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Abstract

Synthetic Aperture Radar (SAR) images are abundantly available, yet labels are often missing. Thus, training a neural
network in a fully supervised manner is arduous. In this work, we leverage MERLIN, a self-supervised despeckling
algorithm, to learn a mapping of SAR images into a representation space shared among despeckling, segmentation and
regression. Our experiments demonstrate that the joint training of a neural network for these three tasks reduces consid-
erably the need for labeled data to solve the supervised tasks.

1 Introduction

Deep learning led to unprecedented results in many fields,
among which remote sensing. A wide number of applica-
tions related to Earth Observation from satellite data are
nowadays based of the use of deep neural networks [1]. In
a classical supervised deep learning framework, a model
can learn a given task by looking at a set of annotated ex-
amples. If the training dataset is big enough, the model
can generalize to unseen examples. However, supervised
training strategies are limited by the availability of labeled
data. In particular, remote sensing is characterized by a
wide availability of raw data, but labels are often scarce.
This issue can be mitigated by resorting to self-supervised
learning (SSL).
Instead of training a neural network on a big set of anno-
tated samples for a specific task, an SSL framework lever-
ages unlabeled samples to learn a meaningful representa-
tion of the data that can be transferred on downstream tasks
only by looking at a reduced set of annotated examples [2].
To extract a data structure encoding its semantic without
supervision, one can resort to different techniques such as
unsupervised pretext tasks or strong data augmentations,
which must be carefully designed to avoid introducing un-
wanted properties in the network.
SSL has been successfully applied to natural images and
has sparked a great interest in the remote sensing com-
munity, showing to transfer well to optical images [2, 3].
Instead, Synthetic Aperture Radar (SAR) images are con-
siderably different from natural images in several ways.
The side-looking geometry introduces specific distortions
that depend on sensor orientation: not only this limits the
use of techniques such as image flipping or rotation, but
it makes it difficult to exploit multi-modal SSL techniques
[4] for which a perfect co-registration among the different
modalities is needed to solve pixel-level tasks. Moreover,

as SAR images are acquired by a coherent system, they are
characterized by the presence of the speckle phenomenon,
yielding specific statistics. Thus, the use of SSL to learn a
representation of SAR images is still at its infancy.
In this paper, we propose a multi-task weakly-supervised
framework for SAR images that leverages self-supervised
despeckling. Inspired from DenoiSeg [5], where a neu-
ral network is jointly trained on self-supervised denoising
and supervised segmentation, we show that the despeckling
tasks helps the network to learn a versatile representation
of SAR data that transfers well to regression and segmen-
tation. Moreover, our experiments demonstrate that the use
of despeckling alleviates the need for labeled data in super-
vised downstream tasks.

2 Method

In the proposed weakly supervised framework, a neural
network is jointly trained for despeckling, segmentation
and regression. The network is composed of a common
backbone that learns a representation of SAR data that is
shared between the three tasks. Then, three task-specific
heads are tuned to exploit the common information to pro-
duce the restored SAR image, the segmentation map and
the regression map. As despeckling is self-supervised, dur-
ing training the network always sees all the dataset, mak-
ing it possible to learn a rich representation shared by all
the tasks, whereas the parameters of the two supervised
downstream-specific tasks are learned only based on the
labels that are available. In this way, while the network
learns to suppress speckle from SAR images, it co-learns
to infer the segmentation map and the regression map. The
proposed training pipeline shows that despeckling borrows
itself really well to learn a versatile representation of SAR
data that can be shared among multiple tasks. The rest of
the section recalls the principle of self-supervised despeck-



ling with MERLIN [6] and describes the losses used for the
chosen segmentation and regression tasks.

