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Abstract

Side-channel attacks based on speculative execution
have gained enough traction for researchers. This has
resulted in the development of more creative variants
of Spectre and its defences. However, many of these
defence strategies end up making speculative execu-
tion or branch prediction ineffective. While these
techniques protect the system, they cut down per-
formance by more than 50%. Hence, these solutions
cannot be deployed.

In this paper, we present a framework that not
only protects against different variants of Spectre but
also maintains the performance. We prototyped this
framework using a novel tool SpecDefender. It lever-
ages Hardware Performance Counter (HPC) regis-
ters to dynamically detect active Spectre attacks and
performs dynamic instrumentation to defend against
them. This makes the tool widely applicable without
any need for static analysis. Overall, the tool brings
back the balance between performance and security.

The tool was evaluated based on its accuracy and
precision to detect an attack in different scenarios. It
exhibit ¿90% precision when five out of ten processes
were simultaneously attacked. The response time for
the tool to detect is 2 sec. Furthermore, the through-
put of the process under attack was comparable to
normal execution in presence of SpecDefender.

Keywords: Transient execution attack, specula-
tive execution, Spectre, runtime attack detection, ef-
ficient mitigation.

1 Introduction

Performance and power are two primary deciding fac-
tors in the CPU supremacy race. Hence CPU archi-
tecture designers are forced to consider the trade-off
between power and performance. The security as-
pects are overlooked in this tug of war. One such
performance-enhancing feature is speculative execu-
tion. It avoids stalling the pipeline by predict-
ing the outcome of conditional branching and spec-
ulatively executing corresponding instructions. If
the prediction is correct, the results are commit-
ted. Whereas, if the prediction turns out to be
incorrect, it aborts speculative execution and dis-
cards the results by flushing the pipeline. How-
ever, the speculative execution has already affected
the micro-architectural state, which comprises inter-
nal registers, flags and cache, cannot be rolled back.
The modified micro-architectural state can be cap-
tured using covert channel cache attacks, such as
Flush+Reload [25], Flush+Flush [9], that take ad-
vantage of the faster load time of recently accessed
data. Spectre is an attack that is based on the com-
bination of three factors, CPU optimization that al-
lows non-linear code flow using branch predictor, ex-
ecution of illegal instructions using speculative exe-
cution and retrieval of leaked information using cache
attack. The meaningful information leakage is ampli-
fied by selectively targeting the vulnerable code. This
leaked information consist of metadata of a library in
use, or even a private key recovery.

The feasibility of executing a successful attack is
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non-trivial, citing its likelihood as per CWE-1037
as low [1]. Nonetheless, the attack relies on fun-
damental performance-optimizing blocks on all mod-
ern general-purpose processors. Therefore, the im-
pact of spectre on security cannot be ignored. There
are numbers of detection and mitigation techniques
that have been proposed [24][21]. Detection tech-
niques can be static, e..g., leveraging symbolic execu-
tion [10], program verification frameworks [4], of dy-
namic, e.g., leveraging performance counters [15], or
detecting Spectre gadgets off-the-fly [19]. For static
analysis tools, given a set of inputs and secure mem-
ory objects, these tools identify patterns that are vul-
nerable to Spectre attack. They are excellent at iden-
tifying the correctness of a program but lack sound-
ness and completeness of the analysis when the size
is large. On the contrary, dynamic analysis is quite
efficient at identifying known patterns of attack.

Disabling speculative execution or branch predic-
tion will cause a significant drop in performance and
hence mitigation of Spectre at the hardware level
is difficult. Introducing load barriers before con-
ditional jumps [11], linearizing code by eliminating
branches [21], protecting linear basic blocks by flush-
ing BTB (Branch target buffer) at the entrance [16].
A study on performance evaluation of deployed miti-
gations in compiler and operating systems for Spectre
have already observed an overhead of 20% [5]. Some
mitigation proposes a brute force approach of force
stopping the program under attack [15]. This ap-
proach seems applicable only to a non-crucial appli-
cation but cannot be applied to crucial applications
such as firewalls and antivirus. It will allow an at-
tacker to perform a multistage attack where Spectre
will be the first stage used to kill the firewall service.
All these mitigations ensure security at the cost of
performance or denial of service. Both these conse-
quences are undesirable to a user and hence cannot
be productized. This raises two important questions.
Is it possible to maintain availability while Spectre

is active? Is it possible to ensure security without
impacting user experience?

