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Abstract. In this paper, we propose a vertical side-channel leakage detection on the
decryption function of the third round implementation of CPA-secure public-key encryp-
tion scheme underlying CRYSTALS-Kyber, a lattice-based key encapsulation mechanism,
which is a candidate to the NIST Post-Quantum Cryptography standardization project.
Using a leakage assessment metric, we show that the side-channel information can be
efficiently used to pinpoint operations leaking the secret variable and how masking coun-
termeasures can be applied. We detect leakages in the polynomial multiplication between
the secret key and the ciphertext. We propose and evaluate two different masking counter-
measures, based on additive and multiplicative masking. To the best of our knowledge, the
multiplicative masking has not been proposed before as a countermeasure to CRYSTALS-
Kyber vulnerabilities. We demonstrate their efficiency and discuss their impact in terms of
performance. Our work is beneficial to assess and enhance the security of Post-Quantum
Cryptography against advanced vertical side-channel analysis.

Keywords: Post-quantum cryptography, lattice-based cryptography, CRYSTALS-Kyber,
side-channel analysis, masking countermeasure, additive masking, multiplicative masking.

1 Introduction

Public-key cryptography made it possible to share a common secret-key between two entities
communicating over a non-trusted channel. The most used public-key cryptographic algorithms
are Rivest Shamir Adleman (RSA) [37] and Elliptic Curve Cryptography (ECC) [27]. The security
of these two cryptosystems relies respectively on the hardness of the integer factorization for RSA
and discrete logarithm problem for ECC. These two problems are supposed to be impossible to
solve using classical computers.

However, quantum computers have recently been the subject of a substantial amount of
research. They are known to have the potential to provide the power to brute force current
public key encryption standards in a relatively short amount of time. These computers can break
standard and complex cryptographic algorithms such as RSA and ECC, as reported in [38, 39].
For this purpose, National Institute of Standards and Technology (NIST) called for a proposal to
standardize Post-quantum Cryptography (PQC) schemes. The main functions of a typical PQC
scheme in the NIST evaluation process are Public Key Encryption (PKE), Key Encapsulation
Mechanism (KEM) and digital signature. The NIST submissions rely on different hard problems:
error correcting code, Learning With Errors (LWE), hash-based, multivariate and super-singular
isogeny. The most important and commonly known families of PQC algorithms are LWE and
those based on the hardness of decoding linear codes (also known as code-based algorithms).



PQC schemes based on lattice theory, mainly variant of LWE and Learning With Rounding
(LWR) can be efficiently implemented on hardware and software. The best known and com-
petitive algorithms in NIST competition are CRYSTALS-Dilithium for digital signature and
CRYSTALS-Kyber for KEM.

In addition to the provided security against quantum computers, submitters must also take
into consideration the protection against Side-Channel Attacks (SCA). Several works have been
carried out to evaluate the security of PQC against physical attacks based on power acquisition or
Electro-Magnetic emanation (EM), and fault injection. Some of them and other works, proposed
also a set of countermeasures which can provide security against physical attacks. The NIST
desires the PQC schemes to be resistant to side channel attacks at minimal cost.

Contributions. In this paper we evaluate the masking of the linear part of the current (reference
implementation of the third round) submission of CRYSTALS-Kyber, especially the CPA-secure
decryption function underlying this post-quantum cryptography scheme. After time constancy
check using timecop tool [28], we proceed to a practical application of ISO/IEC 17825 [19];
Namely, we check the implementation is properly masked by applying a vertical leakage detec-
tion and evaluation leveraging the Normalized Inter-Class Variance (NICV) metric [8] on the
secret key. This allows to detect any vulnerabilities related to the long-term key. We evaluate an
additive masking countermeasure at machine-code level, discuss the results of the leakage detec-
tion, and the impact on the performance. As a second contribution, we propose an alternative
countermeasure based on a multiplicative masking which is faster and induces less overhead.
The overall execution time of the decryption procedure has an overhead of about 15% for the
multiplicative masking versus 32% for the additive one. We discuss the provided security level
of this proposition to protect the polynomial multiplication as well as its impact on the perfor-
mance. A comparison between these two schemes is provided, where we explain in which respect
our multiplicative masking scheme happens to be better than the additive one in some other
implementations.

