
HAL Id: hal-02338456
https://telecom-paris.hal.science/hal-02338456v1

Submitted on 26 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precise Spatio-Temporal Electromagnetic Fault
Injections on Data Transfers

Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud,
Jean-Luc Danger

To cite this version:
Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud, Jean-Luc Danger. Pre-
cise Spatio-Temporal Electromagnetic Fault Injections on Data Transfers. 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), Aug 2019, Atlanta, United States. pp.1-8,
�10.1109/FDTC.2019.00009�. �hal-02338456�

https://telecom-paris.hal.science/hal-02338456v1
https://hal.archives-ouvertes.fr


Precise Spatio-Temporal Electromagnetic Fault Injections on Data Transfers

Alexandre Menu∗†, Shivam Bhasin†, Jean-Max Dutertre∗, Jean-Baptiste Rigaud∗,
Jean-Luc Danger‡

∗Mines Saint-Etienne, CEA-Tech, Centre CMP, F - 13541 Gardanne France
{alexandre.menu, dutertre, rigaud}@emse.fr

† Temasek Laboratories, Nanyang technological University, Singapore
sbhasin@ntu.edu.sg

‡LTCI, Télécom ParisTech , Institut Mines-télécom, Université Paris Saclay, 75634 Paris Cedex 13, France
jean-luc.danger@telecom-paristech.fr

Abstract—Fault injection techniques allow an attacker to
alter the behavior of an electronic device in order to extract
confidential information or be granted unauthorized privileges.
To this end, local electromagnetic fault injections (EMFI)
are commonly used to corrupt or prevent the execution of
instructions.

However, little attention is devoted to practical data corrup-
tion. This article investigates the local effects of EMFI on data
transfer from the Flash memory to the 128-bit data buffer of a
cortex-M microcontroller. We demonstrate that the corrupted
bits are closely related to the location of the injection probe,
allowing us to set or reset from 0 to 128 bits with a byte-
level precision. Moreover, the spatial and temporal accuracy of
the injection technique allowed us to target the data prefetch
mechanism without corrupting the code execution.

We highlight the efficiency of the derived fault model with
three practical case studies. Firstly, we demonstrate precise key-
zeroing and key-setting capability, with further extension to a
DFA on the secret key of a cipher from Biham and Shamir, that
was never implemented practically. Next, we report practical
persistent faults on ARM microcontroller, which allows an
attacker to retrieve the secret key of a cipher with a single
successful injection.

Keywords-Fault attack; Electromagnetic injection; Data
transfer; Flash memory; Persistent fault; DFA; 32-bit micro-
controller

I. INTRODUCTION

Side-channel attacks exploit the physical implementation
of electronic devices to extract confidential data. These
attacks are divided into two main categories: passive side-
channel analysis and active fault injection. The former are
based on the collection of side-channel emissions to extract
information, while the latter takes advantage of a physical
stress to alter the functional behavior of an electronic circuit.
In 2001, Boneh et al. introduced fault attack, a cryptanalysis
technique which exploits the erroneous computations of an
electronic device to retrieve the secret key of a cipher [1].
Since then, an extensive litterature discusses practical fault
models and efficient implementations of countermeasures
against fault injection.

The first non-invasive fault attack based on electromagnetic
pulse was reported by Schmidt et al. in 2007 [2]. Despite

the growing interest of the fault attack community for
the electromagnetic side-channel, a consistent decription
of the physical fault mechanism remains out of reach.
However, previous work highlighted the interactions between
an injection probe and the clock tree [3], reset line [4] and
power-ground network of a device [5]. These concurrent
phenomenons partially explain the plethora of fault models
reported in the litterature on electromagnetic pulse injection.
While both instruction and data corruption are commonly
observed, instruction corruption, and especially instruction
skip, is considered as the most practical fault model [6].