In this paper, we answer both of these questions
positively. We propose a novel approach to main-
tain a balance between security and performance. We
present a tool that dynamically identifies Spectre at-

tacks on a process and protects the system with tem-
porary mitigation while the attack is still active. This
dynamic defence mechanism allows users to efficiently
run the Spectre-vulnerable process without the need
for hardware/software upgrades, OS/compiler miti-
gations or hardware countermeasures. There are two
ways to perform dynamic protection:

1. Temporary run-time instrumentation of process
with mitigation.

2. Maintain two pre-compiled binaries, one efficient
without Spectre mitigation and another ineffi-
cient with Spectre mitigation.

Run-time instrumentation and loading of inefficient
Spectre-safe binary are performed only when an at-
tack is detected. It not only ensures the availability
of the service but also provides better performance
overall. Spectre is a transient execution attack. It im-
plies it is temporary and the attack needs to perform
a cache attack along with continuous patterned exe-
cution to leak information. Cache attacks are known
to be suppressed under noise, hence it takes a longer
time to leak secrets[9]. Our tool SpecDefender has
a very short response time which helps in detecting
Spectre before it is successful.

For our evaluation, we analyzed the precision and
accuracy of the tool to identify and defend against
Spectre while multiple attacks are active on different
processes. We evaluate the time taken from the start
of analysis to defending the attack. And compare the
performance gain of our solution with the existing
approach of statically disabling branch prediction.

1.1 Contributions

Our primary contributions are:

- To emphasise the importance of the availability of
a process. Explore the possibility of Spectre perform-
ing denial of service attacks and more complicated
attacks.

- Our solution uses the multi-class model to de-
tect different variants of Spectre and efficiently de-
fend against it with only a temporary drop in perfor-
mance.
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- We evaluate our solution on its precision, accu-
racy and performance. Moreover, we also show the
efficacy of the solution on Spectre v1 and v2.

- Our results give confidence in a dynamic approach
that could be plugged into a system security service
that monitors the health of running programs.

1.2 Outline

The paper is organized as follows. Section 2 pro-
vides an understanding of the Spectre attack, the core
modules leveraged by the attack, different variants of
the attack and simulation of the attack on GEM5.
Moreover, we also take a deeper look at the timing
traces left while the attack is active. Section 3 de-
scribes the state-of-the-art solutions available for the
detection and mitigation of Spectre attacks. In Sec-
tion 4 we present SpecDefender, our tool to defend
against Spectre. In Section 5 we evaluate the perfor-
mance, accuracy and evaluation. Section 6 summa-
rizes and emphasises the impact of this tool. Finally,
further works are envisioned in Section 7.

2 Background

This section provides background information on
modules involved in speculative execution attacks
and two variants of Spectre. We reproduce the at-
tack on GEM5 with both variants and observe the
pattern of the microarchitectural state as the attack
progresses.

2.1 Branch prediction

In a CPU, conditional branches cause control haz-
ards. Executing an incorrect branch path forces the
pipeline to flush. It eventually results in the degrada-
tion of throughput. A branch predictor makes a cal-
culated guess of a likely outcome of the conditional
branch. Enqueuing most likely instruction ensures
that the pipeline is full and throughput is optimum.
There are three types of branches:

1. Direct jumps and calls: Always follow a static
path.

2. Indirect jumps and calls: Jump address varies.

3. Conditional branches: The decision for a jump
is conditional.

Out of these three, only 2 and 3 are responsible
for Spectre. To handle these types, the processor
uses different components to predict the outcome of a
branch. The Branch Target Buffer (BTB) maintains
a mapping of the branch instruction and its recently
taken next instruction. It enables the processor to
fetch the next instruction before even decoding the
branch instruction. Branch Prediction Buffer (BPB)
is a two or more-bit buffer that maintains a state used
to guess the outcome of a conditional branch. These
states are strongly-taken, weakly-taken, weakly-not-
taken and strongly-not-taken. A branch history reg-
ister (BHR) keeps the branch history of the recent
conditional branches.

