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Abstract

The Sliced-Wasserstein distance (SW) is being increasingly used in machine learn-
ing applications as an alternative to the Wasserstein distance and offers significant
computational and statistical benefits. Since it is defined as an expectation over
random projections, SW is commonly approximated by Monte Carlo. We adopt a
new perspective to approximate SW by making use of the concentration of measure
phenomenon: under mild assumptions, one-dimensional projections of a high-
dimensional random vector are approximately Gaussian. Based on this observation,
we develop a simple deterministic approximation for SW. Our method does not
require sampling a number of random projections, and is therefore both accurate
and easy to use compared to the usual Monte Carlo approximation. We derive
nonasymptotical guarantees for our approach, and show that the approximation
error goes to zero as the dimension increases, under a weak dependence condition
on the data distribution. We validate our theoretical findings on synthetic datasets,
and illustrate the proposed approximation on a generative modeling problem.

1 Introduction

Recent years have witnessed the emergence of numerical methods inspired by optimal transport (OT)
to solve machine learning problems. In particular, Wasserstein distances are a core ingredient of OT
and define metrics between probability measures. Despite their nice theoretical properties, they are in
general computationally expensive in large-scale settings. Several workarounds that scale better to
large problems have been developed, and include the Sliced-Wasserstein distance (SW, [1, 2]).

The SW metric is a computationally cheaper alternative to Wasserstein as it exploits the analytical
form of the Wasserstein distance between univariate distributions. More precisely, consider two
random variables X and Y in Rd with respective distributions µ and ν, and denote by θ?]µ, θ

?
] ν the

univariate distributions of the projections of X,Y along θ ∈ Rd. SW then compares µ and ν by
computing E[W(θ?]µ, θ

?
] ν)], where the expectation E is taken with respect to θ uniformly distributed

on the unit sphere, and W is the Wasserstein distance.

In practice, the expectation is typically estimated by Monte Carlo: one uniformly draws L projection
directions {θl}Ll=1, and approximates SW with L−1

∑L
i=1 W

(
(θl)

?
]µ, (θl)

?
]ν
)
. Since the Wasserstein
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distance between univariate distributions can easily be computed in closed-form, this scheme leads
to significant computational benefits as compared to the Wasserstein distance, provided that L is
not chosen too large. SW has then been successfully applied in several practical tasks, such as
classification [3, 4], Bayesian inference [5], the computation of barycenters of measures [1, 6], and
implicit generative modeling [7–12]. Besides, SW has been shown to offer nice theoretical properties
as well. Indeed, it satisfies the metric axioms [13], the estimators obtained by minimizing SW are
asymptotically consistent [14], the convergence in SW is equivalent to the convergence in Wasserstein
[14, 15], and even though the sample complexity of Wasserstein grows exponentially with the data
dimension [16–18], the sample complexity of SW does not depend on the dimension [19]. However,
the latter study also demonstrated with a theoretical error bound, that the quality of the Monte Carlo
estimate of SW depends on the number of projections and the variance of the one-dimensional
Wasserstein distances [19, Theorem 6]. In other words, to ensure that the induced approximation
error is reasonably small, one might need to choose a large value for L, which inevitably increases
the computational complexity of SW. Alternative approaches have been proposed to overcome this
issue, and mainly consist in picking more “informative” projection directions: e.g., SW based on
orthogonal projections [10, 20], maximum SW [21], generalized SW distances [22] and distributional
SW distances [23].

In this paper, we adopt a different perspective and leverage concentration results on random projec-
tions to approximate SW: previous work showed that, under relatively mild conditions, the typical
distribution of low-dimensional projections of high-dimensional random variables is close to some
Gaussian law [24, 25]. Recently, this phenomenon has been illustrated with a bound in terms of the
Wasserstein distance [26]: let {Xi}di=1 be a sequence of real random variables with distribution µd,
such that X1, . . . , Xd are independent with finite fourth-order moments; then, E[W(θ?]µ,Nµ)2] goes
to zero as d increases, where Nµ is a univariate Gaussian distribution whose variance depends on µd
and the expectation is taken with respect to a Gaussian variable θ. This result has very recently been
used to bound the “maximum-sliced distance” between any probability measure and its Gaussian
approximation [27]. In our work, we use it to design a novel technique that estimates SW with a
simple deterministic formula. As opposed to Monte Carlo, our method does not depend on a finite
set of random projections, therefore it eliminates the need of tuning the hyperparameter L and can
lead to a significant computational time reduction. Besides, our proposal is quite different from the
aforementioned variants of SW which consist in selecting “informative” projection directions: these
alternatives are defined as optimization problems whose resolution is challenging (e.g., [23, Section
3.2]) and are then computed by finding an approximate solution. This incurs an additional computa-
tional cost and estimation error, while our method directly approximates SW (thus, does not define
an alternative distance) via simple deterministic operations, does not rely on any hyperparameters,
and comes with theoretical guarantees on its induced error.

