
HAL Id: tel-04803096
https://telecom-paris.hal.science/tel-04803096v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Model Complexity Reduction to Feature Selection
in Deep Learning: a Regularization Story

Enzo Tartaglione

To cite this version:
Enzo Tartaglione. From Model Complexity Reduction to Feature Selection in Deep Learning: a
Regularization Story. Computer Science [cs]. Institut Polytechnique de Paris, 2024. �tel-04803096�

https://telecom-paris.hal.science/tel-04803096v1
https://hal.archives-ouvertes.fr

626 M
ém

oi
re

 d
'h

ab
ili

ta
tio

n
à

di
rig

er
 d

es
 r

ec
he

rc
he

s
From Model Complexity Reduction

to Feature Selection in Deep Learning:
a Regularization Story

Mémoire d’habilitation à diriger des recherches de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 Ecole doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité : Informatique, données, IA

Thèse présentée et soutenue à Palaiseau, le 04/09/2024, par

ENZO TARTAGLIONE

Composition du Jury :

Florence D’Alché-Buc
Professeure, Télécom Paris, Institut Polytechnique de Paris Présidente

Enrico Magli
Full Professor, Politecnico di Torino Examinateur

Aline Roumy
Directrice de Recherche, Inria Rennes Examinatrice

Wojciech Samek
Full Professor, Technische Universität Berlin Rapporteur

Nicu Sebe
Full Professor, Università degli Studi di Trento Rapporteur

Johan Suykens
Full Professor, Katholieke Universiteit Leuven Rapporteur

To my family and friends

who entice me to move forward.

Your positivity grounds my days

in the glowing years of my life.