2.2 Speculative execution

In an instruction pipeline, there are often instances
where the next instruction cannot be executed due
to data or control hazards. For instance, in a for

loop with n iterations where the loop invariant is
not available, the loop code is still executed specu-
latively. That is the current register state is stored
and the next instruction is speculatively executed.
The result is only committed after the loop invari-
ant is fetched and validated. If the speculation was
correct, a stall was avoided and hence resulting in a
performance boost. But in case of incorrect specu-
lation, the results are discarded and the old register
state is restored to execute the right instruction.

It would seem that processor adheres to the cor-
rectness of the program without any side effects.
But, this erroneous execution of instruction leaves
microarchitectural traces and is hence called tran-
sient instructions. Spectre uses these microarchitec-
tural traces to fetch information about the result of
the executed instruction. For example, the result of
a conditional branch can be delayed by flushing the
cache causing the processor to speculatively execute
the code of the attacker’s choice.
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2.3 Microarchitectural side-channel
attack

Micro-architectural analysis technique such as cache
attack is used to gather information about a program
containing a side-channel. At any given time multi-
ple programs are running on the CPU with shared
resources. These shared resources may result in un-
intended information leakage. These resources could
be L1 data cache, instruction cache, branch history,
and even some cross-core and cross-CPU shared IO.

For demonstrating Spectre, we focus on
cache attack techniques such as Prime+Probe,
Flush+Reload, Flush+Flush, etc. These are timing
attacks, where a chosen cache line is probed to
know whether it was used by another program.
For instance, an attacker would fill the cache lines
with its data and allow the victim program to run.
After some time the attacker will read its data.
While doing so, the attacker will know whether the
corresponding cache line has also been used by the
victim program from its fetch delay caused by a
cache miss.

2.4 Spectre

A Spectre attack lets an attacker speculatively exe-
cute a sensitive block of the program which will not
be possible in sequential in-order execution. This
speculative execution causes the microarchitectural
state to change and the secret information can be
made to leak using covert channel [11]. This attack
is carried out in three stages and we demonstrate it
with a Spectre-prone code snippet in listing 1.

In the first stage of initialization, the attacker
mistrains the branch predictor and prepares for the
covert channel to extract secret information. That
is it forces to speculatively execute the if block in
victim function() and perform flush part of the
Flush+Reload attack. In the second stage of an at-
tack, a delay is introduced to get the result of if

condition that results in speculatively executing sen-
sitive code. The delay can be caused by flushing the
variable from the cache. In listing 1, the variable
array1 size is flushed and the value for x is cho-
sen such that the data in char *secret is fetched in

cache. In a sequential execution, the data outside the
array1 size bound can never be accessed due to if

condition check. In the third stage of recovery, cache
attacks are performed to retrieve the leaked infor-
mation. Flush+Flush or Flush+Reload techniques
are used to determine the time delay to fetch the
data. For example, a cache line that was replaced by
victim function to fetch array2[array1[x]] will
take longer to load the data. With this hint, the
attacker can guess the secret data as the cache line
corresponds to array1[x]. And as x is controlled
by an attacker, any data mapped in the virtual ad-
dress space of the victim program can be leaked. To
achieve higher success rate to leak data and overcome
noise, these three steps are tried several times.

The core of a Spectre attack is an attempt to per-
form speculative execution of sensitive code in order
to leak secret information. There are two variants of
this attack that we shall discuss in this paper.

Listing 1: Spectre prone code snippet [3].

u i n t 8 t unused1 [CACHELINE ] ;
u i n t 8 t array1 [ 1 6 0 ] = {1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
15 , 16} ;

u i n t 8 t unused2 [CACHELINE ] ;
u i n t 8 t array2 [256 ∗ PAGESIZE ] ;
char ∗ s e c r e t = ” Al l we have to dec ide

i s what to do with the time ! ” ;
/∗ Function that w i l l be t r i c k e d by

Spectre . ∗/
s t a t i c void v i c t i m f u n c t i o n ( s i z e t x )
{
/∗ Flush the v a r i a b l e s used in the