2.1 SAR despeckling with MERLIN
The random phasor describing a Single-Look Complex
SAR measurement is described by Goodman [7] as the
random walk sum of N elementary scatterers, yielding
z = Aejϕ =

∑N
n=0 Ane

jϕn , with A the amplitude of
the resultant phasor and ϕ its phase. Provided that the N
elementary scatterers are independent and identically dis-
tributed, if N is large the central limit theorem follows.
Thus, we have that the signal z measured for a homoge-
neous area characterized by a reflectivity R follows a cir-
cular Gaussian distribution:

pZ(z) =
1

πR
exp

(
−|z|2

R

)
. (1)

It can be demonstrated that, under the hypothesis stated
above, the real and imaginary parts a and b of the complex
amplitude z = x+ jy are uncorrelated and, as they follow
a Gaussian distribution, this leads to their independence:

pZ(z) = pX(x)pY (y) =
1

πR
exp

(
−x2 + y2

R

)
. (2)

MERLIN [8] leverages the independence of real and imag-
inary parts to decompose the SLC image z into two inde-
pendent sub-images x and y, one serving as input to a neu-
ral network defined as fθ and the other one supervises the
training. By denoting with R̃x = fθ(x) the estimation of
the reflectivity given the real part in input, the loss function
for the despeckling task can be computed as follows:

LD(R̃
x,y) =

1

K

∑
k

− log p(yk|R̃x
k)

=
1

K

∑
k

1

2
log

(
R̃x

k

)
+

y2k
R̃x

k

, (3)

where k indicates the k-th pixel of the image. As the role
of x and y is symmetrical, they can be swapped during
training. At inference time, the estimated reflectivity R̃ is
given by:

R̃ =
fθ(x) + fθ(y)

2
=

R̃
x
+ R̃

y

2
(4)

2.2 MERLIN-multitask: a weakly-
supervised framework for joint de-
speckling, segmentation and regression

We propose a multi-task neural network that makes the
best use of self-supervised despeckling to learn a versa-
tile representation of SAR data. Our work stems from the
hypothesis that, in order to produce a speckle-free image, a
neural network encodes the semantic and the geometry of
the input SAR image. To demonstrate that the representa-
tion learned through despeckling is capable of covering a
set of tasks, we study the behavior of the network on two
different pixel-level tasks: building extraction (segmenta-
tion) and height estimation (regression).

2.2.1 Semantic segmentation
Our neural network is trained on the semantic task of build-
ing extraction. The problem is expressed as a binary seg-
mentation task: each pixel is associated to a positive label
if it belongs to a building, to a negative label otherwise.
Thus, the weighted Binary Cross-Entropy loss is used for
this task:

LS(q̃, q) =
1

K

∑
k

wqk log(q̃k) + (1− qk) log(1− q̃k) ,

(5)

with qk and q̃k the groundtruth and predicted segmentation
mask at pixel k and w a scaling factor accounting for im-
balance between positive and negative pixels in the training
set.

2.2.2 Regression
The regression task that we chose is height estimation. For
this purpose, weights of the regression head are optimized
to minimize the Mean Squared Error (MSE) term between
the groundtruth h and the estimated height h̃:

LR(h̃,h) =
1

K

∑
k

(hk − h̃k)
2 . (6)

2.2.3 MERLIN-multitask
In our weakly-supervised framework, the model is trained
simultaneously for three tasks: segmentation, regression
and despeckling. As it is an extension of MERLIN for the
joint training of three tasks, we refer to it as MERLIN-
multitask. When the input SAR image contains segmen-
tation and regression annotations, the model is jointly op-
timized for the three tasks and to minimize the following
multi-task loss:

Lmultitask = λSLS + λRLR + λDLD . (7)

where λS , λR and λD are three non-negative hyperparam-
eters balancing the weight of the three tasks and have been
chosen empirically. When the input image is not anno-
tated, only the despeckling loss is evaluated, i.e. LS and LR
are set to 0, and the downstream task-specific parameters
are not tuned. Instead, cross-task parameters responsible
for learning a mapping of the input image into the feature
space are always optimized thanks to the self-supervised
despeckling task, indirectly benefiting the two supervised
tasks.