The important steps to formulate our approximate SW are summarized as follows. We first define an
alternative SW whose projection directions are drawn from the same Gaussian distribution as in [26],
instead of uniformly on the unit sphere, and establish its relation with the original SW. By combining
this property with [26, Theorem 1], we bound the absolute difference between SW applied to any two
probability measures µd, νd on Rd, and the Wasserstein distance between the univariate Gaussians
Nµd

, Nνd . Then, we explain why the mean parameters of µd and νd should necessarily be zero for
the approximation error to decrease as d grows. Nevertheless, we show that it is not a limiting factor,
by exploiting the following decomposition of SW: SW between µd, νd can be equivalently written as
the sum of the difference between their means and the SW between the centered versions of µd, νd.

Our approach then consists in estimating SW between the centered versions with the Wasserstein
term between Gaussian approximations to meet the zero-means condition, and recover SW between
the original measures via the aforementioned property. Since the Wasserstein distance between
Gaussian distributions admits a closed-form solution, our approximate SW is very easy to compute,
and faster than the Monte Carlo estimate obtained with a large number of projections. We derive
nonasymptotical guarantees on the error induced by our approach. Specifically, we define a weak
dependence condition under which the error is shown to go to zero with increasing d. Our theoretical
results are then validated with experiments conducted on synthetic data. Finally, we leverage our
theoretical insights to design a novel adversarial framework for a typical generative modeling problem
in machine learning, and illustrate its advantages in terms of accuracy and computational time, over
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generative models based on the Monte Carlo estimate of SW. Our empirical results can be reproduced
with our open source code2.

2 Background

We first give some background on optimal transport distances and concentration of measure for
random projections. All random variables are defined on a probability space (Ω,F ,P) with associated
expectation operator E. We denote N∗ = N \ {0}, and for d ∈ N∗, P(Rd) is the set of probability
measures on Rd.

2.1 Optimal transport distances

Let p ∈ [1,+∞) and Pp(Rd) =
{
µ ∈ P(Rd) :

∫
Rd ‖x‖p dµ(x) < +∞

}
be the set of probability

measures on Rd with finite moment of order p. The Wasserstein distance of order p between any
µ, ν ∈ Pp(Rd) is defined as

Wp
p(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dπ(x, y) , (1)

where ‖ · ‖ denotes the Euclidean norm, and Π(µ, ν) the set of probability measures on Rd × Rd
whose marginals with respect to the first and second variables are given by µ and ν respectively. In
some particular settings, Wp is relatively easy to compute since the optimization problem in (1)
admits a closed-form solution: we give two examples that will be useful in the rest of the paper.

Gaussian distributions. Denote by N(m,Σ) the Gaussian distribution on Rd with mean m ∈ Rd
and covariance matrix Σ ∈ Rd×d symmetric positive-definite. The Wasserstein distance between two
Gaussian distributions, also known as the Wasserstein-Bures metric, is given by [28]

W2
2{N(m1,Σ1),N(m2,Σ2)} = ‖m1 −m2‖2 + Tr

[
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2]
, (2)

where Tr is the trace operator.

Univariate distributions. Consider µ, ν ∈ Pp(R), and denote by F−1
µ and F−1

ν the quantile
functions of µ and ν respectively. By [29, Theorem 3.1.2.(a)],

Wp
p(µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt . (3)

If µ = n−1
∑n
i=1 δxi

and ν = n−1
∑n
i=1 δyi , with {xi}ni=1, {yi}ni=1 ⊂ Rn and δz the Dirac

distribution with mass on z, (3) can simply be calculated by sorting {xi}ni=1 and {yi}ni=1 as x(1) ≤
. . . ≤ x(n) and y(1) ≤ . . . ≤ y(n). Indeed, in this case, Wp

p(µ, ν) = n−1
∑n
i=1 |x(i) − y(i)|p.

However, when the empirical distributions are multivariate, Wp(µ, ν) is not analytically available in
general, so its computation is expensive: the standard methods used to solve the linear program in (1)
have a worst-case computational complexity in O(n3 log n), and tend to have a super-cubic cost in
practice [30, Chapter 3].