cond i t i on to add
a h igher de lay . ∗/
mfence ( ) ;
f l u s h (& a r r a y 1 s i z e ) ;
f l u s h (&x ) ;
/∗ Ensure data i s f l u s h e d at t h i s

po int . ∗/
mfence ( ) ;
i f e n c e ( ) ;
/∗ Perform a l e g i t i m a t e array

access , with bound checking .
This branch w i l l be t r i c k e d by
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Spectre during the attack
phase . We use a d i v i s i o n in s t ead

o f an int−comparison
s i n c e i t takes more time , thus

i n c r e a s e the
t r a n s i e n t execut ion window . ∗/
i f ( ( f l o a t ) x / ( f l o a t )

a r r a y 1 s i z e < 1)
temp &= array2 [ array1 [ x ] ∗

PAGESIZE ] ;
}

2.4.1 Spectre v1: Conditional branch mis-
prediction

This variant exploits conditional branches by spec-
ulatively executing sensitive code and leaking arbi-
trary memory. Listing 1 is a standard example of a
Spectre v1 attack. The attacker uses x to read arbi-
trary value, in this case secret. And array1 size

is flushed from the cache to introduce delay while
resolving the conditional branch. This forces the
CPU to speculatively load array2[array1[x]] with
unchecked malicious x chosen by the attacker. Us-
ing Flush+Reload, the attack is finally completed by
measuring the load location of array2[array1[x]]

i.e value of array1[x].
There are several reasons for not knowing the re-

sult of the conditional branch immediately. For ex-
ample, a cache miss while checking the branch, com-
plex arithmetic dependencies or nested speculative
execution. Additionally, speculative executions are
observed even when there is no delay but only by
applying branch prediction results, that turn out to
be incorrect. Simple ways to avoid such array out of
bounds is by always applying modulus to index. For
example, array2[array1[x%array1 size]]. This
quick fix doesn’t solve Spectre entirely but will have
an upper bound on possible leakage.

2.4.2 Spectre v2: Indirect branch gadget

Indirect branches are commonly used in the code to
add dynamic capabilities. However, these indirect
branches can be poisoned to create a gadget code.
That can further be used to read arbitrary memory

Figure 1: Mistraining branch address in Spectre
V2 [11].

from another context to leak data. The idea is that
cache miss can cause a delay in the determination
of the target address. And to optimize, speculative
execution uses the last used address for branching.
So, an address valid in the previous context, that is
invalid in the current context can be invoked specula-
tively. To perform an attack, the adversary mistrains
the branch predictor with a gadget address in one
context and forces the CPU to reuse the mistrained
address in another context (see Figure 1).

2.4.3 Attack simulation

Even though the attack has exact steps to repro-
duce, it is not easy to leak the data. Both mistrain-
ing the branch predictor and performing a cache at-
tack require several attempts. And the difficulty is
increased further in real scenarios with multi-core,
multi-process systems adding more noise. Moreover,
Spectre does not leave a trace, hence there is no evi-
dence of real Spectre attacks.

To examine the micro-architectural state during
Spectre attack we simulated Spectre v1 on Gem5 [3].
Gem5 is an open-source processor simulator that en-
compasses system-level architecture details. It simu-
lates hardware components on a cycle-by-cycle basis,
instead of simulating the instruction set of architec-
ture. This fits the cycle-accurate requirement needed
to simulate a Spectre attack. In addition, we used
Konata [22], a powerful tool used to investigate the
pipeline state of the system. This helped us visualize
patterns in branch hit/miss speculatively executed
committed/retired instructions during the attack.
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Figure 2 shows the pipeline traces collected while
running a Spectre attack. For completion, every in-
struction goes through all pipeline stages, instruc-
tion fetch (purple), decode (blue), rename (green),
issue (yellow) and writeback (orange). Spectre is a
three-stage attack, where the first stage mistrains the
branch predictor. This behaviour can be observed in
the macroscopic view on the right side (green high-
lighted trace). A snippet of code was executed 5
times without any misprediction or speculative fail-
ure. After mistraining the branch predictor second
stage tries to speculatively execute an illegal instruc-
tion. This results in flushing the pipeline line and dis-
carding the computed results. These two stages are
run for several iterations to ensure the victim code
execution leaves a micro-architectural trace in the
cache. This experiment confirmed Spectre behavior
through the patterns and we make key observations:

1. Periodic branch miss might lead to a higher
branch hit rate.

2. Speculative execution is forced to fail, this might
result into lower performance.

3. Variables are flushed from cache by the attacker
to introduce delay, this would lead to a higher
cache miss rate.

From these observations we perform feature selection
to design SpecDefender in Section 4.1.1.

