Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks - Télécom Paris
Article Dans Une Revue IEEE Transactions on Intelligent Transportation Systems Année : 2021

Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks

Résumé

Due to the increasing number of car-centered connected services, making efficient use of limited radio resources is critical in vehicular communications. Hybrid vehicular networks dispose of multiple Radio Access Technologies (RATs) like cellular and vehicle-to-vehicle (V2V) networks, with complementary characteristics that allow for developing smarter network traffic distribution methods. This paper proposes a self-adaptive clustering system for ensuring a suitable trade-off between data aggregation (over the cellular network) and communication congestion due to cluster management (within the V2V network). The systems algorithms use a distributive justice approach for selecting cluster heads, to improve fairness among car drivers and hence help the social acceptability of self-adaptive clustering. Simulation results show that this approach significantly improves fairness over time without affecting network performance. This solution can thus optimize the usage of radio resources, reducing cellular access costs, without the need for uniformization among different mobile operators access plans.
Fichier principal
Vignette du fichier
Fair_Self_Adaptive_Clustering_for_Hybrid_Cellular_Vehicular_Networks___V3__Sep_2019_.pdf (1.18 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02421005 , version 1 (20-12-2019)

Identifiants

Citer

Julian Garbiso, Ada Diaconescu, Marceau Coupechoux, Bertrand Leroy. Fair Self-Adaptive Clustering for Hybrid Cellular-Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 2021, 22 (2), pp.1225-1236. ⟨10.1109/TITS.2020.2966279⟩. ⟨hal-02421005⟩
448 Consultations
321 Téléchargements

Altmetric

Partager

More