The Sliced-Wasserstein distance [1, 2] defines a practical alternative metric by leveraging the compu-
tational efficiency of Wp for univariate distributions. Let Sd−1 be the d-dimensional unit sphere and
σ the uniform distribution on Sd−1. For θ ∈ Sd−1, θ? : Rd → R denotes the linear form x 7→ 〈θ, x〉
with 〈·, ·〉 the Euclidean inner-product. Then, SW of order p ∈ [1,∞) between µ, ν ∈ Pp(Rd) is

SWp
p(µ, ν) =

∫
Sd−1

Wp
p(θ

?
]µ, θ

?
] ν)dσ(θ) , (4)

where for any measurable function f : Rd → R and ξ ∈ P(Rd), f]ξ is the push-forward measure of
ξ by f : for any Borel set A in R, f]ζ(A) = ζ(f−1(A)), with f−1(A) = {x ∈ Rd : f(x) ∈ A}.
Since θ?]µ, θ?] ν are univariate distributions, the Wasserstein distances in (4) are conveniently computed
using (3). Besides, in practical applications, the expected value in (4) is typically approximated with
a standard Monte Carlo method:

2See https://github.com/kimiandj/fast_sw
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SWp
p,L(µ, ν) = (1/L)

L∑
l=1

Wp
p

(
(θl)

?
]µ, (θl)

?
]ν
)
, with {θl}Ll=1 i.i.d. from σ . (5)

Computing SWp,L between two empirical distributions then amounts to projecting sets of n ob-
servations in Rd along L directions, and sorting the projected data. The resulting computational
complexity is O(Ldn + Ln log n), which is more efficient than Wp in general. This complexity
means that the Monte Carlo estimate is more expensive when d, n and L increase, and it is often
unclear how L should be chosen in order to control the approximation error; see [19, Theorem 6].

2.2 Central limit theorems for random projections

There is a rich literature on the typical behavior of one-dimensional random projections of high-
dimensional vectors. To be more specific, let (θi)i∈N∗ be i.i.d. standard one-dimensional Gaussian
random variables and (Xi)i∈N∗ be a sequence of one-dimensional random variables. Denote for any
d ∈ N∗, θ1:d = {θi}di=1 and X1:d = {Xi}di=1. Several central limits theorems ensure that, under
relatively mild conditions, the sequence of distributions of d−1/2 〈θ1:d, X1:d〉 ∈ R given θ1:d ∈ Rd
converges in distribution to a Gaussian random variable in probability. This line of work goes back to
[24, 25], whose contributions have then been sharpened and generalized in [31–38]. In particular,
a recent study [26] gives a quantitative version of this phenomenon. More precisely, denote for
any d ∈ N∗ by µXd , the distribution of X1:d (i.e., the joint distribution of X1, X2, . . . , Xd) and γd
the zero-mean Gaussian distribution with covariance matrix (1/d)Id. Assume that for any d ∈ N∗,
µXd ∈ P2(Rd). Then, [26, Theorem 1] shows that there exists a universal constant C ≥ 0 such that∫

Rd

W2
2

(
θ?]µ

X
d ,N

(
0, d−1m2(µXd )

))
dγd(θ) ≤ CΞd(µ

X
d ) , with (6)

Ξd(µ
X
d ) = d−1{α(µXd ) +

(
m2(µXd )β1(µXd )

)1/2
+ m2(µXd )1/5β2(µXd )4/5} , (7)

m2(µXd ) = E
[
‖X1:d‖2

]
, α(µXd ) = E

[∣∣∣‖X1:d‖2 − m2(µXd )
∣∣∣] , βq(µXd ) = E

1
q [|〈X1:d, X

′
1:d〉|

q
] ,

(8)

where q ∈ {1, 2} and (X ′i)i∈N∗ is an independent copy of (Xi)i∈N∗ . A formal statement of this result
is also given for completeness in the supplement.

3 Approximate Sliced-Wasserstein distance based on concentration of
random projections

We develop a novel method to approximate the Sliced-Wasserstein distance of order 2, by extending
the bound in (6) and deriving novel properties for SW. We then derive nonasymptotical guarantees
of the corresponding approximation error, which ensure that our estimate is accurate for high-
dimensional data under a weak dependence condition.

3.1 Sliced-Wasserstein distance with Gaussian projections

First, to enable the use of (6) for the analysis of SW, we introduce a variant of SWp (4) whose
projections are drawn from the Gaussian distribution considered in (6), instead of uniformly on the
sphere. The Sliced-Wasserstein distance of order p ∈ [1,+∞) based on Gaussian projections is
defined for any µ, ν ∈ Pp(Rd) as

S̃W
p

p(µ, ν) =

∫
Rd

Wp
p(θ

?
]µ, θ

?
] ν)dγd(θ) . (9)

In the next proposition, we establish a simple mathematical relation between traditional SW and the
newly introduced one: we prove that S̃Wp is equal to SWp up to a proportionality constant that
only depends on the data dimension d and the order p.