3 State-of-the-art methodolo-
gies

In this section, we discuss the related work on detec-
tion and mitigation techniques for a Spectre.

3.1 Detection

As Spectre could potentially abuse any conditional
branch, it is inefficient to add load barriers before
every branch instruction. Hence, it is important to
know the hardware architecture and the dependency
of the condition on inputs to efficiently detect Spec-
tre vulnerable code. RH scanner, is a static analysis

tool for scanning Spectre v1 [6]. Oo7 performs static
taint analysis to detect information flow from inputs
to potential branches [23]. However, static taint anal-
ysis suffers from over-tainting and undertainting is-
sues due to inaccurate control flow graphs. SPEC-
TECTOR mathematically defines a new notion to
prevent speculative execution and uses it for symbolic
execution to prove the absence of Spectre gadget [10].
However, it lacks soundness and completeness, a com-
mon drawback of symbolic execution while analysing
large programs. Dynamic analysis tools such as Spec-
Fuzz [18] and OSIRIS [24], perform random mutation
of inputs in runtime to detect speculative execution
errors. It limits due to the probabilistic and hence
misses out on errors.

3.2 Mitigation

Disabling speculative execution or branch prediction
is the most intuitive mitigation, but unfortunately,
this will hit the performance. SPECFUSCATOR
[21], proposes an interesting solution of unwrapping
the loops and eliminating conditional branches. This
technique eventually ends up deactivating the branch
predictor, hence it is deployable. Swivel [16] is a com-
piler framework for WebAssembly that converts basic
blocks into linear blocks and instruments guards on
entry and exit of the block. These guards prevent
against mistraining of conditional branches.

In this paper, we look at the problem holistically
and propose a more deployable solution.

4 SpecDefender: dynamic de-
fence tool against Spectre

Spectre abuses the performance of optimizing mod-
ules in a CPU. Hence, the mitigation and fixes for
Spectre either end up reducing the performance dras-
tically or stopping the service. Both these outcomes
are undesirable to the user. For critical applications
such as firewalls and antivirus, stopping is not a so-
lution. As it could lead to a multi-staged attack. We
introduce SpecDefender, a tool that dynamically de-
tects Spectre attacks, and defends against them while
maintaining the overall performance. It is a novel and
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Figure 2: Macroscopic view of the pipeline stages during active Spectre attack. [right] Green highlight shows
mistrain and [left] red shows retired instructions due to incorrect speculative execution.

practical approach that tackles Spectre from a soft-
ware availability standpoint. That is, the program
should always be operational even under attack.

In this section, we introduce the design of SpecDe-
fender in the first part. Then discuss the implemen-
tation.

4.1 Design of Specdefender

SpecDefender is a tool based on the same principle
as an IDS (Intrusion detection system). It dynam-
ically detects a threat from an anomaly in the sys-
tem behaviour and prevents it by blocking the attack
while the threat is still active. The dynamic analysis
makes the tool portable without any need to parse
the source code. It makes the tool applicable for a
large set of old pre-compiled applications.

As shown in figure 3, SpecDefender operates in
two phases, a detector phase and an instrumentation
phase. In the detection phase, SpecDefender inspects
each process with its run-time counters. If anomalous
behaviour due to Spectre is detected, The process is
instrumented with mitigation at run-time. The pro-
cess continues to be under observation until the at-
tack is active. After detecting the absence of the
attack, the process is again instrumented by remov-
ing the mitigation to perform normally. This adap-
tive behaviour of the tool keeps a balance between
security and performance. In the following section,
we will discuss these stages and the rationale behind

them in detail.