Contents

1 Introduction 1

1.1 Regularization and its Role in Deep Learning 4

Background on Regularization 4

1.2 The Role of Regularization in my Work 6

1.3 Structure of the Manuscript . 7

2 Pruning in Deep Neural Networks 8

2.1 Structure of the Chapter . 9

2.2 Typical Pruning Scheme . 10

2.2.1 Preliminaries and Definitions . 11

2.2.2 Iterative Pruning Strategy . 11

2.2.2.1 Pruning Policy and Stop Criterion 11

2.2.2.2 Zero-shot Pruning . 13

2.2.2.3 Fine-tuning Strategies . 14

Dropout . 14

Regularization-based Pruning 15

2.3 Sensitivity-based Approaches . 15

2.3.1 Neuron Sensitivity . 16

Boundaries for the Sensitivity 17

Parameters Update Rule . 17

2.3.2 Parameter-based Sensitivity . 18

2.3.3 Better Structured or Unstructured Sparsity? 20

2.4 Pruning while Training on Noisy Data . 22

Beyond Traditional Bias-variance Trade-off 22

The Sparse Double Descent 23

2.4.1 Pruning Exhibits Sparse Double Descent 24

Better Low or Extreme Over-parametrization? 24

2.4.2 An Entropy-Based Interpretation to the Sparse Double Descent . . 25

2.4.3 Distilling Knowledge to Avoid the Sparse Double Descent 25

2.5 Adapters in Pre-trained Models . 26

2.6 Folding layers through pruning . 29

2.6.1 Unstructured Pruning Naturally Reduces the Entropy 30

2.6.2 A Layer Entropy-Aware Pruning Score 33

2.6.3 On-going Work for Layer Folding 35

2.7 Pruning Back-propagation: Neurons at Equilibrium 35

ii

Contents iii

2.7.1 Neurons at Equilibrium . 36

2.7.2 Follow-ups of Neurons at Equilibrium 37

2.7.2.1 Neurons at Equilibrium with a Memory and a Compu-
tation Budget . 38

2.7.2.2 Estimating Neural Velocity to Scaling the Learning Rate 38

3 Biases in Deep Neural Networks 40

3.1 Structure of the Chapter . 40

3.2 The Threat of Biases . 41

3.3 Overview on Debiasing Approaches . 42

3.3.1 Supervised Debiasing Approaches 43

Preprocessing Methods . 43

Postprocessing Methods . 43

In-processing: Debiasing within Training 43

3.3.2 Unsupervised Debiasing Approaches 44

Bias in the Texture . 44

Bias Generates Imbalances between Groups 44

Bias is Learned Early . 44

3.4 Entangling and Disentangling Deep Representations 45

3.5 Is Debiasing Equivalent to Information Removal? 46

Privacy Preservation . 47

How Close is Debiasing to Information Removal? 47

3.5.1 IRENE: Information Removal at the Bottleneck 48

3.6 Unsupervised Debiasing by Looking at the Bottleneck 49

4 Conclusion and Future Research 53

4.1 Efficient Deep Learning On-device . 54

4.2 Multimodal Foundation Models Collapse 56

4.3 Understanding the Bias Encoding in Deep Models 58

My works 59

Bibliography 64

Chapter 1

Introduction

This manuscript synthesizes the research I have conducted in the field of Deep Neural

Networks (DNNs) since completing my Ph.D. thesis. At the heart of my work is an

exploration of DNN algorithms renowned for their ability to solve complex tasks such

as image classification and object detection. Driven by the dual challenges of opti-

mizing learning strategies and questioning the necessity of current model complexities,

my research aims to not only refine these algorithms but also to address their broader

implications, including their potential for bias and how to address such a threat.

Central to my investigation are two interlinked questions.

• How can we enhance DNNs’ learning capabilities to focus on relevant information

automatically?

• Can we achieve efficient model performance without the extensive computational

demands currently seen as necessary?

These research questions led me to explore model pruning and debiasing - efforts that not

only seek to enhance the understanding we have regarding AI algorithms by optimizing

the size of these models, but also to mitigate potential biases in the obtained solution.

The core of the research I have conducted this far lies in properly conditioning learning

problems. This can be declined in a broad range of cases, from correcting ill-posed

problems (like in the case of algorithmic bias occurrence), to preventing overfit. In

both cases, regularization, namely a process that either adds an explicit term to the

optimization problem or is implicitly included through extra constraints, can come to

the rescue and propose elegant and effective solutions.

Timeline of my Work As a conclusive work for my Ph.D., I began working on the

theme of neural network pruning [11]. This was the starting point of my exploration in

1

Introduction 2

Regularization for DNNs

Complexity reduction

Compress architecture:

• Structured pruning [1,
14, 15, 16, 17, 18, 19]

• Unstructured pruning [2,
3, 4, 20, 21, 22]

• Entropy coding [5]

Compress gradient:

• Preserve the
performance [6, 23,
24]

• Memory/
computation budget
[25, 26]

Feature selection

Debiasing:

• Supervised
[7, 8, 27, 28]

• Unsupervised
[9]

Information
filter [10, 28, 29, 30]

Figure 1.1: Research topics overviewed in the manuscript.

the field of neural network compression, conducted during my postdoc at the University

of Turin, between 2019 and 2021 and leading as well to some of my recent efforts that

evolved to concepts like layer collapse [15] or gradient compression [6, 26]. My engage-

ment in the field is also witnessed by my participation in the European Lighthouse of AI

for Sustainability (ELIAS), collaborating in the task “Reducing the energy requirements

of computation”. During the years of my postdoc I also collaborated, in the frame of

the European project DeepHealth, to the realization of three medical usecases, which

gave me the opportunity to get in touch with the problem of performing a proper fea-

ture selection to achieve better control on the DNN output generation. The problem of

managing biased outputs in DNNs culminated in the early works of COVID detection

from radiographic images, prophetically claimed as “working” but heavily affected by

biases [31]. This experience motivated my will to explore two research axes in parallel

(complexity reduction and feature selection), even when moved to Télécom Paris in 2021.

Already in 2020, I believed that the two axes one day will join, as also witnessed by

some preliminary experiments [28]. A summary of the topics treated in the manuscript

is provided in Fig. 1.1. Beyond these, I have pursued related challenges, which include

(but are not limited to) neural network watermarking [12, 32, 33], application of deep

learning to medical tasks [31, 34, 35, 36, 37, 38, 39], input compression for novel view

synthesis [40], video extrapolation [41, 42], learned image compression [43, 44], capsule

networks [45] and efficient ensembling [13].