Outline. This paper is organized as follows: section 2 covers the related works on the lattice
based post-quantum cryptography, side-channel attacks on this topic and the possible counter-
measures. We summarize the recent analyses performed on lattice based implementation of the
NIST competition previous round . Section 3 explains our analysis methodology, our attack sce-
nario and the used leakage detection metric. Section 4 shows our experimental results on the
reference implementation of CRYSTALS-Kyber, on the additive masking countermeasure, and
on our proposition based on a multiplicative scheme. Finally, Section 5 concludes our paper.

2 Related Works & Background

2.1 Overview

Lattice-based cryptography [26] is a very promising PQC family. It offers a very strong security,
and also a great simplicity, flexibility as well as an efficient implementation. Lattices are the most
actively studied techniques and are used to construct key exchanges schemes, digital signature
schemes, and fully homomorphic encryption schemes.

However, lattice-based cryptosystems have some disadvantages which restricts their usage
in practical applications. One of them is the large size of the public key, the secret key, and
ciphertexts. Thus, researchers introduce new algorithms based on LWE, which have the same
hardness as the worst-case lattice problems.
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CRYSTALS-Kyber [4] is a lattice-based KEM. It is one of the official finalist schemes of the
NIST third-round competition. The security of this scheme is based on the difficulty of the Ring-
LWE (R-LWE) problem. There are three variants of the scheme, namely Kyber512, Kyber768 and
Kyber1024, which offer similar levels of security to AES-128, AES-192 and AES-256 respectively.

2.2 Notation

The algebraic structure used in CRYSTALS-Kyber scheme is the polynomial ringRq = Zq[X]/f(X),
with f(X) = Xn+1. We note R = Z[X]/f(X) where Z[X] is the polynomial ring with coefficients
in Z and f(X) is a cyclotomic polynomial. Elements of R are polynomials of degree less than n
and coefficients in Z. Elements of Rq = Zq[X]/f(X) are polynomials of degree less than n and
coefficients modulo q, where Zq[X] is the polynomial ring with coefficients modulo q. Elements
of the ring Rq are noted in lowercase (a ∈ Rq), we denote by [a]q the elements in R obtained by
computing all its coefficients modulo q, a+ b (resp. a · b) is the addition (resp. multiplication) of
two polynomials a and b in Rq. In the case where a and b are two vectors in Rlq with elements
ai and bi in Rq, the addition of a and b is a + b is a vector of l elements ai + bi in Rq and the
canonical scalar product is used for the multiplication a · b which is a vector of l elements aibi in
Rq. For x ∈ R we denote by bxe rounding to the nearest integer, dxe, and bxc rounding up and
down. In practice, n = 256 and q = 3329 is a prime number.

2.3 LWE/R-LWE Problems

In 2005, Regev [35] introduced the LWE problem, which consists in finding a secret in the middle
of noisy linear equations. Regev has shown that solving the LWE problem in the average case by
a quantum algorithm involves solving the SIVP [2] and gapSVP [10] problems in the worst case.
R-LWE [24] is the polynomial ring version of LWE problem. CRYSTALS-Kyber is based on the
decision version of the RLWE problem, which consists in distinguishing between RLWE samples
and uniformly random ones. The problem is described in the mathematical ring formed by degree
d polynomials over a finite field such as the integers modulo a prime number q. Let φ(x) be a
cyclotomic polynomial of degree d, and q ≥ 2 a modulus depending on a security level λ. For a
random s ∈ Rq and a distribution χ = χ(x) over R, the problem consists in distinguishing (a,
[a · e + s]q) from a random pair sampled uniformly from Rq ∗ Rq, where a is a random element
of Rq and e a noise term from χ.
For any cyclotomic ring R of degree n, modulus q < 2poly(n) and error distribution χ of error rate
0 < α < 1 where αq ≥ 2

√
n, solving the RLWEq,χ,m problem is at least as hard as quantumly

solving the SV Pγ problem on arbitrary ideal lattices in R, for some γ = poly(n)/α.