4.1.1 Detector

In a typical malware attack, the malicious applica-
tion creates sockets, and files or changes permissions
to leak data. Spectre is a transient execution side-
channel attack, that does not leave any trace of a
successful attack [11]. However, transient execution
attacks do change the microarchitectural state of the
CPU [14]. Hence we chose to use Hardware perfor-
mance counters to detect active Spectre attacks on a
process.

Hardware Performance Counters (HPC)
HPC are special hardware registers primarily used
for monitoring performance and debugging program
execution. It shows global and per-process run-time
event counters for branch hit/miss, cache hit/miss,
CPU cycles etc. These counters fit perfectly for
our use case as they are generic, can be read at
run-time and do not need any pre-configuration.
Based on our attack simulation on GEM5 in Section
2.4.3 we identified six HPC registers such as branch-
miss, branch-predict, cache-miss, cache-reference,
instructions, speculative load. The branch-miss and
branch-predict values indicate a constant mistrain-
ing of a branch. To measure the time delay, the
attacker has to perform several cache flushes. The
cache-miss and cache-reference counters reflect these
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Figure 3: Design of SpecDefender.

flushes. Moreover, due to the continuous flushing
of caches, the number of instructions executed in
a preset duration could be seen from Instructions
HPC. Forcefully retiring instructions for leaving
micro-architectural trace will be observed from
variation in speculative load counter values.

Feature selection We collected continuous HPC
data while running the process in four different
modes. Execution without attack (normal), exe-
cution under attack (attack), load barrier instru-
mented execution under attack (safe attack) and
load barrier instrumented execution not under attack
(safe). In this section we only focus on attack and
normal mode, other modes will be discussed in de-
tail in section 4.1.3. From Figure 4, it can be ob-
served that the cache miss rate is high when the
attack is active. On the other hand, branch miss
rate seems to be indistinguishable for attack and
normal modes [Figure 5]. The reason for this ob-
servation is primarily due to the total number of
branches in a process is relatively high causing high
noise. Hence, it is difficult to observe the forced
mistraining of a single branch. The same observa-
tion was concluded for instruction HPC. Speculative
load HPC values show observable distinguishable be-
tween instrumented (safe, safe attack) and non-
instrumented modes (normal, attack)[Figure 6].
Hence, we dropped branch rates and instructions
from the feature and only kept speculative load and
cache miss rates. This eventually increased the accu-
racy of the trained model [Figure 7].

4.1.2 Temporary runtime instrumentation

Having detected the Spectre dynamically, shutting
down the service seems to be the most intuitive so-
lution. It will impact the user experience and create
room for a two-stage threat model, where the first
stage is to shut down a service. To ensure the avail-
ability of software, we decided to instrument the ser-
vice with a protection code at runtime. Speculative
execution is the primary cause for Spectre attack and
adding load barriers before conditional jumps prevent
[11][10]. Inspired by MOVFUSCATOR, a compiler
that generates binary with only MOV instruction,
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Figure 4: Histogram plot for cache miss rate in dif-
ferent modes.

Figure 5: Scatter plot for branch miss rate in different
modes.

Figure 6: Scatter plot of cache miss rate versus spec-
ulative load for different modes.

Figure 7: Decision diagram plotted on test set. Leg-
end [0]: attack, [1]: normal, [2]: safe attack, [3]:
safe.
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some techniques linearize the code to eliminate con-
ditional jumps [21].

Dynamic binary instrumentation (DBM) tools run
an application in a virtual environment and perform
JIT for instrumentation [8]. There are other more
developer-friendly but architecture-specific tools such
as PIN, that allow dynamic instrumentation [20].
Another creative way would require adding NOP
instructions during compilation and instrumenting
these instructions with a load barrier at runtime.
In the open source community, there already ex-
ist several generic and platform-specific DBI tools
[7][2][17]. Hence, we used pre-instrumented programs
for demonstrating our proof of concept.

4.1.3 Multi state classification

After finding a differentiable pattern between a pro-
cess under Spectre attack and the same process not
under attack, we need a defence mechanism against
the attack. This can be performed in two ways.

1. Pre-compile two versions of executable. First
version is efficient but prone to spectre attack.
Second version has static mitigations against
spectre, hence secure but inefficient. This exe-
cutable is run when attack is active.That is in
state safe code under attack and safe code

[Figure 8]

2. Dynamically instrument the program with spec-
tre mitigation. This method is uninterrupted
and more future proof, without need for recom-
piling app.

