
state z € Z, we can reach any state z’ € Z in a finite number of
steps with positive probability. The unperturbed Markov chain
is however not necessarily ergodic. If not, the Markov chain
(Z, P) has one or more limit sets.

Note that the particular design of the perturbation does not
compromise the existence of the limit distribution, since the
specification of the perturbation provided in [19] is sufficiently
flexible so as to allow any stationary specification of noise in



which one may be interested to be represented, provided that
the conditions in Definition 11 still hold. A separate study on
state-dependent mutation rates is also presented in [23].

Definition 13 (Limit set). A limit set (or recurrent class) L
of a Markov chain X = (Z,P) is a set of states of X such
that Vz € L, P[X141 € LI X = z] =1 and Vz,%2' € L, there
exists T > 0 s.t. P[X¢yr = 2'| Xy = 2] > 0.

The unperturbed Markov chain can be interpreted as the
evolution of the system when players follow a predefined rule
of evolution like Best Response. Noise € can be interpreted
as a probability that players do not follow the rule of the
dynamics. For example, if the rule is Best Response, players
choose the best response strategy at the next iteration step with
probability 1 —e and choose any other strategy at random with
probability e. When a player does not follow the predefined
rule, we say that there is a mutation by analogy with what
happens in species evolution.

Definition 14 (State transition cost). The cost or resistance
.. Of the transition z — 2’ is the rate at which the transition
probability p.,.:(€) tends to zero as € vanishes:

0 if Pou(0) >0
Crzt = k iszz'(e) = (a’ZZ' + 0(1))€k
o if P..(e) =0 Vee[0,€]

for some € > 0 and constants a ..

Let p(e) be the stationary probability distribution of the
perturbed Markov chain (Z, P(e)).

Lemma 9 (Existence of limit distribution [24]). There exists
a limit distribution p* = lim._,q p(e).

Thus, p* is a stationary probability of the unperturbed
Markov chain (Z, P):

Lemma 10 ([19]). The set of stochastically stable states is
included in the limit sets of the unperturbed Markov chain

(Z, P).

Definition 15 (Long-run stochastically stable set). A state z €
Z is said to be long-run stochastically stable if and only if
u>0.

Let 2 be a union of one or more limit sets of (Z, P). We
now want to study the conditions for €2 to be stochastically
stable. We also want to know the speed at which €2 is reached.
For this purpose, [19] defines W (x, 2, €) to be the expected
wait until set €2 is reached knowing that we start in state x and
that the system follows the perturbed Markov chain (Z, P(e)).
The goal is to characterize max,cz Wz, Q,¢€).

B. Radius and Coradius Theorem

We start with some definitions of concepts illustrated in
Fig. 12 before giving the main theorem. Define a path
(21,22, ..., 27) as a sequence of states.

Definition 16 (Basin of attraction). Let €2 be a union of one or
more limit sets of (Z, P) and let (21, 22, ..., 2. ) be a sequence
of states. The basin of attraction D(Q) of §) is the set of initial

Fig. 12. Tllustration of the main concepts: basin of attraction D(2), radius
R(2), modified coradius C*(Q2), L1,...,L,_1 are limit sets, x is a state that
maximizes the modified cost to 2, z is a state in D(2).

states from which the unperturbed Markov chain converges to
Q with probability 1, i.e.:

D(Q)={ze Z|Pr[30 s.t. Y7 > B, zg € Qzg = 2] = 1}

Definition 17 (Path cost). For two sets X and Y, a path in Z
is a sequence of states (21,29, ..., z;) With z1,2a, ... € X and
zr € Y. The cost of the path is the sum

T—1
c(21, 29, 0y 27) = Z Caiyzign
i=1

Let S(X,Y) be the set of all paths from X to Y and

C(X,Y) = (21, ey 21)

min
(21,27 )ES(X,Y)
be the set-to-set cost between X and Y. The radius of the
basin of attraction of €2 is defined as the minimum number of
mutations needed to leave D({2) given that we start in €.

Definition 18 (Radius). The radius R(Q2) of € is the minimum
cost of any path from Q) out of D(Q), i.e.:

R(Q) = C(Q, Z — D(Q)).