In this paper, we demonstrate critical vulnerabilities that
do not rely on instruction corruption. We provide an in-
depth charaterization of faults induced on data while being
transferred from the Flash memory to the register file
of an ARM Cortex-M microcontroller. Unlike previous
works, we also demonstrate the exploitability of these fault
models in practical case studies. As shown later, we realize
some extremely complex faults as byte-wise key zeroing
or persistent faults, which are not practical with instruction
corruption. As a result, some attacks requiring high attacker
expertise can be performed, including the original DFA of
Biham and Shamir on the key transfer of an unknown cipher,
which was never shown to be practical to the best of our
knowledge. All the case studies are performed on the public
AES implementation from Stofflen and Schwabe [7].

The outline of this article is as follows. The state of
the art on electromagnetic pulse injection is summarized
in Section II. Our experimental setup and methodology
are detailed in Section III. Observed fault models on data
transfer and their relationship to EM injection parameters
are described in Section IV. Three practical attacks based
on our characterization results are described in Section V.
Section VI concludes this article.

II. RELATED WORK

While a substantial litterature address instruction corrup-
tion, only few works characterize or exploit data corruption.

Previous work highlighted that EMFI allows an attacker to
tamper with the control flow of an algorithm at the hardware

https://doi.org/10.1109/FDTC.2019.00009

Authors’ version

Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2019



level. In [8], L. Riviere et al. prevented the update of the
prefetch queue buffer on a 32-bit microcontroller. As a
consequence, four instructions could be skipped and the
four following one replayed. In [9], G. Liao and C. Gebotys
described bit-level corruption of opcodes in the prefetch stage
of a 8-bit microcontroller. In [10], J. Proy et al. thoroughly
investigated EM induced fault on the core of a RISC-V
architecture. In [11], Y. Yao et al. prevent the update of
a mask in a protected AES implementation by skipping a
function call.

However, only few works address the corruption of data
transfer as a practical attack vector. In [6] N. Moro et al.
thoroughly described instruction and data corruption induced
by EMFI on a 32-bit microcontroller. The authors reported
that the data bus and the instruction bus could be individually
targeted. They described the effect of the pulse amplitude
on the number and occurence of bitset fault in data fetched
from the Flash memory. However the spatial and temporal
accuracy of the fault model was not characterized. In [12],
A. Cui and R. Housley identified specific data corruption
that could allow an attacker to access an administration
terminal during the boot sequence of a VoIP phone. While
the authors succesfully accessed the terminal, they did not
provide any evidence of the proposed fault model. This work
aims to bridge the gap between the characterization and the
exploitation of EMFI on data transfers.

Our Contributions

The key contributions of this work are as follows:

• We demonstrate that data fetched from the embedded
Flash memory of a cortex-M3 microcontroller can be
precisely corrupted with 100% repeatability without
corrupting instructions fetched from the same memory.

• We provide a comprehensive spatial and temporal
characterization of the fault model.

• We demonstrate that a small part (one byte) to whole
secret key (16 bytes for AES) stored in Flash memory
can be adaptively set or reset by varying the injection
parameters.

• We demonstrate the first practical realization of original
DFA from Biham and Shamir [13].

• We show that persistent fault attacks, which only
require a single successful fault, are practical using
EM injection.

publication instruction data corruption

corruption characterize exploit

[2], [8], [9], [10], [11] 3 7 7
[6] 3 3 7
[12] 7 7 3
This work 7 3 3

Table I: State of the Art of EMP injection

A comparison of our work with previous works is sum-
marized in Table I.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Target

The experiments were conducted on the 32-bit micro-
controller SAM3X8E. It features a cortex-M3 core with
the thumb2 instruction which consists of 16-bit and 32-bit
instructions. It embeds two banks of 256 kB NOR Flash
memory and a 96 kB SRAM. The physical placement of
the memories is highlighted on Figure 1. The core and the
peripherals are clocked at 84 MHz.