The HPC counters for this instrumented/secure pro-
gram is again classified as attack. To solve this issue
seamlessly, we trained the model to detect four states
through which any program under attack would tran-
sition. The first state is normal, where the program
is run without any mitigation and is not under at-
tack. When a Spectre attack is active in the running
process, it is classified as a attack and immediately
instrumented with protection (load barriers and ret-
poline). After instrumentation, the process is still
under attack but classified as safe attack. It stays
in this state till the attack is active. Once the at-
tack stops, it is classified as safe and immediately

instrumented to remove protective code. The pro-
gram is again classified as normal and continues to
run at best performance. This cycle allows the pro-
gram to efficiently transition from normal execution
mode to attack and back to normal. Moreover, it
also improves the performance of the process without
compromising security.

4.2 Working and implementation

As discussed in section 4.1, SpecDefender operates in
two phases, the detection phase and the instrumen-
tation phase. In the detection phase, the tool period-
ically reads the HPC registers for cache-miss, cache-
references, and ldst-spec. For every running process,
it collects samples of this data every 100 msec for 2
sec. This data is fed to a pre-trained model to clas-
sify the state of the program [Figure 8]. On classifi-
cation, the process is instrumented if it is detected in
state attack and safe attack. After this, the tool
continues to inspect another running process. As it
continuously inspects all the running processes se-
quentially, it might take longer to inspect the same
process again. A simple solution is to spawn multiple
threads to collect data or prioritize based on past ac-
tivity. The overall execution time for a single process
is less than 2.5 sec. The majority of inspection time
is for data collection.

In the detection phase, the multi-class model is
trained with XGBoost one vs one classifier. The ac-
curacy of this model for the random test set was
above 98%. The source code for the tool, jupyter
notebook, pre-trained model, sample Spectre attack
and README file is available at https://github.

com/amitsirius/Specdefender

5 Evaluation

We evaluate the SpecDefender tool based on its ca-
pability to detect different variants of Spectre attack,
its accuracy and precision to detect all known vulner-
abilities and performance based on verification time.
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Figure 8: State transition of a program under Spectre attack.

5.1 Accuracy and precision

5.1.1 Setup

We noted the true positive(TP), true negative(TN),
false positive (FP) and false negative (FN) for com-
puting the accuracy and precision of the tool [Ta-
ble. 1]. We designed six test cases for analyzing
the factors affecting accuracy and precision. TP are
the instances where the attack was rightly detected
by the tool i.e attack and safe attack. Whereas,
TN instances describe the instance when the attack
was absent and the rightly detected the absence i.e
normal and safe. Each test xA yN will contain x

process under attack and y process that are not un-
der attack. For example, in 3A 1N SpecDefender will
run in an environment with three processes simulta-
neously under active Spectre attack and one process
that is not under attack. Each test case is run only
for one cycle, i.e from attack state to normal. This
test is performed for multiple fresh iterations to elim-
inate any causal effects of previous wrong detection.
One additional test 5A 5N L is performed for a longer
duration to understand the behaviour when the tool
runs for a longer duration. In other words, it allows
Specdefender to probe the same process for multiple
iterations.

5.1.2 Observation

Figure 9 shows that accuracy of the tool declines as
the number of processes under attack increases. Sim-
ilar behaviour is followed by the precision graph as
well. The primary reason for this is inaccuracy in cal-
culating HPC counter values per process. Simultane-
ously running multiple attacks adds more noise in the
calculation and hence results in misclassification by
the detector. On the other hand, test 5A 5N L shows
an improvement in detection. It infers that multi-
ple rounds on the same process cause improvement
in both accuracy and precision. After the attack has
stopped, the process is identified in a normal state
on every subsequent iteration. This results in more
samples identified as TN.

5.2 Effectiveness on different variants

As discussed in section 2.4, Spectre attack has dif-
ferent variants. And these variants uses speculative
execution to perform illegal execution of code (v1) or
gadget code (v2) or ROP attack (v3)[13]. SpecDe-
fender tool detected Spectre-v1 and v2 with high
accuracy. Although the vulnerable code was differ-
ent, the pattern observed with HPC counters is simi-
lar. Spectre v3 is platform specific and left for future
work.
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Table 1: Accuracy and precision table for six test cases.