2.4 Side-channel Attacks on Lattice-based Cryptography

SCA on lattice-based Post-quantum cryptography has been performed. Xu et al. propose in [41]
an SCA with carefully constructed ciphertext on CRYSTALS-Kyber, and demonstrate that spe-
cial chosen ciphertexts attack allows an adversary to modulate the leakage of a target device
and enable full key extraction through Simple Power Analysis (SPA). Pess et al. in [30] intro-
duced several improvements to the usage of belief propagation, which underlies the single trace
attack and changed the target encryption instead of decryption which limited attacks to the
recovery of the transmitted symmetric key, but in turn, increased attack performance. Ravi et
al. demonstrated in [34] a generic and a practical SCA using a chosen ciphertext attack over
multiple LWE/LWE-based PKE and KEM secure in the Chosen Ciphertext Attack (IND-CCA).
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They showed that the side-channel information can be efficiently used to instantiate a plaintext
checking oracle, which provides binary information about the output of decryption, typically
concealed within IND-CCA secure PKE/KEM, thereby allowing such attacks. In [32], Ravi et
al. reported an important exploitable vulnerability through side-channel attacks for message re-
covery in five lattice-based PKE and KEM implementations namely NewHope, Kyber, Saber,
Round5 and LAC. The reported vulnerabilities exist in the message decoding function which is
a fundamental kernel used in lattice-based PKE/KEM. Further analyses of the implementations
in the public pqm4 library revealed that this function is implemented in a similar manner in all
the identified schemes, and thus they all share the common side-channel vulnerability that leaks
individual bits of the secret message. They demonstrate that the identified vulnerability can
be exploited through a number of practical electromagnetic side-channel attacks, fault attacks
and combined attacks on implementations from the pqm4 library running on ARM Cortex-M4
microcontroller.

Ravi et al. demonstrated in [33] practical fault attacks over a number of lattice-based schemes
based on the hardness of the LWE problem. One of the common traits of all the considered LWE
schemes is the use of nonce as domain separators to sample the secret components of the LWE
instance, and showed that simple faults targeting the usage of nonce can result in a nonce-reuse
scenario which allows for key recovery and message recovery attacks.

2.5 Countermeasures

To prevent SCA, some countermeasures can be adopted and applied to a given algorithm. In the
following, we give the most important countermeasures, from the basic ones to prevent timing
attacks [21], to the most advanced ones to prevent as well vertical and template attacks.

Constant time. When the execution time of an algorithm is constant whatever the inputs, it
becomes impossible to mount any timing attack. It is sufficient to implement constant-time
operations only for the sensitive ones. In fact, if the timing variation is independent from sensitive
data, or does not involve the key, the attacker cannot learn anything about the secret. Besides,
some countermeasures are based on delay insertion, jitter and fake operations to intentionally
desynchronize the traces and make vertical attacks more difficult to achieve. Thus, the algorithm
is vulnerable only if the timing variation depends on the secret key (or any sensitive data).

Vertical Side Channel Attacks – Masking. The masking countermeasure is used to make the
power consumption independent from the processed data. Thus, it makes attacks such as Dif-
ferential Power Analysis (DPA) and Template attack non-effective. Masking was used in or-
der to construct side-channel resistant implementations for some lattice-based schemes such as
CRYSTALS-Dilithium [14], qTESLA [15] and SABER [5]. When the intermediate data are ran-
domized, the attacker cannot build a leakage model that correlates with the physical leakage.
Particularly, the power consumption and EM emanations become independent from the secret
data. The principle of this countermeasure is to split the sensitive variable into random shares in
order to eliminate the computation dependency on the secret data. Usually, the sum of the shares
is equal to the secret data. In that case, we talk about additive masking. Besides, another type of
masking exists: multiplicative masking, where any value is expressed as a product of shares. Some
masking techniques have already been presented in [29,36] for the R-LWE public-key encryption
scheme. In parallel to our research, a completely masked implementation of CRYSTALS-Kyber
using only additive and Boolean masking for the Chosen Plaintext Attack (IND-CPA) decrypt
has been presented in [9]. The main difference of this paper with ours is that we propose a
multiplicative masking on this purpose which induces less overhead on the performances.
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Countermeasures against fault injection. Deterministic algorithms are more sensitive to fault
injection [6, 40]. Many algorithmic countermeasures have been proposed based on redundancy.
However, in most of the cases, the overhead is very important. Some of them checks only cer-
tain variables and thus, limits the complexity [7]. Hardware-based countermeasures like sensors
can also be used to detect any abnormal change on the clock, voltage, or temperature. These
countermeasures can detect global and even local fault injection like EM or Laser injection. In
the case of signature based on public key encryption, all deterministic protocols are vulnerable
to fault attacks [31]. Additional randomness to make signature non-deterministic is an effective
way to counteract all proposed Differential Fault Attack (DFA). In the case of Crystal-Dilithium,
the authors of [12] showed that additional randomness is proved to be the most effective coun-
termeasure.