B. Setup

Our EM pulse injection setup is depicted in Figure 2. The
voltage pulse generator delivers a square voltage pulse with
a transition time of 2 ns, a maximum amplitude of 200 V in
absolute value, and a minimum width of 6 ns. The voltage
pulse is converted into a current variation in the coil at the
tip of the handcrafted injection probe shown in Figure 3. The
probe is made of three turns of copper wire around a ferrite
core about 500 µm in diameter. It is attached to a micrometer
positioning table, which coordinates in the target referential
are denoted by x and y over the the surface of the device,
and z in the orthogonal direction. The z-coordinate is fixed,
so that the distance between the die and the probe tip is
about the thickness of the LQFP package. A trigger signal
generated by the device under test synchronizes the voltage
pulse with the operation of the microcontroller. A constant
delay can be set between the rising edge of the trigger and the
generation of an electromagnetic pulse. A personal computer
sets the injection parameters and orchestrates the operation
of the positioning table, the pulse generator, and the device
under test.

Figure 1: Front side overview of the SAM3X8E



Figure 2: Schematic of the EM pulse injection setup

C. Methodology

A detailed black-box analysis of the physical effects of
faults on a microarchitecture is often unpractical, as the lowest
abstraction made available to an attacker is the instruction
set architecture. Moreover, injected faults are captured as a
corrupted state of memory cells, regardless if the physical
effect of the fault corrupts the memory cell itself or the
signal and its propagation before a sampling operation. While
these considerations restrict one’s ambitions, the analysis of
memory corruption provide a valuable insight into the parts
of the microarchitecture that are sensitive to electromagnetic
injection.

Previous work on electromagnetic injection highlighted
that faults could be induced with a high probability during
the sampling operation of D flip-flop memory cells [4].
Moreover, we did not observe any static corruption of data
at rest in the Flash memory and the SRAM. Therefore, we
investigated the effects of electromagnetic injection on data
in transit during a transfer between the Flash memory and the
register file. Based on these considerations, we highlight in
Figure 4 four microarchitectural features in the datapath
of the microcontroller which are potentially sensitive to
electromagnetic injection: the Flash memory (1), the 128-bit
prefetch buffer (2), the bus interfaces (3), and the register
file (4).

To distinguish between these scenarios, we characterized
the effects of fault injection during the execution of the
test routine given in Listing 1. First, registers r1 to r12

Figure 3: Handmade flat tip injection probe

Figure 4: Potential fault scenarios: on the Flash memory
operation (1), on the prefetch buffer (2), on the bus interfaces
(3), on the register file (4)

Listing 1 Fault model characterisation routine with a single
ldm instruction
1 @ initialize registers r1-r12
2 @ initialize the 128-bit data prefetch buffer
3 @ load target address
4 ldr r0, =.payload
5 @ trigger
6 @ load data from the Flash memory
7 .rept 16
8 nop
9 .endr

10 ldm r0!, {r1-r4}
11 ldm r0!, {r5-r8}
12 ldm r0!, {r9-r12}
13 .rept 16
14 nop
15 .endr
16 @ send registers on UART

are initialized, along with the 128-bit data buffer. Then,
the address of four 32-bit consecutive words is loaded in
register r0. These four words consist in 128 bits in Flash
memory bank 0 aligned on the prefetch buffer. The transfer
of data between the Flash memory and the register file can be
achieved by mean of the Load Multiple (ldm) instruction on
cortex-M microcontroller. Note that various load instruction
can be used for this purpose, we observed the same fault
model using consecutive ldr instructions. The ldm r0!,
{rX-rY} instruction loads consecutive words in registers rX
to rY from the address stored in r0 and increments register
r0. The instructions under test are separated from the rest
of the code with several nop instructions. Finally, the value
of the registers are sent back to the personal computer to
be analyzed with respect to the initialization state and the
injection parameters.

As we did not observe any corruption of instructions
fetched from the SRAM, we relocated the test routine in
SRAM as proposed in [14] to specifically target the data
prefetch buffer. This strategy allowed us to overcome the
difficulty in distinguishing between instruction and data
corruption.

In the next section, we investigate four different fault
models and demonstrate that the data prefetch buffer can be
precisely targeted.

