A CLT for linear spectral statistics of large random information-plus-noise matrices - Télécom Paris
Pré-Publication, Document De Travail Année : 2019

A CLT for linear spectral statistics of large random information-plus-noise matrices

Marwa Banna
  • Fonction : Auteur
  • PersonId : 1030996

Résumé

Consider a matrix ${\rm Y}_n= \frac{\sigma}{\sqrt{n}} {\rm X}_n +{\rm A}_n, $ where $\sigma>0$ and ${\rm X}_n=(x_{ij}^n)$ is a $N\times n$ random matrix with i.i.d. real or complex standardized entries and ${\rm A}_n$ is a $N\times n$ deterministic matrix with bounded spectral norm. The fluctuations of the linear spectral statistics of the eigenvalues: $$ \mathrm{Trace}\, f({\rm Y}_n {\rm Y}_n^*) = \sum_{i=1}^N f(\lambda_i),\quad (\lambda_i)\ \mathrm{eigenvalues\ of}\ {{\rm Y}}_n {{\rm Y}}_n^*, $$ are shown to be gaussian, in the case where $f$ is a smooth function of class $C^3$ with bounded support, and in the regime where both dimensions of matrix ${{\rm Y}}_n$ go to infinity at the same pace. The CLT is expressed in terms of vanishing Lévy-Prohorov distance between the linear statistics' distribution and a centered Gaussian probability distribution, the variance of which depends upon $N$ and $n$ and may not converge.
Fichier principal
Vignette du fichier
CLT-NONCENTRE-v3.pdf (415.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01768589 , version 1 (23-04-2018)
hal-01768589 , version 2 (24-04-2019)

Identifiants

  • HAL Id : hal-01768589 , version 2

Citer

Marwa Banna, Jamal Najim, Jianfeng Yao. A CLT for linear spectral statistics of large random information-plus-noise matrices. 2019. ⟨hal-01768589v2⟩
378 Consultations
441 Téléchargements

Partager

More