3 Analysis Methodology

3.1 Our Objective

Official reference and optimized implementation of CRYSTALS-Kyber are unprotected against
SCA. In this section, we describe a test to pinpoint side channel leakages. It plays two roles on
the sequel:

– It allows to identifying the lines of code which are leaking.

– In case no leakage is detected it allows to prove that implementation is not leaking informa-
tion.

We first check the time constancy of the CYSTALS-Kyber implementation indeed SCA requires
traces to be aligned. For this purpose we use time constancy checking tool timecop. Results
showed that the NIST third round submission of CRYSTALS-Kyber is constant-time and does
not contain timing leakages.

In our analysis scenario the key generation function of CRYSTALS-Kyber is only executed
one time in order to generate the long-term key-pair, the attacker can only acquire one trace.
Thus operations performed in the key generation function are vulnerable only to one trace based
attacks, such as SPA and Template attacks. without being helped by a cryptanalysis attack,
those attacks have a small chance of success then we do not cover them. Once the long-term
key-pair is generated, the public key is used to encapsulate a (symmetric) secret key. In the other
side, the secret key is used to decapsulate the ciphertext. An attacker that has access to the
decryption step, can give different inputs and record EM or power activity. In addition to single
trace based attacks, the decryption is also vulnerable to vertical attacks such as DPA [20] and
Correlation Power Analysis (CPA) [11].

The most critical operation of the decryption step is the polynomial multiplication denoted
by o which multiplies elements of the ciphertext and the secret key and accumulates the result
obtained (line 4 of Alg. 1). This function allows to avoid timing leakages by using Montgomery
Reduction. However is stills vulnerable to vertical side-channel attacks cited above as presented
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in [17, 18]. In this paper, the goal is not to mount a CPA/DPA attacks, but rather to detect
potential leakages that could be exploited by these attacks.

Algorithm 1: KYBER.CPAPKE.Dec(sk, c): Decryption

Input: Secret key sk
Input: Cipherext c = (u, v) ∈ Rq
Output: Message m

1 u := Decompressq(Decodedu(c), du)
2 v := Decompressq(Decodedv (c+ du.k.n/8), dv)
3 ŝ := Decode12(sk)
4 m := Encode1(Compressq(v −NTT−1(ŝ ◦NTT (u)), 1))
5 return m

The Compress function, when applied to a vector in Rkq , takes each coefficient in x ∈ Zq
and outputs an integer in 0, . . . , 2d − 1 where d < log2(q). Formally Compress(x, d) = b 2

d

q ×
xe mod 2d andDecompress(x, d) = b q

2d
×xe.Decodel function is used to transform an array of 32l

bytes into a polynomial f = f0+f1X+. . .+f255X
255 where fi ∈ 0, . . . , 2l−1. The function Encodel

is the inverse of Decodel. The Number Theoretic Transform (NTT) [23] is an efficient way to
perform multiplication of two polynomials in Rq. The complexity of a polynomial multiplication
using NTT method is O(n log(n)) instead of O(n2) in the case of näıve multiplication.

3.2 Leakage Detection Test

Leakage detection metric. The NICV [8] can be used to detect inherent leakage of a given
parameter. The traces are classified with respect to the parameter value to compute the inter-
class variance. When normalized by the total variance, only the samples where the parameter is
manipulated will yield peaks.

The NICV is defined as follows:

NICV (Y,X) =
V [ E (Y | X ) ]

V[Y ]
(1)

where Y is the traces and X refers to the parameter used to classify Y . The NICV is a bounded
quantity: 0 ≤ NICV (Y,X) ≤ 1. When the NICV is small (resp. large), the implementation is
secure (resp. insecure).

Definition 1. An implementation is secure if NICV is lower than 0.3 on all samples of a traces.

Discussion: Indeed, as one will see on the NICV traces, there is some estimation error, which
is empirically evaluated to 0.1 for 500 traces. Thus 0.3 is a conservative value: choosing less
than 0.3 would have led to false alarms, whereas choosing a larger threshold would have led to
undetected leaks.