IV. FAULT MODEL CHARACTERIZATION

An extensive vocabulary is used to describe the versatile
nature of a fault model from the perspective of an attacker. In



Figure 5: Sensitive area to EM fault injection

this article, we adopt the following definition to characterize
the nature of a fault: A fault is called transient if its effect
on the circuit operation is limited in time. On the contrary, a
fault is called permanent or destructive if it has a definitive
effect on the circuit. Furthermore, we adopt the following
designations to describe the effects of a fault:

• bitset: the value of a bit is set to one
• bitreset: the value of a bit is set to zero
• bitflip: the value of a bit is complemented
• update fault: a bit is stuck to its previous value

A. A first set of injection parameters

We move the probe over the entire die area and try several
delays to find a suitable injection spot, where a corruption
of a memory transfer could be observed. The width of the
pulse is fixed to 6 ns, which is the lowest possible value
with our setup. The spot area sensitive to EM injection is
3 mm in diameter, as shown in Figure 5. It is approximately
located around the upper Flash memory bank in Figure 1.
Note that the origin of the referential is located outside of
the chip area, at a corner of the chip package. We fix the
probe location at coordinates (8 mm, 8.5 mm), highlighted
in red on Figure 5, where a repeatable corruption of four
registers had been observed. We characterize the influence
of the injection timing on observed fault models in the next
paragraph.

B. A temporal characterization of observed fault models

The average number of corrupted bit in 128 consecutive
bits loaded from the Flash memory as a function of the
injection delay and the pulse polarity for different values of
the pulse amplitude is given in Figure 6.

Zeroes fetched from the Flash memory could be set to
one (blue curve) and ones fetched from the Flash memory
could be reset to zero (red curve) for different values of the

Figure 6: Average number of corrupted bit as a function of
the injection delay, loading four all-zero words (blue) and
four all-one words (red) in registers r1 to r4 for positive (top)
and negative (bottom) pulse amplitude

delay. Different initialization values of the registers and the
buffer, all ones, all zeroes, mixing ones and zeros, lead to
the same characterization results. Thus, we conclude that
both bitset and bitreset faults can be induced on the target
microarchitecture for different settings of injection delay and
pulse polarity. Note that 128 bits aligned with the prefetch
buffer can be simultaneously set with a pulse amplitude of
100 V and reset with a pulse amplitude of -100 V with a
repeatability of 100% for 20 repetitions at 471 ns.

We observed that more bits could be corrupted simultane-
ously with a positive polarity than with a negative polarity for
the same pulse amplitude. Moreover, the highest temporal
resolution while still being able to corrupt 128 bits was
achieved for a pulse amplitude of 70 V. Therefore a positive
pulse amplitude of 70 V is preferred in the remaining of this
paper. In the next paragraph, we characterize the effect of
the injection timing on sequential ldm instructions.

C. Evidence of faults on the data prefetch buffer

The 128-bit data prefetch buffer improves the execution
time of sequential access to consecutive words in Flash
memory by preloading four 128-bit aligned words with a
single access to the Flash memory. This mechanism is critical
for system performance, as a reading operation in the Flash
memory is several time slower than the maximum operating
frequency of the system. Additional Flash Wait State (FWS)
can be set in the memory controller, so that the core stalls
several cycles to wait for a memory access to complete.



Figure 7: Index of corrupted bits as function of the EM
injection delay

The position of corrupted bit in the 128-bit data buffer as
a function of the injection delay for three consecutive ldm
instructions and a constant pulse amplitude of 70 V is given
in Figure 7. Bitset fault are colored in blue, bitreset fault are
colored in red. We observe that the transfer of consecutive
words can be corrupted by group of four words for registers
r1 to r4, r5 to r8 and r9 to r12, every 9 clock cycles
at 84 MHz.

This phenomenon can be explained by the execution of
two consecutive ldm instructions in the 3-stage pipeline
(Fetch, Decode, Execute) of the cortex-M3 core as shown in
Figure 8. The execution stage of a load instruction is divided
into the address calculation (Ea) and the transfer of a word
into a given register rX (ErX). Note that the first data request
to 128 bits in the Flash memory is performed during the
address phase, while the four words are loaded sequentially
on the bus during the loading phase. Related address and
data transactions in the 2-stage pipeline of the AHB bus is
not represented to improve the clarity of the diagram. Taking
into account the four cycles of stall (FWS) requested by
the Flash controller, consecutive ldm instructions trigger a
reading operation and a subsequent update of the data buffer
of the Flash memory every 9 clock cycles.