Complexity Reduction The advent of GPUs has undeniably propelled the scalability

and usability of DNNs, enabling the execution of increasingly sophisticated models.

More specifically, their ability to massively parallelize a sequence of operations like sums

and products resulted in a great match with the requirements of Deep Learning. From

that, we witnessed fast-paced scientific progress oriented to training deeper and deeper

models. Among these, some notable knowledge bricks resulting essential for the current

practice in deep learning include (but are not limited to):

https://elias-ai.eu/
https://elias-ai.eu/
https://deephealth-project.eu/

Introduction 3

• the advent of the ReLU activation [47, 48, 49];

• the design of the Xavier initializer before [50] and the Kaiming one later [51];

• the proposal of skip connections [52];

• the advent of the Adam optimizer [53];

• the design of self-attention layers, leading to transformer architectures [54].

All of this progress set the ground for the uprisal of foundation models [55]: large-scale

models trained on a massive quantity of (heterogeneous) data, potentially adaptable to a

broad variety of downstream tasks. While in principle employing these models in transfer

learning or adaptation scenarios is convenient when dealing with small data, they pose

some practical problems in terms of efficient adaptation to specific tasks (fine-tuning),

and at deploy time (in terms of both energy and memory consumptions).

One critical metric to estimate computational efficiency for a DNN is Floating Point

Operations Per Second (FLOPs), which serves as a first benchmark for computational

demand. Looking even at more traditionally employed architectures like ResNet-50, it

requires 7.7 GFLOPs for image processing tasks (at the typical ImageNet resolution).

It is known that these architectures can be optimized: for example, MobileNet demands

only 1.1 GFLOPs while achieving comparable accuracy. Such a gap evidently exists

for more modern architectures and extends to other applications like Natural Language

Processing, where the computational requirements can escalate to TFLOPs.

Despite the advancements in DNN design, many hand-crafted architectures exhibit over-

parameterization. To address these inefficiencies, my initial efforts were focused on

pruning techniques, aimed at removing redundant or superfluous parameters. According

to recent trends in the field, the imperative to mitigate the energy consumption of deep

models has gained more and more momentum, encapsulating this challenge within the

fields of efficient edge AI and leading to the achievement of a “frugal AI”.

This background underscores the first core aspect of my research: finding a proper trade-

off between computational power and efficiency, framed within the context of sustainable

and responsible AI development.

Feature Selection In the last decade, the over-excitement of the potentialities in

terms of performance offered by deep learning pushed the models to be progressively

more complex and sophisticated, sometimes obfuscating key aspects like transparency

and explainability. This gap prompted legislative bodies, such as the European Com-

mission, to propose regulatory frameworks like the Artificial Intelligence Act (AI Act)

Introduction 4

in 2021. This act categorizes certain AI technologies as “high-risk” due to their po-

tential societal impacts, spanning sectors from education to financial services. The call

for (more) stringent guardrails imposes to address problems like the learning of spuri-

ous data correlations by DNNs: a phenomenon that might generate a bias in the AI

outcomes. This bias manifests in two primary forms:

• algorithmic, emerging from the technicalities of AI development;

• social, a reflection of the broader effect on consequences discrimination-wise.

Although intrinsically linked together, addressing biases necessitates distinct approaches,

from data curation to accounting for the effect a design might have. My research delves

into this complexity, questioning (in the longer term) whether it is feasible to devise

models that are both computationally efficient and (algorithmically) unbiased. The

ultimate goal will be then to obtain models that leverage minimal computation without

compromising on performance, avoiding them relying on (simpler) spurious correlations

that lead to biases.

Considering these aspects, my work’s ambition is not only to contribute to the technical

evolution of DNNs but also to comply with upcoming regulations in the matter of AI,

which shape the future of artificial intelligence. This dual focus emphasizes the need for

a unified perspective between complexity reduction and feature selection.

1.1 Regularization and its Role in Deep Learning

Background on Regularization Pinpointing the exact birth of regularization meth-

ods poses a challenge, but they are commonly associated with the groundbreaking con-

tributions of Tikhonov, as evidenced in seminal works such as [56, 57] and following

efforts devoted by the community [58, 59]. The major motivation behind the first de-

velopments of regularization derives from the concept of ill-posedness, as a counterpart

for well-posedness.