We performed NICV on the polynomial multiplication function, using the secret key ŝ where
ŝ := Decode(sk), and identified the leaking operations (lines of code). The NICV on the cipher-
text u, where u := Decompressq(Decodedu(c), du) showed common leaking operations. Thus,
those operations are critical and sensitive, when an attacker can acquire many traces with ran-
dom ciphertexts.

We proposed an additive masking scheme, and showed the efficiency of this countermeasure
and its impact on the implementation performance. Finally, we implemented our proposed variant
based on a multiplicative masking, which has less impacts in terms of performance.
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4 Experimental Results

4.1 Flow

In order to generate traces of the polynomial multiplication we simulate the SCA activity of
the target implementation based on the CPU register content. Indeed, while performing step by
step execution, all CPU registers are observed and their content is extracted after each executed
instruction. Finally the Hamming Distance (HD) is computed over the CPU register content
acquired from instructioni and instructioni+1. This simulates efficiently the SCA activity of the
implementation which is highly correlated with the number of switching bits. As a result, the
number of samples of each obtained trace equals the number of instructions.

Fig. 1: Workflow of our analysis methodology.

The general workflow of our evaluation methodology from the design implementation to the
trace simulation is illustrated in fig. 1:

– We use the binary as design to evaluate the implementation.
– The test vectors are the inputs to the binary and consist of:

• 500 random ciphertexts to detect leakages depending on the ciphertext.
• 500 random secret keys to detect leakages depending on the secret key.

– Executing the binary, observing and storing registers of the CPU.
– Simulating traces of EM from the register content using the HD model.
– Using NICV to check the security of the implementation. The implementation is secure if

NICV is lower than 0.3.
– If the implementation is not secure, performing diagnose and cure phase in order to provide

protection.

4.2 Analysis of CRYSTALS-Kyber – Reference Implementation

Using the reference implementation of the official submission of CRYSTALS-Kyber, we have
generated 500 traces of the point-wise multiplication with fixed ciphertext and random secret
key in order to locate all the leaking operations. Each trace makes 142761 samples corresponding
to each instruction of that function. We then capture the NICV coefficients of the secret key ŝ
(obtained at line 3 of Alg. 1) which has 256 × k coefficients where k ∈ {2, 3, 4} fixes the lattice
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Fig. 2: Leakage peak in NICV of first coefficients of the secret key

dimension, and is the main mechanism in CRYSTALS-Kyber to scale security of different levels.

When targeting the first coefficients of ŝ, the NICV peak is located at the beginning of the
trace (fig. 2). The peak is offset with respect to the targeted coordinate index. This represents
exactly the way how the decryption function is implemented: the leakage corresponds to the
pointwise multiplication “ŝ ◦NTT (u)” at line line 4 of Alg. 1. When targeting the last ones (fig. 3),

Fig. 3: Leakage peak in NICV of last ten coefficients of the secret key

the NICV peaks are located at the end of the trace. It is easy to see that the peaks are located
at equally spaced positions, which is consistent with the ŝ coordinates being consumed one after
the other. The same results are observed using the ciphertext thus, both parameters are leaking
at same samples. The tool used for the analysis allows to map samples to the corresponding lines
of code. By applying a threshold of 0.3 on the results of the NICV, we obtain the elementary
operations and functions that are leaking. The leaking function are:
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– basemul called by poly basemul montgomery, multiplication of two polynomials in NTT do-
main. basemul is a multiplication of two polynomials in Zq[x]/(x2 − ζ), where ζ is 256− th
root of unity modulo q, used to multiply two elements in Rq.

– fqmul (called by basemul) which is a multiplication followed by a Montgomery reduction.

– montgomery reduction called by fqmul bit integer a × R−1 mod q, where R = 216 (Beware
that R stands here for the Montgomery constant, and it not the lattice ring introduced in
section 2.2).

Those functions can be found at the reference source code of CRYSTALS-Kyber implementation
[1].

The value of the NICV peaks are upper than 0.3 thus the implementation is not secure we
therefore go to diagnose and cure step. To eliminate those vulnerabilities, we implement and
evaluate the masking countermeasure. This will be detailed in the next sub-sections.