These considerations highlight that the sampling operation
of 128 bits in the data prefetch buffer is sensitive to
electromagnetic injection. We fix the injection delay at 471 ns,
where all the bits in the data prefetch buffer could be set

Figure 8: Timing diagram of sequential ldm instructions in
a 3-stage pipeline

with a high repeatability, to characterize the influence of the
probe location on the position of corrupted bits in the buffer.

D. A spatial characterization of observed fault models

As we do not observe any exploitable effect of the x-
coordinate on the fault model, it is fixed to 8 mm.

The index of corrupted bits as a function of the probe
y-coordinate by step of 50 µm is shown in Figure 9. The
correlation between the probe y-coordinate and corrupted
bits can be leveraged by an attacker to fault either the least
significant bits of a 32-bit word for values of y lower than
8.6 mm, or the most significant bits of 32-bit words for values
of y greater than 8.6 mm. The same result have been observed
for bitreset fault with a different injection delay.

The similar fault pattern modulo 32 bits in Figure 9

Figure 9: Position of bitset as a function of the y-coordinate
of the injection probe for a pulse amplitude of 70 V



Figure 10: Hypothesis on the architecture of the interface
between the bus and the 128-bit data buffer

suggests that the physical placement of the 128 bits stored in
the data buffer differ from the logical numbering from 0 to
127. An illustative example, where latches are organized by
group of four on several multiplexer, is depicted on Figure 10.

The spatial accuracy of electromagnetic injection allows an
attacker to target whole or a selected part of the data prefetch
buffer with a high repeatability. This aspect is exploited in
the practical case studies.

V. PRACTICAL CASE STUDIES

To validate the applicability of the discovered fault model
for practical attack, we target a public implementation of
AES [7]. Our threat model assumes that the attacker has
access to a physical instance of the target device. Full control
over another instance of the same device is required to adjust
the injection parameters, based on the methodology and
the results of Section IV. A 128-bit secret key is originally
stored in a readout protected Flash memory of the target
device. Target implementation code is located in the Flash
memory as part of the device microcode to secure the device
communication. The key is kept in the Flash memory and
loaded in registers only when an encryption or a decryption is
performed to deter snapshot attacks on non-protected SRAM
[15]. In the persistent fault attack scenario, the S-box is
copied in SRAM before several block cipher encryptions to
reduce the execution time of an encryption. Moreover, we
assume that the attacker is able to synchronize an EM pulse
on the device operation.

A. Case Study 1: Key zeroing/setting attack

A straightforward implementation of our fault model is
to set or reset a 128-bit key as it is fetched from the Flash
memory. In this scenario, an attacker with a physical access
to the device does not need to know the secret key to decrypt
the content of collected ciphertext. However, an attacker
should be able to specifically target the data path. In the
previous section we demonstrate that it can be easily achieved
on the target architecture when the code is located in SRAM.
In this section, we report that it is still the case when the
code is fetched from the Flash memory on the optimized

Listing 2 Prolog of the key schedule procedure in assembly
1 @ void AES_128_keyschedule(const uint8_t *key,
2 @ uint8_t *rk) {
3 .global AES_128_keyschedule
4 AES_128_keyschedule:
5 //function prologue, preserve registers
6 push {r4-r11}
7 //load key
8 ldm r0, {r4-r7}

implementation of AES-128 for cortex-M microcontroller
provided in [7].

The assembly code used to transfer the 128-bit key in the
register file at the beginning of the key scheduling procedure
is shown in Listing 2. The address of the secret key is
a constant pointer given as the first argument of the key
scheduling procedure const uint8_t *key. According
to the ARM calling convention, this address is stored in
register r0. The second argument of the procedure uint8_t
*rk is a pointer on the round keys located in SRAM. The
instruction ldm r0, {r4-r7} transfers the 128-bit secret
key from the Flash memory to the registers r4, r5, r6,
r7. We successfully set the whole key and reset the whole key
for two different injection delays with 100% repeatability for
100 repetitions while both instruction and data were fetched
from the Flash memory.