A problem is well-posed if a solution to it:

1. exists;

2. is unique;

3. depends continuously upon the input data.

Introduction 5

Pioneering works around well-posed problems are attributed to Jacques Hadamard in the

context of partial differential equations [60]. In Hadamard’s idea, physical phenomena

should be described by mathematical models showcasing the three core characteristics

of well-posed problems: some examples of this are indeed the Dirichlet problem for

Laplace’s equation and the heat equation (with known initial conditions). However,

inverse problems like denoising, compressive sensing, and training a DNN are often

ill-posed, which poses both theoretical and practical challenges to their solution.

From the outset, it was recognized that to compute meaningful solutions it is necessary

to approximate ill-posed problems with well-posed ones, often through parameterized

families governed by some regularization parameter(s). Tikhonov, drawing from his

background in topology, initially explored restricting the problem domain to compact

sets in various topologies, leading to the concept of conditional well-posedness. In Hilbert

spaces, norm balls around the origin emerged as a natural choice, being compact in the

weak topology: the radius of these balls, or its inverse, naturally served as the regular-

ization parameter, a method referred to as the “selection method” for solutions, yielding

to what are named as quasi-solutions. For example, give a least-squares minimization

problem ∥xW − ŷ∥22 where x is the input, W represents the model’s parameters, and ŷ

is the target output, it is possible to favor specific solutions to the problem by including

in the objective function to be minimized, for example, an extra term λ
2∥W ∥22, with λ

being a Lagrange multiplier.

From these developments, in the following half-century, a multitude of approaches to

regularize ill-posed problems have been proposed for a broad range of applications, of

which some notable applications include:

• the employment of linear filters to smoothen noisy data [61, 62];

• the development of the approximate inverse method [63];

• truncated singular value decomposition [64, 65];

• approaches for inversion of non-linear systems [66];

• the steepest descent methods [67];

• regularized Newton methods [68].

Although this list of contributions is by far non-representative of the many contributions

in the field of regularization for ill-posed problems, to which a comprehensive analysis

is provided by [69, 70, 71], it appears evident the big contribution of these foundational

works to solving ill-posed problems, with clear applications to deep learning and machine

learning in general.

Introduction 6

Focusing on the matrix inversion issue (i.e. determining the parameters of a system), the

issue of ill-posedness based on determinants is well-known, and if paired with non-linear

functions, it can lead to multiple extrema, thereby violating the well-posedness required

for optimization. However, despite the awareness of ill-posedness, these techniques are

frequently employed: such effect is mild through the inclusion of regularization that can

be either:

• explicit, like the commonly known ℓ2 regularization - also referred to as weight

decay ;

• implicit, like with methods such as early stopping or outlier removal.

Through the employment of these techniques, with proper tuning of related hyper-

parameters, a unique (family of) solution(s) for the model can be obtained. Evidently,

the design and careful tuning of the regularization mechanism becomes crucial to the

success of the model’s training.

1.2 The Role of Regularization in my Work

While advancing complex DNN architectures, one of the core challenges is to achieve

a complete understanding of the underlying mechanisms enabling learning. Achieving

this is extremely challenging, but the integration of regularization functions can help

the research to progress in such a direction.

Introducing a regularization term based on the ℓ0 norm to determine the cardinality of

the model’s parameters, coupled with the conventional loss function, is twice effective: it

not only facilitates the learning of the designated task by avoiding over-parametrization,

but also reduces the computation complexity of the model itself. A proper design of a

differentiable version for the ℓ0 norm still remains a challenge, despite multiple efforts

devoted by the community [72, 73, 74]. A promising approach involves designing al-

gorithms capable of decomposing deep models into many sub-networks, of which the

input-output function would be a-priori known. Achieving this would enable the ap-

plication of cutting-edge optimization techniques to simplify the model’s complexity in

both an effective and interpretable way. Such exploration reflects a core aspect of my

research, underscoring a commitment to enhancing the functionality and efficiency of

DNNs.