4.3 Analysis of Masked CRYSTALS-Kyber Implementation – Additive Masking

Additive masking consists of randomly splitting secret data into several shares. This solution will
be used to protect sensitive data in the algorithms of the key generation and the decryption of
CRYSTALS-Kyber

Key Generation. At the key generation step, the secret key sk = NTT (s) should not be stored
in clear. A random sk1 is picked uniformly in β24·k·n/8+96, where β is the set of 8-bit unsigned
integers (we denote by βk the set of byte arrays of length k). Then, the second member sk0 is
computed as

sk0 = sk − sk1.

The secret key is then stored after the key generation as (sk0, sk1). Alg. 2 describes the
additive masking for key generation.

Algorithm 2: Key generation suitable for additive masking

Input: (sk)
Output: (sk0, sk1)

1 Pick a random sk1 uniformly sk1 ∈ β24·k·n/8+96

2 sk0 := sk − sk1
3 return (sk0, sk1)

Decryption. In the case of decryption, the computation of ŝT ◦NTT (u) is sensitive as already
detected with our methodology in section 4.2. Since the multiplication is performed in NTT
domain, the computation of ŝT ◦NTT (u) is equivalent to the polynomial product sT ·u. Remember
that ŝ = NTT (s), the secret key sk = sk0+sk1 and the first element u of the ciphertext c = (u, v)
is in βdu·k·n/8. With the additive masking, the polynomial multiplication is performed as:

ŝT ◦NTT (u) = ŝ0
T ◦NTT (u) + ŝ1

T ◦NTT (u).

This property leverages the linearity of the NTT.
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The total overhead of the additive masking is k point-wise multiplications in Rq, and k
additions in Rq. Alg. 3 describes the additive masking for decryption step.

Algorithm 3: Decryption – protected by additive masking

Input: u, (sk0, sk1)
Output: ŝT ◦NTT (u)

1 ŝ0 := Decode(sk0)

2 Compute ŝ0
T ◦NTT (u)

3 ŝ1 := Decode(sk1)

4 Compute ŝ1
T ◦NTT (u)

5 ŝT ◦NTT (u) := ŝ0
T ◦NTT (u) + ŝ1

T ◦NTT (u)

6 return ŝT ◦NTT (u)

Each trace of the polynomial multiplication using the additive masking algorithm is made up
of 285527 samples which is almost two times the size of the unprotected one (142761), indeed
this operation is performed twice (line 5 of Alg. 3). This gives us a first idea about how this
protection impacts the implementation overall performance this will be discussed in section 4.5.

The NICV on CRYSTALS-Kyber using additive masking shows the efficiency of this coun-
termeasure. The results show that the secret key is no longer leaking in the polynomial multi-
plication. Figure 4 shows the NICV on the 10 first coefficients of the secret key and there is no

Fig. 4: NICV on the secret key after additive masking countermeasure

significant peak (all peaks are lower than 0.3). Same results are observed for all the coefficient
of the unpacked secret key. This should prevent an attacker from building a vertical SCA, such
as DPA, to recover the secret key.

Despite that the additive masking offers resistance against DPA, the overall execution time
of the implementation is hampered. In section 4.4, we propose an alternative masking counter-
measures, providing the same resistance against vertical SCA with less impact on the overall
performance of the decryption.
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4.4 Analysis of Masked CRYSTALS-Kyber Implementation – Multiplicative
Masking

The idea of the multiplicative masking is to write sk as r−1 × (r × sk). r can be chosen as a
random number in Z∗

q . In our case, we suggest to use a random integer r. As q is a prime number,
r is invertible in Zq.

Notice that multiplicative masking employs a non-uniform random (since it cannot be null),
hence is subject to first-order attacks. For instance, the multiplicative masking on AES by Akkar
and Giraud [3] has been attacked by Golić and Tymen [16], though some repairs are possible
(in hardware [25]). However, multiplicative masking on asymmetric algorithms is still common
practice, as operands are largers than 8-bits (case of AES). Hence the first-order leakage decreases.
For instance, multiplicative masking is suggested by Kocher on RSA [22] (also known as base
blinding), then later on by Coron on ECC [13] (also known as randomized projective coordinates).
We leverage this countermeasure for lattice-based cryptography.

Key Generation. At the key generation step, the secret key sk = NTT (s) is not returned in
this way. The secret key is randomized as described in algorithm Alg. 4. A random r is picked
uniformly in Z∗

q . The member rsk ∈ β24·k·n/8+96 is computed as:

rsk = r × sk.