The key could be set during a sensitive window of 2 ns,
between 635 ns and 636 ns. The key could be reset during a
sensitive window of 2 ns, between 639 ns and 640 ns.

B. Case Study 2: Baseline DFA from Biham and Shamir

In 1997, Biham and Shamir published a cryptanalytic
attack on the key of a unknown cryptosystem [13]. While
the pedagogical interest of this attack has been previously
highlighted, its practical implementation was commonly
thought to be far from trivial. The attack assumes that one
has the capability to collect the encryption results of a known
plaintext while resetting one bit of the secret key at a time
until the all-zero key is reached. Going backward, the secret
key can be recovered bit per bit from the all-zero key with
at most n(n−1)

2 hypothesis on the position of the ones.
In Section IV, we highlighted the dependency between the

position of the injection probe and the position of corrupted
bits. More specifically, starting with the y-coordinate set to
8.5 mm, all the bits of the key can be set to one as shown in
Figure 9. As the probe move along the y-coordinate toward
7 mm, the probability to fault any of the most significant
bits decreases to zero. Thus, the most significant bit can be
easily recovered. On the other hand, as the probe move along
the y-axis toward 10 mm, the probability to fault the less
significant bits decreases to zero, and the same procedure
can be applied. The exploitation of bitreset faults further
accelerates the convergence of this attack.

The probability that at least one bit among eight is
set by an electromagnetic injection as a function of the



Figure 11: Bitset success rate as a function of the probe
y-coordinate, with a pulse amplitude of 70 V and a constant
injection delay

probe y-coordinate is given in Figure 11. The notation 30
or 31 denotes that at least one bit among the eight bits
30, 31, 62, 63, 94, 95, 126, 127 is corrupted. The probability
to corrupt at least one bit among these bits drop to zero
if the probe y-coordinate is below 8.2 mm on as shown in
Figure 11.

In this experiment, the precision of the positioning table
should be about 25 µm to set (or reset) all but 8 specific
unknown bits, thus reducing the key space to 16 × 28

possibilities.

C. Case Study 3: Persistent fault analysis

In [16], F. Zhang et al. proposed a novel fault analysis
technique against block ciphers called persistent fault analysis
(PFA). PFA is based on persistent faults that persists over
several encryptions and disappear on reboot. The attack needs
a persistent fault in one (or few) elements of the Sbox look-
up table. Any encryption with this corrupted Sbox results in
faulty ciphertext if the corrupted entry is accessed during the
encryption Some encryption never access the corrupted entry
resulting in correct ciphertext. Key recovery is done through
statistical analysis on a pool of output ciphertext. Attack is
still possible if multiple persistent faults are injected in the
Sbox table, at the cost of increased brute force. More details
on the attack can be found in [16].

In the following, we validate the potential of injecting a
persistent fault in the target public code of [7]. The table
lookup is implemented with a single T-table of 1 kB and three
rotations per round for each column. As a result, all the 16
bytes of the key can be potentially recovered if a corruption
of the substitution layer is possible. Let T [v] be a 4-byte
column of the T-table, and • be the multiplication modulo

Listing 3 C memcpy procedure used to relocate the T-table
in SRAM
1 /* relocate */
2 pSrc = &_etext;
3 pDest = &_srelocate;
4 for(; pDest < &_erelocate ;){
5 *pDest++ = *pSrc++;
6 }

0x11B in the finite field GF (28). Then the column T [v] of
the T-table is given as a function of the S-box coefficient
S[v]:

T [v] = [S[v] • 01;S[v] • 02;S[v] • 03;S[v] • 01] (1)

Note that the T-table representation embeds a form of data
duplication. We confirmed with an exhaustive simulation
based on the characterization of our fault model that setting
or resetting only part of a 32-bit register could not emulate
the corruption of a single element in the S-box. However, the
null element of the S-box corresponds to the null word in
the T-table. Thus, resetting 32 bits of a register successfully
emulates a single S-box corruption, and resetting the data
prefetch buffer emulates between three and four S-box
corruptions. We practically verified that 100% repeatability
could be achieved for a constant injection delay during a call
to the relocation function presented in Listing 3. This attack
theoretically reduces the key entropy to 32 bits, considering
that four elements of the S-box are corrupted [16], which is
practical to brute force (232).