Definition 19 (Coradius). The coradius C R(Q2) of §) is defined
by:

CR(Q)) = max min

) Zr).
z¢Q (z1,...,2.)ES(2,9Q) T>

c(z1, ...

In other words, the coradius is the minimum number of
mutations needed to reach 2 from the most unfavorable state.

Definition 20 (Modified path cost). Let (z1, ..., z;) be a path
from x to Q. Let L1, ..., L, be a set of consecutive limit sets
with L, < Q and L; & Q for all i < r, through which
the path passes. The modified cost of the pathis obtained by
substracting from the initial cost function the intermediate
radii of the limit sets L;:

(21 ey 27) = (214 00y 27) — ZR(LZ-). %)
i=2

Definition 21 (modified coradius). The modified coradius of

the basin of attraction of ) is defined as:

CR*(9Q) = max min c*(z1, ..
z¢Q (21,...,27)€S(z,Q)

(6)

o Zr).
where min ., . . jes(z,0) ¢* (21, ..., 27) is the modified cost
between a state « and 2.

The theorem proposed by Ellison in [19] is a sufficient
condition to identify a long-run stochastically stable set of
the system. It also gives an lower bound on convergence rate.



Theorem 3 (Convergence to long-run stochastically stable
set with modified cost [19]). Let (Z, P, P(¢)) be a model of
evolution with noise, and suppose that for some set () which
is a union of limit sets R(Q2) > CR*(Q). Then:
1) The long-run stochastically stable set of the model is
contained in §).
2) Forany y ¢ Q, W(y,Q,¢) = O(e OF* @) g5 ¢ — 0.

In other words, if it is more difficult to leave €2 and its basin
of attraction than to come back to it, the long-run stochastically
stable set is contained in €.

APPENDIX II
PROOFS

A. Proof of Lemma 1

We first consider the case Cnopr < AN < ACnopr.
For a given channel allocation profile s, let ys(k) be the
number of channels with k¥ < NN active antennas on them.
Note that Zszo ys(k) = C. A solution s maximizes U(s) if
and only if ys(ko) = C where ko = nopr and y(k) = 0 for
k # ko. Indeed, in this cases the throughput is maximized in
every channel. Among all the s satisfying this condition, we
can pick the ones maximizing fairness as the set of feasible
solutions is finite. Let s° be one of them. Since U(s®) is
a global maximum characterized by the highest fairness
n(s°), it is not possible to increase one of the two objectives
without decreasing the other, which is the definition of Pareto
optimality for multi-objective maximization problems.

We now consider the case N > Cnopr. In this case,
there exists at least a channel with more nopr WNSs on it,
regardless of how the antennas are distributed. Since a WN’s
marginal contribution is negative if the accessed channel has
more than nopr WNs, a WN with more than one active
antenna causes a decrease in the total system throughput
wrt the case with only one antenna, regardless of how the
antennas are distributed. Hence, a solution s maximizes U (s)
only if all WNs have exactly one active antenna. Among all
the s satisfying this condition, we can pick the solution s°
maximizing fairness as the set of feasible solutions is finite.
Let s° be one of them. Since U(s®) is a global maximum
characterized by the highest fairness 7(s?), it is not possible
to increase one of the two objectives without decreasing
the other, which is the definition of Pareto optimality for
multi-objective maximization problems.

Let us now consider the case AN < Cnopr. That means,
there exist solutions where all WNs activate all of their A
antennas active and all antennas bring a positive marginal
contribution. Hence, a solution s maximizes U (s) only if all
WNs have all of their A antenna antennas active. Among all
the s satisfying this condition, we can pick the solution s°
maximizing fairness as the set of feasible solutions is finite.
Let s® be one of them. Since U(s®) is a global maximum
characterized by the highest fairness 7(s), it is not possible
to increase one of the two objectives without decreasing the
other, which is the definition of Pareto optimality for multi-
objective maximization problems.