3 Experiments

3.1 Experimental setup
The model backbone is composed by the same U-Net ar-
chitecture used in MERLIN [8]. As in [6], the segmenta-
tion head is composed by 3 convolutional layers. The first
and the second layer of the segmentation head comprise re-
spectively 64 and 32 filters of size 3×3, followed by Leaky
ReLU activations. The last layer is a single 1−d filter with
a sigmoid activation that produces class probabilities for



Figure 1 The proposed SSL framework for joint segmentation and regression leveraging the representation learned
through self-supervised despeckling using MERLIN. A common backbone learns an encoding of the data mainly thanks
to the despeckling task. The task-specific heads for segmentation and regression are lightweight (the parameters of each
block are given between brackets): they resort on the representation learned through despeckling and can be tuned on a
small amount of task-specific labeled data.

each image pixel. The regression head mimics the behav-
ior of the IM2HEIGHT network [9] and is composed of 3
residual blocks.
To serve as a segmentation baseline, we chose a U-Net
architecture following the same structure as the backbone
composing MERLIN-multitask, while for height estima-
tion, we used the IM2HEIGHT network proposed in [9]. It
is worth to point out that the proposed MERLIN-multitask
architecture has approximately 2.7M parameters (Table
1), among which ∼ 350k for the segmentation head and
∼ 1.1M for the regression head, while ∼ 1M of parameters
are shared among the different tasks (Figure 1). Thus, both
the segmentation head and the regression head are consid-
erably lightweight compared to their baselines (U-Net has
∼ 1M parameters and IM2HEIGHT has ∼ 11.2M parame-
ters, see Table 1), thus reducing the amount of labeled data
needed to tune them.
In all our experiments, all models are trained from scratch
with the set of hyperparameters indicated in Table 1. Our
dataset is composed of a 6000 × 10000 pixels TerraSAR-
X HighRes SpotLight acquisition over the city of Paris,
France. The groundtruth is extracted from the BDtopo
database from the french National Geographic Institute
(IGN). The BDtopo is available under an open access li-
cense and it provides geo-referenced vectors describing the
2.5D building geometry. We extracted building segmenta-
tion and building height from it. In order to use them as
groundtruth for the segmentation and regression tasks, re-
spectively, annotations are projected in the slant-range ge-

ometry using the parameters contained in the metadata of
the TerraSAR-X product.
The scene is separated into three non-overlapping areas
for training, validation and test. In all our experiments,
we consider the same training set and decompose it into
smaller patches, as indicated in Table 1. It is worth to
point out that the number of training patches indicated on
the table corresponds to the full (100%) annotated training
dataset. In our experiments with a reduced number of an-
notated patches, baseline models only see the patches for
which labels are available. Instead, MERLIN-multitask al-
ways sees all available patches to train the feature extrac-
tor and the despeckling head, while the network co-learns
to regress height and segment buildings on the portion of
labeled patches.

3.2 Results
For quantitative comparison, segmentation performances
are evaluated in terms of IoU, F1 score and Accuracy,
while regression is assessed in terms of the following



Figure 2 Comparison on building segmentation and height estimation of the proposed MERLIN-multitask with a U-
Net and IM2HEIGHT. MERLIN-multitask shows that the quality of the result is much less affected by a reduction of
the groundtruth labels by a factor 100 than the baseline methods.



Table 1 Description of the training parameters for all experiments carried out with a modified IM2HEIGHT architec-
ture.

U-Net baseline IM2HEIGHT baseline MERLIN-multitask

# parameters ∼1M ∼ 11.2M ∼ 2.7M
# training patches 1189 1493 1189
patch size 512× 512 256× 256 512× 512
stride size 128 128 128
batch size 12 1 1
# epochs 100 100 100

learning rate

{
10−2 10−2 10−2

10−3 after 20 epochs 10−3 after 30 epochs 10−3 after 10 epochs
10−4 after 80 epochs 10−4 after 50 epochs 10−4 after 50 epochs

loss LS LR λS LS +λR LR +λD LD

λS ✗ ✗ 0.9
λR ✗ ✗ 0.1
λD ✗ ✗ 0.9
# validation patches 5 5 5
# test patches 70 70 70

scores:

RMSE =

√
1

N

∑
i

(hi − h̃i)2 (8)

logRMSE =

√
1

N

∑
i

| log10(hi + 1)− log10(h̃i + 1)|2 (9)

Rel =
1

N

∑
i

|hi − h̃i|
|hi|+ 1

(10)

Rellog =
1

N

∑
i

| log10(hi + 1)− log10(h̃i + 1)|
log10(hi + 1) + 1

(11)