VI. CONCLUSION

In this paper, we demonstrate on experimental basis
that EMFI makes it possible to corrupt data fetched from
the embedded Flash memory of a microcontroller with no
observable effect on the code execution. We studied the
influence of the probe location and the temporal parameters
of the electromagnetic pulse on the observed fault model.
A bit level accuracy in the fault injection process was
achieved through a careful tuning of the EM injection
parameters. We investigated three case studies on a public
AES implementation and demonstrated that practical attack
on cryptographic ciphers do not require the corruption of
instructions. These case studies highlight the vulnerability
of unencrypted memories to targeted data corruption.

REFERENCES

[1] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
On the importance of eliminating errors in cryptographic
computations. 14(2):101–119.

[2] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-
attacks on crt-based rsa: Concrete results. In Austrian Workhop
on Microelectronics, pages 61–67.



[3] Marjan Ghodrati, Bilgiday Yuce, Surabhi Gujar, Chinmay
Deshpande, Leyla Nazhandali, and Patrick Schaumont. Induc-
ing local timing fault through EM injection. In Proceedings
of the Design Automation Conference, pages 1–6.

[4] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe
Maurine. EM injection: Fault model and locality. In Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages
3–13.

[5] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and
Assia Tria. Electromagnetic transient faults injection on a
hardware and a software implementations of AES. In Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages
7–15.

[6] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno
Robisson, and Emmanuelle Encrenaz. Electromagnetic fault
injection: Towards a fault model on a 32-bit microcontroller. In
Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 77–88.

[7] Peter Schwabe and Ko Stoffelen. All the AES you need
on cortex-m3 and M4. In Selected Areas in Cryptography,
volume 10532, pages 180–194.

[8] Lionel Rivière, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger,
Julien Bringer, and Laurent Sauvage. High precision fault
injections on the instruction cache of armv7-m architectures.
In International Symposium on Hardware Oriented Security
and Trust, pages 62–67.

[9] H. Liao and C. Gebotys. Methodology for em fault injection:
Charge-based fault model. In Design, Automation Test in
Europe Conference Exhibition, pages 256–259.

[10] Julien Proy, Karine Heydemann, Fabien Majéric, Albert
Cohen, and Alexandre Berzati. Studying EM pulse effects on
superscalar microarchitectures at ISA level. abs/1903.02623.

[11] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick
Schaumont. Fault-assisted side-channel analysis of masked
implementations. In International Symposium on Hardware
Oriented Security and Trust, pages 57–64.

[12] Ang Cui and Rick Housley. BADFET: defeating modern
secure boot using second-order pulsed electromagnetic fault
injection. In USENIX Workshop on Offensive Technologies.

[13] Eli Biham and Adi Shamir. Differential fault analysis of secret
key cryptosystems. In Advances in Cryptology - CRYPTO ’97,
volume 1294, pages 513–525.

[14] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens,
Cécile Dumas, and Jessy Clédière. From code review to fault
injection attacks: Filling the gap using fault model inference.
In International Conference on Smart Card Research and
Advanced Applications, volume 9514, pages 107–124.

[15] Johannes Obermaier and Stefan Tatschner. Shedding too much
light on a microcontroller’s firmware protection. In USENIX
Workshop on Offensive Technologies.

[16] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei
He, Ruyi Ding, Samiya Qureshi, and Kui Ren. Persistent fault
analysis on block ciphers. 2018(3):150–172.


	Introduction
	Related work
	Experimental setup and Methodology
	Target
	Setup
	Methodology

	Fault model characterization
	A first set of injection parameters
	A temporal characterization of observed fault models
	Evidence of faults on the data prefetch buffer
	A spatial characterization of observed fault models

	Practical Case Studies
	Case Study 1: Key zeroing/setting attack
	Case Study 2: Baseline DFA from Biham and Shamir
	Case Study 3: Persistent fault analysis

	Conclusion
	References