Proposition 1. Let p ∈ [1,+∞). Then, S̃Wp (9) is related to SWp (4) as follows: for any

µ, ν ∈ Pp(Rd), S̃Wp(µ, ν) = (2/d)
1/2 {

Γ(d/2 + p/2) / Γ(d/2)
}1/p

SWp(µ, ν), where Γ is the
Gamma function.
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Since (6) only applies to the Wasserstein distance of order 2, we will focus on SW of that same order
in the rest of the paper. In this case, SW with Gaussian projections is equal to the original SW. Indeed,
we can show that the constant (2/d)

1/2 {Γ(d/2 + p/2) / Γ(d/2)}1/p defined in Proposition 1 is
equal to 1 when p = 2, by using the property Γ(d/2 + 1) = (d/2)Γ(d/2).

3.2 Approximate Sliced-Wasserstein distance

Our next result is an easy consequence of (6) and Proposition 1, and shows that the absolute difference
between SW2(µd, νd) and W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))} for any µd, νd ∈ P2(Rd), is
bounded from above by Ξd(µd) + Ξd(νd) (7).

Theorem 1. There exists a universal constant C > 0 such that for any µd, νd ∈ P2(Rd),∣∣SW2(µd, νd)−W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}
∣∣ ≤ C(Ξd(µd) + Ξd(νd)

)1/2
, (10)

where, for ξd ∈ {µd, νd}, Ξd(ξd) and m2(ξd) are defined in (7) and (8) respectively.

Since W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))} has a closed-form solution by (2), it provides a
computationally efficient approximation of SW2(µd, νd) whose accuracy is quantified by Theorem 1.
Next, we identify settings where this approximation is accurate, by analyzing the error Ξd(µd) +
Ξd(νd).

Our first observation is that µd and νd should necessarily have zero means for the error to go to zero
as d→ +∞, and we develop a novel approximation of SW that takes into account this constraint.
Going back to the definition of Ξd(µ

X
d ) in (7), setting X̄i = Xi − E[Xi] and X̄ ′i = X ′i − E[Xi], we

get

m2(µXd ) = E[‖X̄1:d‖2] + ‖E[X1:d]‖2 (11)

β2
2(µXd ) = E

[〈
X̄1:d, X̄

′
1:d

〉2]
+ 4E

[〈
E[X1:d], X̄1:d

〉2]
+ ‖E[X1:d]‖4 . (12)

By Equations (11) and (12), since in practice the norm of the mean E[X1:d] is expected to increase
linearly with d1/2 at least, so are m2(µXd ) and β2(µXd ) as functions of d. As a consequence, Ξd(µ

X
d )

cannot be shown to converge to 0 as d → ∞ in this setting, but only to be bounded. However, if
the data are centered, the norm of the mean is zero, thus Ξd(µ

X
d ) might be decreasing. Therefore,

we derive a convenient formula to compute SW2(µd, νd) from SW2(µ̄d, ν̄d) where for any ξd ∈
P2(Rd), ξ̄d is the centered version of ξ, i.e. the pushforward measure of ξd by x 7→ x−mξd with
mξd =

∫
Rd y dξd(y). This result is the last ingredient to formulate our approximation of SW.

Proposition 2. Let µd, νd ∈ P2(Rd) with respective means mµd
,mνd . Then, the Sliced-Wasserstein

distance of order 2 can be decomposed as

SW2
2(µd, νd) = SW2

2(µ̄d, ν̄d) + (1/d)‖mµd
−mνd‖2 . (13)

Based on (2), instead of estimating SW2(µd, νd) with W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))}
directly, we propose approximating SW2(µ̄d, ν̄d) with W2{N(0, d−1m2(µ̄d)),N(0, d−1m2(ν̄d))}
and then using (13). This strategy yields our final approximation of SW, which is defined for any
µd, νd ∈ P2(Rd) as

ŜW
2

2(µd, νd) = W2
2{N(0, d−1m2(µ̄d)),N(0, d−1m2(ν̄d))}+ (1/d)‖mµd

−mνd‖2 , (14)

where for ξd ∈ {µ̄d, ν̄d}, m2(ξd) is defined in (8). Note that (14) can be simplified since by (2),
W2

2{N(0, d−1m2(µ̄d)),N(0, d−1m2(ν̄d))} = d−1(m2(µ̄d)
1/2 − m2(ν̄d)

1/2)2. Besides, if µd and νd
are empirical distributions, ŜW2(µd, νd) has a closed-form expression: given ξd = n−1

∑n
i=1 δxi

∈
P2(Rd) where {x(j)}nj=1 ∈ Rdn are d-dimensional samples, we then have mξd = n−1

∑n
j=1 x

(j),
and m2(ξd) = n−1

∑n
j=1 ‖x(j)‖2. The associated computational complexity is therefore in O(dn).