B. Proof of Proposition 1

First note that every absorbing state is obviously a LS.
We proceed by contradiction by assuming that a LS has two
or more distinct states over which the system cycles in the
unperturbed dynamics. MASAP allows users at ¢ to only
switch back a single antenna to a channel accessed at t — 1. As
a consequence, WNs antennas may only switch between two
channels in the unperturbed dynamics (there is no exploration).
Any antenna that stays on a channel during two iterations
won’t move anymore because the algorithm enters the “else”
condition in steps 16-18 and in the unperturbed dynamics
e = 0. As the LS cycles, there is thus a non empty set of
WNss antennas that switch at every iteration from one channel
to another for ever in a deterministic way. This means that the
system evolves between only two states. As WNs antennas can
compare their utility between these two states, they are able
to choose one of them and stay on the corresponding channel,
this contradicts the fact that these antennas change endlessly.

C. Proof of Proposition 2

We want to show that a single-player single-antenna im-
provement is always possible via unilateral better response if
we are not at a PNE, and that such unilateral improvements
always prompt a system throughput increase. Suppose we are
not at a PNE. Consider two channels ¢ and ¢’ with n; and n;
WNss, respectively. Take a WN j on channel ¢ and moves its
antenna on channel ¢’. Then its utility changes as follows:

Niir = (ng + 1)p(ny + 1) —npp(nyg) —nip(n,)

+(ni — p(n; — 1)

Ifn;—mny =1,then A;yy =0. If n; —my =0, Ay = [(le +
Dp(n;+1) —n;p(n;] — [nip(n;) — (n; —1)p(n; —1)], which is
negative because np(n) is concave. As a consequence, as we
are not at a PNE, necessarily there exist two channels ¢ and
such that n;—n; = 2. Choose any WN on channel ¢ not having
another antenna on 7’ and move its antenna to channel 7. Such
a WN exists because n; — ny > 2. The utility of this WN
changes by A = [(ny+1)p(ni+1)—nyp(ng )| —[nip(ng) —
(n; —1)p(n; —1)], which is positive because np(n) is concave
and n; < n; —1. We thus found a single-player single-antenna
improvement. After this improvement, the system throughput
as changed by: (n;, — )p(n; — 1) + (ny + Dp(ny + 1) —
n;p(n;)+nyp(ny) > 0 because of the concavity of np(n) and
n; —1 > n;. This means that along the improvement path, the
system throughput is strictly increasing. As the strategy sets
are finite, the improvement path is finite. At the end of the
path, as no further improvement is possible, we are at a PNE.

D. Proof of Theorem 1

1) It follows from Lemma 5 and Lemma 6 that R(¥*) >
CR*(¥*) and the application of Theorem 3 in Appendix I

2) Let us first of all show that the internal game can be
seen a distributed welfare game. To this end, let us express
the total throughput of the system in the form of separable
welfare functions [18]:

W(s) = Y Wil{sh)

ieC



where {s}; = {j € N|i € S;} is the set of users using channel ¢
and W;({s};) = n;p(n;), i.e, the total (cumulative) throughput
available at ¢ upon current strategy profile s. As n;p(n;) is
concave, W; is submodular. In a distributed welfare game,
each agent’s utility is defined as some fraction of the welfare
generated at each resource the agent is using. In our case, the
utility of WN j playing strategy S; € S for a given allocation
s can be written:

U(s) = ) dj(nis))
iESj
where d;(.) is the distribution rule at resource i. For the
internal game G*", we have adopted the marginal contribution
distribution rule:

d;j(ni(s)) = Wi({s}i) — Wi({s—;}:)

Thus, d;(.) can be interpreted as a user’s contribution to the
total experienced welfare.

We now show that the Price of Stability (PoS) and the Price
of Anarchy (PoA) are both equal to 1, from which we will
conclude that all PNEs are Pareto efficient. Recall from [18]
that PoS and PoA for distributed welfare games are defined
as:

PoS©) = m i
PoA(G) = min 287 ™

skes W (s?)
where £ is the set of PNEs and s is a Pareto efficient strategy
profile. We know from [25] and [18] that for distributed
welfare games characterized by players’ utility function in the
form of marginal contributions the PoS is equal to one and that
the PoA is at least % We now want to show that all PNEs
have the same welfare value so that PoA = 1. Indeed, as at a
PNE, every two channels ¢ and ¢’ are such that [n; —n;| <1
(see Proposition 2) and as all channels are identical, all PNEs
have the same total throughput.