Quantitative results are summarized in Figure 3. The
higher the three segmentation scores, the better the results.
As for height estimation, the lower are the errors, the bet-
ter is the estimation. For both segmentation and regres-
sion, MERLIN-multitask shows a slight improvement with
respect to the baselines. The more we reduce the number
of annotated samples in the dataset, the higher the discrep-
ancy between MERLIN-multitask and the baseline mod-
els. While the baseline models exploit only labeled data
and are trained with only 18 batches when 1% of the an-
notated dataset is available, MERLIN-multitask is always
fed with all SAR patches. Indeed, for the speckle reduc-
tion task, labels are not needed. Thus, the network learns
a mapping from the input SAR image to the feature space
that is shared with the segmentation and regression heads.
While their parameters are tuned only on labeled data, the
input representation is more expressive as the network has
learned to model SAR data through speckle reduction. This
property alleviates the need for annotated samples.
Figure 2 shows the building mask, the estimated height
and the restored speckle-free SAR image produced by
MERLIN-multitask. A comparison with U-Net and
IM2HEIGHT is given. When all the dataset is annotated,
the segmented buildings and estimated heights are close to
the groundtruth for all models, although speckle reduction
seems to introduce an implicit regularization and shapes of
the buildings are better respected. However, when only 1%

of annotated patches are available, both baselines perform
poorly, showing a big gap with the result produced with
the same model when trained with more labeled data. In-
stead, MERLIN-multitask suffers less from the scarcity of
labels in the dataset and produces satisfying results both
for building segmentation and height estimation.
Although speckle reduction only serves as a pretext task
in our framework and we are mostly interested in the per-
formances on the two supervised downstream tasks, the
speckle-free images estimated with MERLIN-multitask
displayed in Figure 2 show excellent restoration quality.

3.3 Ablation study
We conducted a study to disentangle the performances on
segmentation and regression from the particular architec-
ture chosen for MERLIN-multitask and show that the im-
provements on the downstream tasks are to be attributed
to the representation extracted by the network on despeck-
ling. To this purpose, MERLIN-multitask has been trained
with different combinations of the three tasks when 1% of
annotated data are available. Table 2 allows to conclude
that there exists a cooperation between regression and seg-
mentation, as there is a slight improvement in the model
trained on both regression and segmentation (3rd line) over
the models trained on a single task (1st and 2nd lines). A
significant improvement is observed when the two down-
stream tasks are trained in combination with despeckling
(last three lines).

4 Conclusion

Self-supervised despeckling offers a unique opportunity to
exploit the abundance of SAR data to extract its semantic
and geometry. In MERLIN-multitask, we exploit the repre-
sentation learned thanks to despeckling to reduce the need
for labeled data in supervised downstream tasks by jointly
training the network for despeckling, segmentation and re-



Figure 3 Quantitative evaluation of the results. Top row compares the segmentation performances of MERLIN-
multitask with the U-Net baseline and demonstrate that higher scores are obtained by MERLIN-multitask, which does
not suffer from data scarcity as much as the baseline. The same conclusion can be drown when observing the bottom
row, comparing the errors on height estimation of the IM2HEIGHT baseline and the proposed MERLIN-multitask ap-
proach.

Table 2 Results with 1% of annotated data on different
combinations of tasks with MERLIN-multitask.

λS λR λD logRMSE (↓) F1 (↑)

✗ ✓ ✗ 0.482 ✗
✓ ✗ ✗ ✗ 0.738
✓ ✓ ✗ 0.480 0.775
✓ ✗ ✓ ✗ 0.838
✗ ✓ ✓ 0.447 ✗
✓ ✓ ✓ 0.424 0.821

gression. Our experiments show that good quality can be
obtained even when only few annotated samples are avail-
able, demonstrating that despeckling allows to train models
with weak supervision.
The remote sensing community has seen a growing in-
terest towards multi-modal transformers pre-trained in a
self-supervised way [10]. Such models generally perform
poorly on pixel-level tasks when only the SAR modality
is available, as they are often pre-trained on image-level
(or patch-level) tasks and the alignment between SAR and
other modalities is not perfect. A promising direction is the
development of multi-modal pre-trained models exploiting
SAR despeckling to improve on pixel-level tasks on SAR
images.
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