Hence, we introduced an alternative technique to estimate SW which does not rely on a finite set of
random projections, as opposed to the commonly used Monte Carlo technique (5). Our approach
thus eliminates the need for practitioners to tune the number of projections L, but also to sort the
projected data. As a consequence, it is more efficient to compute ŜW2(µd, νd) than SW2,L(µd, νd)
for large L. We illustrate this latter point with empirical results in Section 4.
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3.3 Error analysis under weak dependence

We have discussed why centering the data is necessary to ensure that the approximation error goes to
zero with increasing d. Next, we introduce a weak dependence condition under which the error is
guaranteed to decrease as d increases.

We first consider a setting mentioned in [26] where µd = µ(1)⊗· · ·⊗µ(d) and νd = ν(1)⊗· · ·⊗ν(d),
⊗ denoting the tensor product of measures, and µ(j), ν(j) ∈ P4(R) for j ∈ {1, . . . , d}. We prove
in this case that W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))} converges to SW2(µd, νd) at a rate of
d−1/8. This result is reported in the supplementary document, and can be interpreted as an extension
of [26, Corollary 3] for SW.

We emphasize that the assumptions of this first setting severely restrict the scope of application of
our approximation method: in several statistical and machine learning tasks, the random variables
of interest {Xi}di=1 are not independent from each other (e.g. for image data, each Xi typically
represents the value of a pixel at a certain position, thus depends on the neighboring pixels). Therefore,
we relax this independence condition by considering a concept of ‘weak dependence’ inspired by
[39] and properly defined in Definition 1.
Definition 1. Let (Xj)j∈N∗ be a stationary sequence of one-dimensional random variables with
mean zero, i.e. Xi and Xj have the same distribution for any i, j ∈ N∗ and E[X1] = 0. We say that
(Xj)j∈N∗ is fourth-order weakly dependent if there exist some constant K ≥ 0 and a nonincreasing
sequence of real coefficients {ρ(n)}n∈N such that, for any i, j ∈ N∗, i ≤ j,

|Cov(X2
i , X

2
j )| ≤ Kρ(j − i) , |Cov(Xi, Xj)| ≤ Kρ(j − i) . (15)

In addition, the sequence {ρ(n)}n∈N satisfies
∑+∞
n=0 ρ(n) ≤ ρ∞ < +∞.

Intuitively, in practical applications, the weak dependence condition would essentially require that
the components of the observations not to exhibit strong correlations; yet, they are allowed to depend
on each other. Furthermore, since our weak dependence condition is weaker than the one introduced
in [39, Theorem 1], it is satisfied by the various examples of models described in [39, Section 5]. We
present some of them below, to illustrate Definition 1 more clearly.
1) Gaussian processes and associated processes [40, Section 3.1], provided that they are stationary.
2) Bernoulli shifts: Xt = H(εt, . . . , εt−r) for t ∈ N∗, where H : Rr+1 → R is a measurable

function and (εi)i∈N∗ is a sequence of i.i.d. real random variables. A simple example of such
process is given by moving-average models.

3) Autoregressive models, defined as Xt = f(Xt−1, . . . , Xt−r) + εt for t ∈ N∗, where (εi)i∈N∗ a
sequence of i.i.d. real random variables with E |ε1| <∞, and |f(u1, . . . , ur)− f(v1, . . . , vr)| ≤∑r
i=1 ai |ui − vi| for some a1, . . . , ar ≥ 0 such that

(∑r
i=1 ai

)1/r
< 1.

We then consider a sequence of fourth-order weakly dependent random variables (Xj)j∈N∗ , and
prove that Ξd(µ

X
d ) goes to zero as d → ∞, with a rate of convergence depending on {ρ(n)}n∈N.

This result is given in the supplementary document, and helps us refine Theorem 1 under this weak
dependence condition: the next corollary establishes that the error approaches 0 at a rate of d−1/8.
Corollary 1. Let (Xj)j∈N∗ and (Yj)j∈N∗ be sequences of random variables which are fourth-order
weakly dependent. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and Y1:d = {Yj}dj=1, and denote by µd, νd
the distributions of X1:d, Y1:d respectively. Then, there exists a universal constant C > 0 such that∣∣SW2(µd, νd)−W2(N(0, d−1m2(µd)),N(0, d−1m2(νd)))

∣∣ ≤ Cd−1/8.