The foundational pillars of my investigation - the analysis of DNNs’ learned represen-

tations and their parameterizations - are hence deeply connected. While these domains

Introduction 7

have traditionally been explored in isolation, their mutual dependence is intriguing, and

sets the path towards effective model compression and, in the longer run, even enhanc-

ing interpretability. As such, the second research area presented in this work is bound

to what I name after feature selection, intended as constraining internal features of the

model to encode specific information. As such, the fields of debiasing and information

filtering are very compatible with such an objective, given that some specific information

flowing in the DNN should be either weighted or entirely filtered. Originating from tech-

niques that prune DNNs and constrain information processing, my research’s ambition

in the long term will be to tackle both in synergy.

I wish to highlight that, in the interest of brevity, this manuscript does not fully en-

capsulate the entirety of my research endeavors. Certain investigations are currently in

their infancy, and others, though relevant, necessitate detailed exploration beyond the

scope of this document (as an example, my studies on DNN watermarking). A catalog

of most of my publications is provided at the end of the manuscript.

1.3 Structure of the Manuscript

This manuscript is structured around pruning and debiasing, the two main axes of re-

search led through my research years. I first discuss pruning, providing an overview of

the state-of-the-art and my research’s contributions, and integrating the new research di-

rections and implications of model compression in terms of scalability of trained models

and of back-propagation itself (Chapter 2). Then, I will provide a discussion of the prob-

lem of bias in DNNs, providing an overview of the currently most popular approaches

and of my contributes in the field (Chapter 3). Finally, I will provide an overview of my

current and prospective research (Chapter 4).

Chapter 2

Pruning in Deep Neural Networks

In this Chapter, I will discuss pruning, one of the possible approaches to reducing the size

of a DNN model. Traditionally this literature tackles the problem of reducing the number

of learnable parameters of a neural network as a proxy for their complexity: architec-

tures such as AlexNet and VGG, conceptualized before 2015, already had a complexity

in the order of 60 and 130 million parameters respectively. Similar architectures can be

challenging to deploy in scenarios where resources such as memory or storage are lim-

ited. For example, already the 8-layer AlexNet [75] memory footprint exceeds 240 MB,

whereas the 19-layer VGG-Net [76] exceeds 500 MB. Currently employed architectures

such as Residual Neural Networks (ResNets) and Vision Transformers (ViT) showcase

similar memory requirements or go even beyond. The need for compact DNNs is wit-

nessed also by the fact that the Moving Pictures Experts Group (MPEG) of ISO has

broadened its scope beyond multimedia contents issuing an exploratory call for proposal

to compress neural networks [77].

Notably, other approaches are possible to cope with neural networks’ memory require-

ments, inference time, and energy consumption. For example, re-designing the network

topology by enforcing precise neural connectivity or weight sharing, can reduce the num-

ber of parameters, or the complexity of the network [52, 78]. This can be achieved by

handcrafted designs, of which MobileNet is one of the most exemplificative architec-

tures [79], or by automatic architecture-generating approaches, typically referred to as

Neural Architecture Search agorithms [80, 81]. Another possible approach to model

complexity’s reduction involves the reduction of the numerical precision required to

store the model or to perform computation [82, 83, 84]. Although related, pruning

techniques aim at learning sparse topologies by selectively dropping synapses between

neurons (or neurons altogether when all incoming synapses are dropped). The major

difference established by pruning relies upon a strong prior pruning benefits from the

8

Pruning in Deep Neural Networks 9

initial unpruned model, and by the fact that unpruned parameters preserve the same

numerical precision. Although some hybrid approaches are currently in use [84, 85], we

will focus here on pure pruning approaches.

