Pré-Publication, Document De Travail Année : 2025

Convergence rate for the coupon collector's problem with Stein's method

B Costacèque
  • Fonction : Auteur
L Decreusefond
  • Fonction : Auteur

Résumé

In this paper, we consider the classical coupon collector problem with uniform probabilities. Since the seminal paper by P. Erdös and A. Rényi [8], it is wellknown that the renormalized number of attempts required to complete a collection of n items distributed with uniform probability tends to a Gumbel distribution when n goes to infinity. We propose to determine how fast this convergence takes place for a certain distance to be introduced by using the so-called generator approach of Stein's method. To do so, we introduce a semi-group similar to the classical Ornstein-Uhlenbeck semi-group and whose stationary measure is the standard Gumbel distribution. We give its essential properties and apply them to prove that the renormalized number of attempts converges to the Gumbel distribution at rate log n/n.

Fichier principal
Vignette du fichier
Stein's method for the coupon collector problem.pdf (276.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04865020 , version 1 (05-01-2025)

Identifiants

  • HAL Id : hal-04865020 , version 1

Citer

B Costacèque, L Decreusefond. Convergence rate for the coupon collector's problem with Stein's method. 2025. ⟨hal-04865020⟩
0 Consultations
0 Téléchargements

Partager

More