Test TP TN FP FN Total Accuracy Precision FP rate FN rate
1A 3N 7 41 0 2 50 0.96 1.000 0.000 0.222
2A 2N 9 38 0 3 50 0.94 1.000 0.000 0.250
3A 1N 17 29 1 3 50 0.92 0.944 0.033 0.150
3A 3N 12 44 2 3 61 0.918 0.857 0.043 0.200
5A 5N 12 43 3 4 62 0.887 0.800 0.065 0.250
5A 5N L 13 44 1 2 60 0.95 0.929 0.022 0.133

Figure 9: Accuracy and precision for six test cases.

Figure 10: Bargraph showing proportion of TP, TN,
FP, FN for six test cases.

5.3 Performance

We evaluate the performance on two fronts. Firstly,
the responsiveness of the tool to examine the time
taken by each module and find room for improve-
ment. Secondly, the comparative throughput of
the process undergoing dynamic instrumentation and
static mitigation.

5.3.1 Responsiveness of tool

We profiled individual modules of the tool as per their
functionality to evaluate its responsiveness for detect-
ing Spectre [Figure 11]. HPC data collection is the
most time-consuming module. Finding an optimal
time to detect the state without loss of precision will
reduce the response time. Further optimizations are
possible by adapting the design to collect HPC data
offline in parallel instead of in sequential collection.
Compared to time spent on HPC data collection, all
other modules take less than 10% time. The response
time observed over multiple iterations for detecting
Spectre is less than 2.3 sec. Whereas, a successful
spectre attack takes at least a few minutes to leak
data [3].

5.3.2 Throughput of process under attack

One of the goals of SpecDefender was to maintain a
balance between performance and security. To evalu-
ate this, we ran the process in three different scenar-
ios [Figure 12]. First, normal execution without any
mitigation against Spectre (Normal exec). Second, a
program with mitigation against Spectre. Third, dy-
namically protected process under Spectre attack us-
ing SpecDefender (Optimized exec). It was observed
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Figure 11: Execution time for each block compared
to total time.

that process with SpecDefender had a throughput of
87% as that of normal execution. Whereas the stati-
cally mitigated process had a throughput of less than
40%.

6 Conclusion & Perspectives

We presented a generic framework that dynamically
defends against Spectre attack while ensuring that
the availability and performance of the process are
not compromised. To demonstrate this idea, we de-
veloped a tool, SpecDefender that dynamically de-
tects Spectre attacks from patterns in HPC and tem-
porarily instruments the program. Using this tool
we successfully demonstrated security by effectively
detecting two variants of Spectre with a short re-
sponse time. We also show the throughput of the
process under attack has an insignificant drop. Of-
ten it is difficult to perform static analysis on already
deployed old programs to find Spectre-prone code.
SpecDefender overcomes this by detecting the attack
on micro-architectural traces and remains agnostic of
source code. We envision this framework to be part
of a security kernel service that actively monitors the
running process.

Figure 12: Throughput comparison of program run
in normal, statically mitigated and SpecDefender op-
timized scenarios.

7 Further works

Using SpecDefender, we described a proof of concept
to resist Spectre dynamically. To the best of our
knowledge, we are the first to tackle this attack while
maintaining the availability and performance of the
software. Many different adaptations and experimen-
tation have been left for future work due to a lack of
time. From the initial feedback from the reviewers,
we understand there is a need for improving the re-
sponse time of the tool. We aim to achieve this by
interleaving detection and escalating the protection.
One such adaptation is by spliting the functionality of
the tool into three independent stages. Where stage
1 collects data, stage 2 detects the attack using a
pre-trained model, and stage 3 instruments the pro-
gram. Such pipelining techniques should improve the
response time of the tool. We also plan to perform
stress testing on standardized testbeds and improve
the tool’s robustness. Responsiveness is key to de-
tect the so-called “evasive Spectre” attacks, studied
recently [12], hence developing our pipelined archi-
tecture is a strategy in this respect.
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