The member r inv is computed as r inv = r−1 mod q. This inversion can be performed
with an algorithm like the extended Euclidean algorithm, or using a pre-computed table, that
stores the inverse of each element in Zq. The secret key is then stored after the key generation
as (r inv, rsk).

Algorithm 4: Key generation suitable for multiplicative masking

Input: sk
Output: (r inv, rsk)

1 Pick a random r in Z∗
q

2 rsk := r × sk
3 Compute r inv as r−1 mod q
4 return (r inv, rsk)

Decryption. The computation of ŝT ◦NTT (u) will be performed as:

ŝT ◦NTT (u) = r̂sT ◦ (r inv ×NTT (u))

owing to the invariance of the NTT by scaling by 1 (recall 1 = r inv × r).
In the case of the multiplicative masking, the total overhead is n multiplications in Zq.

Alg. 5 describes the multiplicative masking for the decryption step. The overhead incurred over
unprotected version is negligible compared to the overhead in the additive masked decryption.

Algorithm 5: Decryption – protected by multiplicative masking

Input: u, (r inv, rsk)
Output: ŝT ◦NTT (u)

1 r̂s := Decode(rsk)
2 Compute r inv ×NTT (u)

3 ŝT ◦NTT (u) := r̂sT ◦ (r inv ×NTT (u))

4 return ŝT ◦NTT (u)
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Fig. 5: NICV on the secret key after multiplicative masking countermeasure

The results of NICV on the 10 first coefficients of the secret key are shown in fig. 5. As for the
case of the additive masking scheme, no significant peak is detected. Furthermore, this masking
countermeasure does not impact the overall cost of CRYSTALS-Kyber implementation because
only one polynomial multiplication is performed.

4.5 Discussion

In this work, we have tested the different analysed implementations on a host machine equipped
with an Intel core (i7-6700K CPU 4.00 GHz). We have measured the average and the median
execution time to see the impact of each countermeasure in terms of performance.

Table 1: Performance benchmarks for different implementation of CRYSTALS-Kyber-512
decryption – Intel (R) Core (TM) i7-6700K CPU 4.00 GHz.

Implementation
#Cycles

Overhead (%)
Average Median

Unprotected (Ref.) 210694 197150 –
Protected (Additive) 278772 260292 32 %

Protected (Multiplicative) 243151 234521 15 %

We reported the performance of each implementation in table 1. The results show that the
overall execution time of the decryption procedure has an overhead of about 32% and 15 %
for the additive and the multiplicative masking respectively. We notice that the key generation
outputs the secret key on NTT domain. Thus, in the decryption stage, we do not need to convert
the secret key shares. In the additive masking implementation, only the ciphertext (the variable
u) is converted on the NTT domain. This explains why the overhead is not doubled, as we know
that the most consuming part is the polynomial multiplication. Only a point-wise multiplication
is performed in this case, which is not a full polynomial multiplication for instance. If the secret
key is not outputted on NTT domain, the overhead will be more significant in the case of additive
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masking, but not for the multiplicative variant, where no addition point-wise (or polynomial)
multiplication is needed. This may be more interesting for other variants of LWE algorithms
where the usage of NTT is not possible (for example when the modulus in not a prime).

5 Conclusion

In this paper, we identified vertical side-channel vulnerabilities in the current version of the
lattice-based PQC algorithm CRYSTALS-Kyber which is a KEM finalist candidate of the NIST
standardization project. We experimentally demonstrated with the leakage detection metric
NICV, the presence of leakages depending on the secret key in the NTT domain polynomial
multiplication, used in the IND-CPA decryption function. We then study additive masking pro-
posed previously in the literature and propose to the best of our knowledge for the first time, a
multiplicative masking solution adapted to CRYSTALS-Kyber. We show the efficiency of each
masking scheme against vertical attacks, namely by computing and showing that the NICV does
not feature any significant peak that may be interpreted as a leakage based on the same number
of traces as in the first experiment. Finally, we compare the overhead of each proposed counter-
measure (compared to the vanilla reference code available from NIST submission website) and
we show that the multiplicative masking performs better for the same security level.
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16. Jovan Dj. Golić and Christophe Tymen. Multiplicative masking and power analysis of AES. In
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