Let now show by contradiction that the antenna throughput
allocation is max-min fair at a PNE. Suppose that at a PNE, we
can find another allocation such that the minimum throughput
of all antennas is increased. If this allocation is such that |n; —
ny| < 1 for all channels ¢ and 4’, then this is another PNE. In
this case, the minimum antenna throughput is unchanged and
we didn’t increase it. If this allocation is such that there exist
1 and ¢’ such that n; —n; > 1, then we can move one antenna
from channel ¢’ to channel 7 and improve the minimum antenna
throughput. The allocation is thus not max-min fair.

3) Let us evaluate the complexity of MASAP at each call
of the algorithm and as executed by a single WN. MASAP
executes 7' iterations. At every iteration, the payoff for each
accessed channel is computed. Since at most A channels can
be accessed, this operation takes O(A). Steps 13-19 has O(A)
complexity since the most demanding operation is to search
and remove an element from a set of cardinality A. Steps
20-25 have a complexity O(C') because it requires finding a
minimum and a maximum from a set of C' elements at most.
Steps 26-28 is an assignment and thus have complexity O(1).
Steps 29-34 are run only when ¢ = T'. They consist in reading

the headers of at most T" packets (one per slot) and finding an
element in a set of at most IV elements. With C' > A > 1, the
overall complexity is thus O(T'C + N).

E. Proof of Proposition 3

Let us categorize the system limit sets at iteration block x
into unions with similar characteristics:

« LS Union 1 The WNs have experienced at least a
negative marginal contribution (red flag) so that if one
active antenna is turned off the total system offered
throughput increases. This occurs because the channels
are characterized by decreasing marginal contributions.

« LS Union 2 All the marginal contributions are positive
(white flag) for all WNs AND the system offered through-
put can be increased by one additional active antenna
(activated by any of the WNs).

o LS Union 3: All the marginal contribution of all the
WNs are positive (white flag) AND the system offered
throughput can NOT be increased by one additional active
antenna (activated by any of the WNs). Thus, Union 3
contains max-throughput LSs (see Definition 8).

o LS Sub-Union 3.1: WNs’ utilities are not allocated in
a fair manner. That is, Sub-Union 3.1 does not contain
Pareto LSs.

o LS Sub-Union 3.2: This is the Enlarged Union of Pareto
LSs Q*. The states in sub-unions 3.1 and 3.2 are the
states of T*.

We first consider the complete information case and we will
show that there is a single-improvement path to LS sub-union
3.2, which corresponds to 2*. First not that we have paths of
the following kinds: 1 - 2 — 3, 1 — 3, 2 — 3. Indeed, in 1
and 2 the throughput can be increased and is upper bounded, so
that we finish in a state in the union 3. At this stage, either we
reached 3.2 and we found a single-improvement path leading
to 2%, or we reached 3.1. From 3.1, there are paths of the
kind: 3.1 - 1 - 3.1 - ... - 1 — 3.2. Indeed, following
SILP, the WN with the minimum number of active antennas
activate one antenna. As we were in a state maximizing the
sum throughput, we come back to a state belonging to union 1.
In this state, the WN with the maximum number of antennas
deactivates one antenna. As a consequence, in a finite number
of steps of the type 3.1 — 1, all WNs have a number of
antennas that differ by one at most. As we have reached a state
maximizing the sum throughput and we verify the conditions
of Lemma 1, we have reached 3.2.

In the incomplete information setting, the paths 1 — 2 — 3,
1 — 3, 2 — 3 are still feasible as the MC-flag information
is supposed to be known by every WN. However, as WNs do
not know if they have the minimum or maximum number of
active antennas among WNs, we have no guarantee to reach
3.2. In any case, Y* is reached as it is the union of 3.1 and
3.2.

F. Proof of Lemma 8

We start by the complete information case. If we start
from a state w € Q* that is also max-min fair (i.e. Pareto),



with one imutation, we reach a state in Q* by definition
of this set. Otherwise, w is not max-min fair and is at one
imutation from a Pareto state w’. In w’, the MC-flag is thus
white. One imutation from w’ necessary increases by one the
number of active antennas. The MC-flag in w is thus red.
Following SILP, any imutation from w desactivates one active
antenna. This brings back the system to a Pareto state. In the
incomplete information case, the same arguments hold for T*
by distinguishing states that maximizes the sum throughput
and those that are at one imutation away from them.
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