Hence, by replacing the independence condition of the first setting with weak dependence, we
broaden the scope of application whilst guaranteeing that the approximation error goes to zero as d
increases. We finally note that in these two settings, the data are required to have zero mean, which is
automatically verified with our approximation method since we estimate SW between the centered
distributions (see eq. (14)).

4 Experiments

Synthetic experiments. The goal of these experiments is to illustrate our theoretical results de-
rived in Section 3. In each setting, we generate two sets of d-dimensional samples, denoted by
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Figure 1: Analysis of the approximation according to the dimension: in Figures 1(a) and 1(b), data
have independent components; in Figures 1(c) and 1(d), they are stationary AR(1) processes. Errors
are averaged over 100 runs and reported on log-log scale with their 10th-90th percentiles.
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Figure 2: Comparison of different methods to approximate SW, according to their accuracy (left)
and computation time (right). The datasets contain dn samples independently drawn from Gamma
distributions, with d ∈ [101, 103] and n = 104. Results are averaged over 100 runs.

{x(j)}nj=1, {y(j)}nj=1 ∈ Rdn with n = 104. We then approximate SW between their empirical
distributions in P2(Rd), given by µd = n−1

∑n
i=1 δxi

and νd = n−1
∑n
i=1 δyi .

First, we analyze the consequences of centering data. Here, {x(j)}nj=1, {y(j)}nj=1 ∈ Rdn are dn
independent samples from Gaussian or Gamma distributions: see the supplementary document for
more details. We compute |W2{N(0, d−1m2(µd)),N(0, d−1m2(νd))} − SW2(µd, νd)| on one hand,
and |W2{N(0, d−1m2(µ̄d)),N(0, d−1m2(ν̄d))} − SW2(µ̄d, ν̄d)| on the other hand. In the Gaussian
case, the exact value of SW2(µ, ν) is known (we report it in the supplementary document), while for
the Gamma distributions, it is approximated with Monte Carlo based on 2× 104 random projections.
Figures 1(a) and 1(b) show that the error goes to zero as d increases if the data are centered. This
confirms our analysis provided in Section 3.2 about the influence of the mean, and in Section 3.3 on
sequences of independent random variables.

Next, we consider autoregressive processes of order one (AR(1)). An AR(1) process is defined as
X1 = ε1 and, for t ∈ N∗, Xt = αXt−1 + εt, where α ∈ [0, 1] and (εi)i∈N∗ is an i.i.d. sequence
of real random variables with E[ε1] = 0 and finite second-order moment. If α < 1, the process
has a stationary distribution and (Xj)j∈N∗ satisfies the weak dependence condition in its stationary
regime [41]. In practice, we generate a sample by using this recursion formula for 104 + d steps,
and keeping the last d samples. The discarded samples correspond to a “burn-in” phase which helps
reaching the stationary solution of the process. We generate {x(j)}nj=1 and {y(j)}nj=1 using the
same distribution for the noise (either a Gaussian or Student’s t-distribution, as described in the
supplementary document). This means that both datasets come from the same distribution, thus
SW2(µ, ν) is exactly 0. We plot on Figures 1(c) and 1(d) the approximation error according to
d ∈ [10, 103] for different values of α. The error converges to zero with increasing d, which is
consistent with Corollary 1.

Note that Figure 1 exhibits rate of convergence that are better than the one in d−1/8 derived in
Section 3.3: in Figure 1(b), the slope is approximately −0.45 (Gaussian) and −0.7 (Gamma), and
in Figures 1(c) and 1(d), it is on average −0.35. This suggests that our theoretical bounds might
be improved, and we further investigate this aspect for the Gaussian case: we consider the case
where {x(j)}nj=1, {y(j)}nj=1 are n independent samples from Gaussian distributions with diagonal
covariance matrices, and we prove that E|W2{N(0, d−1m2(µ̄d)),N(0, d−1m2(ν̄d))}−SW2(µ̄d, ν̄d)|
goes to 0 as dn→ +∞ with a convergence rate in d−1/2n−1/2. We provide the complete statement
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Dataset Model FID TSW (s/epoch) Ttot (s/epoch)
GPU CPU GPU CPU

MNIST SWG 22.41 ± 2.34 1.3 1.4 ×102 4.5 2.7 ×102

Reg-SWG 15.53 ± 0.88 1.1 1.1 ×102 6.5 3.0 ×102

Reg-det-SWG 15.72 ± 0.57 0.07 0.2 5.3 1.5 ×102

CelebA SWG 31.04 ± 2.78 10.1 2.7 ×103 3.9 ×102 1.6 ×104

Reg-SWG 24.14 ± 0.48 10.0 2.7 ×103 4.4 ×102 2.0 ×104

Reg-det-SWG 23.65 ± 0.93 1.3 2.6 4.2 ×102 1.7 ×104

Table 1: Results obtained after training generative models on MNIST and CelebA, averaged over
5 runs. FID are reported with their standard deviation (the lower FID, the better). TSW denotes the
average time per epoch for approximating SW. Ttot is the average running time per epoch.

and formal proof in Section S3.1 (Proposition S3). This result is consistent with Figure 1(b), and
is a first encouraging step towards the following research direction: we will study if our proofs
and the ones in [26] can be refined when assuming additional structure on the distributions (e.g.,
sub-Gaussian and sub-exponential), in order to identify the settings under which our current bounds
are tight or can be improved.

Finally, we compare our approximation scheme against the standard Monte Carlo estimation, in
terms of accuracy and computation time. We use the same setting as in Figure 1(b), where the
dn samples are independently drawn from Gamma distributions. We compute ŜW2(µd, νd) (14)
and SW2,L(µd, νd) (5) with L ∈ {100, 1000, 5000}, and we compare each approximation with
SW2,2×104(µd, νd), which we consider as the exact value of SW. Figure 2 reports the approximation
error and computation time of each scheme for d ∈ [10, 104], and shows that our method is more
accurate and faster than Monte Carlo. In particular, when d = 103, the average computation time
of our technique is 0.02s, while the second best approximation (Monte Carlo with L = 5000)
takes more than 8s. Besides, we observe that Monte Carlo is very sensitive to the hyperparameters,
since it loses accuracy when L decreases and gets slower as L and d increase. This observation is
consistent with the computational complexity of SW2,L recalled in Section 2.1. On the other hand,
our approximation scheme is extremely efficient even for large d and n, since it is based on a simple
deterministic formula which does not require projecting and sorting data along random directions.

Image generation. Finally, we leverage our theoretical insights to design a novel method for a
typical generative modeling application. The problem consists in tuning a neural network that takes
as input k-dimensional samples from a reference distribution (e.g., uniform or Gaussian), to generate
images of dimension d > k. During the training phase, the parameters of the network are updated by
iteratively minimizing a dissimilarity measure between the dataset to fit and the generated images.

In [9], the dissimilarity measure is Monte Carlo SW approximated with 104 random projections,
and the resulting generative model is called the Sliced-Wasserstein generator (SWG). This model
performs well on moderately high-dimensional image datasets (e.g., 28 × 28 for MNIST images
[42]). However, for very large dimensions (e.g., 64 × 64 × 3 for the CelebA dataset [43]), Monte
Carlo SW requires more than 104 random projections to capture relevant information, which leads to
very expensive training iterations and potential memory issues. To offer better scalability, SWG can
be augmented with a discriminator network [9, Section 3.2] that aims at finding a lower-dimensional
space in which the two projected datasets are clearly distinguishable. The intuition behind this
heuristic is that the more distinct the two datasets are from each other, the fewer projection directions
Monte Carlo SW requires to provide useful information. The training then consists in optimizing the
generator’s and discriminator’s objective functions in an alternating fashion.

Our novel approach builds on SWG and modifies the saddle-point problem in [9, Section 3.2]:
motivated by the gain in accuracy and time illustrated in Figure 2 on high-dimensional datasets, we
propose to replace Monte Carlo SW with our approximate SW (14) in the generator’s objective; then,
to make sure that our approximation is accurate, we regularize the discriminator’s objective:

max
ψ

L(ψ) + λ1

∥∥Cov[d′ψ(X)]
∥∥2

F
+ λ1

∥∥Cov[d′ψ(gφ(Z))]
∥∥2

F
(16)

+ λ2 E
[
‖d′ψ(X)‖−2

]
+ λ2 E

[
‖d′ψ(gφ(Z))‖−2

]
(17)

where L is the discriminator’s loss used in SWG, gφ and d′ψ are the generator’s last layer and the
discriminator’s penultimate layer respectively (parameterized by φ, ψ), X and Z are the random
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(a) SWG (FID = 19.52) (b) Reg-det-SWG (FID = 14.87)

(c) SWG (FID = 27.75) (d) Reg-det-SWG (FID = 22.87)

Figure 3: Images generated after training on MNIST (top row) and CelebA (bottom row). For each
model, the images are associated with the lowest FID obtained over 5 runs.

variables corresponding to the images to fit and the generator’s input, Cov denotes the covariance
matrix, ‖ · ‖F the Frobenius norm, and λ1, λ2 ≥ 0. The regularization in (16) enforces the weak
dependence condition (Corollary 1), while (17) prevents the network to converge to d′ψ = 0. We call
this generative adversarial network regularized deterministic SWG (reg-det-SWG).

To investigate the consequences of (i) regularizing the discriminator, and (ii) replacing the Monte
Carlo SW with our approximation, we design another model, called regularized SWG (reg-SWG):
similarly to SWG, the generator minimizes SW2,104 , but the discriminator’s objective is regularized
as in (16), (17). We then compare reg-det-SWG against SWG and reg-SWG, by training the models
on MNIST and CelebA and measuring their respective training time and Fréchet Inception Distances
(FID, [44]): see Table 1. We used the same network architectures for all methods, and tuned (λ1, λ2)
via cross-validation: more details on the experimental setup are given in Section S4. First, we observe
that the regularized models produce images of higher quality, since reg-SWG and reg-det-SWG return
lower FID values than SWG. The FID of reg-SWG and reg-det-SWG are close for both datasets,
thus the two models seem to yield similar performances. Hence, we report in Figure 3 the images
generated by SWG and reg-det-SWG only.

The training process is more expensive when regularizing the discriminator: the average running
time per epoch is higher for the regularized models. We also observe that reg-det-SWG is faster
than reg-SWG, which is consistent with the fact that our approximation method is faster than Monte

9



Carlo on high-dimensional settings. To further illustrate this point, we reported the average time
spent in computing the generative loss per epoch, i.e. SW2,104 for SWG and reg-SWG, and ŜW2

for reg-det-SWG: see column TSW in Table 1. On GPU, reg-det-SWG is at least 15 times faster than
SWG and reg-SWG on MNIST, and 6 times faster on CelebA. Note that the models were trained
using PyTorch, thus Monte Carlo SW benefits from a GPU-accelerated implementation of the sorting
operation (with the function torch.sort). We also reported the computation times when models
are trained on CPU. In this case, computing ŜW2 takes at most less than 3s per epoch, whereas
the Monte Carlo estimation executes in several minutes (e.g., approximately 45min on CelebA). As
a result, the total training time is almost the same for reg-det-SWG and SWG on CelebA, and the
lowest for reg-det-SWG on MNIST.

5 Conclusion

In this work, we presented a novel method to approximate the Sliced-Wasserstein distance of order 2,
which relies on the concentration-of-measure phenomenon for random projections. The resulting
method computes SW with simple deterministic operations, which are computationally efficient even
on high-dimensional settings and do not require any hyperparameters. We proved nonasymptotical
guarantees showing that, under a weak dependence condition, the approximation error goes to zero as
the dimension increases. Our theoretical findings are then illustrated with experiments on synthetic
datasets. Motivated by the computational efficiency and accuracy of our approximate SW, we finally
designed a novel approach for image generation that leverages our theoretical insights. As compared
to generative models based on SW estimated with Monte Carlo, our framework produces images of
higher quality with further computational benefits. This encourages the use of our approximate SW
on other algorithms that rely on Monte Carlo SW, e.g. autoencoders [8] or normalizing flows [12].

The weak dependence condition can be inappropriate to describe the underlying geometry of real
data in ML applications, and in that case, approximating SW with our method seems inadequate. To
overcome this problem, we encourage practitioners to resort to models where real data are represented
by features that can be made weakly dependent. This strategy has proven successful in our image
generation experiment: the reg-det-SWG model uses our approximation to compare two sets of
features (instead of the raw images) whose covariance matrices are regularized to enforce weak
dependence. Since many ML techniques make use of features and regularizers, we believe that
our methodology is not restrictive and can then be applied to other standard problems than image
generation. Besides, our weak dependence condition in Definition 1 is weaker than the one in [39],
which is a notion commonly used in statistics.

Our empirical results on synthetic data show that the approximation error goes to zero with a faster
convergence rate than the one we proved. Then, the main current limitation of our framework is
that our theoretical convergence rate in d−1/8 might be slower than necessary. We proved that the
overall approximation error is upper-bounded by a term in d−1/2 when comparing Gaussians with
diagonal covariance matrices, and the improvement of our error bounds for other specific distributions
is left for future work. On the other hand, the extension of our methodology to variants of SW is
another challenging future research direction. To the best of our knowledge, the literature on the
concentration of measure phenomenon focuses on linear random projections, therefore the derivation
of deterministic approximations for SW based on nonlinear projections seems highly nontrivial. A
more promising direction would be to generalize our approach to SW based on k-dimensional linear
projection by leveraging the bound in [26, Theorem 1] for k > 1.

Since this paper is focused on developing a theoretically-grounded novel method to estimate a
distance between probability distributions, we believe it will not pose any negative societal or ethical
consequence. On the other hand, as demonstrated in Section 4, our contribution provides tools to
speed up existing machine learning algorithms on CPU, which is useful when powerful hardware
resources are not available, or when their use is deliberately avoided for environmental purposes.
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