Pruning is favored by the broadly known knowledge that DNNs are typically over-

parametrized [86, 87]. Attempts to reduce the number of parameters from learned

models deepen its roots in the past. In 1989, Mozer and Smolensky proposed skele-

tonization, a technique to identify less relevant neurons in a trained model and to re-

move them [88]. This is accomplished by evaluating the global effect of removing a

given neuron, evaluated as an error function penalty from a pre-trained model. In the

same years, LeCun et al. proposed a work where the information from the second-order

derivative of the error function is leveraged to rank the parameters of the trained model

on a saliency basis [89]. This allows the selection of a trade-off between the size of

the network (in terms of the number of parameters) and performance. Despite these

works, pruning lived a revival around 2015, thanks to the big effort invested in Deep

Learning. Old approaches like [88, 89], although building the foundations for pruning,

were conceptualized for shallow and small neural networks, and can not easily scale to

deep and complex architectures. This generated the urgency to find proper trade-offs

between invested computation and the effectiveness of the proposed approach. In such

a sense, the work by Han et al. [90] opened the road to the more recent class of pruning

approaches for DNNs.

2.1 Structure of the Chapter

In this Chapter, it is first presented an overview of the commonly shared scheme for

iterative pruning approaches (Sec. 2.2). This is constituted mainly by three elements:

pruning policy, stop criterion (Sec. 2.2.2.1), and fine-tuning strategy (Sec. 2.2.2.3). After

these preliminaries, it will be presented at a glance my research as follows.

• Sensitivity-based regularization enforces sparsity at training/fine-tuning time for

the subset of parameters having gradient null. I will present a structured (Sec. 2.3.1)

and an unstructured (Sec. 2.3.2) variant of this formulation. Empirically it is ob-

served that, despite removing consistently fewer parameters than the correspond-

ing unstructured, enforcing structured pruning provides better savings in memory

and computation [16].

• Structured pruning for adapters in pre-trained models is designed. Here the spe-

cific structure of adapters is leveraged to evaluate how much they impact the

output generation and it is possible to trim them, reducing the extra memory cost

Pruning in Deep Neural Networks 10

they induce (Sec. 2.5). It has also been applied a similar approach to different

architectures, like Neural Radiance Fields, leading to comparable advantages [17].

• Under training on noisy data, the occurrence of the sparse double descent phe-

nomenon [91] undermines the applicability of the typical stop criteria due to

the double descent trend of performance evaluated on the validation set. It has

been proposed an entropy measure that indicates when entering the classical bias-

variance trade-off region, enabling these schemes. Besides, it has been observed

that knowledge distillation from large over-parametrized models avoids shallower

student models entering a double descent phase (Sec. 2.4).

• After observing that unstructured pruning makes the neural network architecture

collapse when employing rectifier units, it has been developed an approach that

reduces the depth of DNNs leveraging an “unstructured pruning” paradigm. This

is concretely reducing the depth of a DNN model via pruning (Sec. 2.6), opening

the doors to the phenomenon of layer collapse [15].

• The lottery ticket hypothesis quantitatively shows the existence - already at ini-

tialization (or in the first phases of training) - of subnetworks that, when trained in

isolation, are able to match the performance of the full model [74], I have evidenced

obstacles in finding a proper pruning strategy at initialization [23]. This analysis

inspired the formulation of a different approach, where the back-propagation graph

is pruned instead. It evaluates when neurons have reached an equilibrium condi-

tion and are not required to be further updated (Sec. 2.7). This gave birth to new

research directions: notably, porting this concept to on-device learning scenarios

where computation and memory are limited [26], or tuning the learning rate and

formulating a stop criterion based on it.

2.2 Typical Pruning Scheme

In this section, I will illustrate the typical pruning framework employed by the vast

majority of the works in the literature performing pruning. After some preliminaries

(Sec. 2.2.1), the general iterative pruning approach is presented (Sec. 2.2.2), including a

short review of typical approaches.

Pruning in Deep Neural Networks 11

2.2.1 Preliminaries and Definitions

Let a feed-forward, a-cyclic, multi-layer artificial neural network be composed of N − 1

hidden layers. We identify with n = 0 the input layer and n = N the output layer. For

the i-th neuron of the n-th layer xn,i, we define:

• yn,i as its output,

• yn−1 as its input vector,

• θn,i as its own parameters: wn,i the weights and bn,i the bias.

Figure 2.1: Simplified representation of a neuron.

Each neuron has its

own activation function

ϕn,i(·) to be applied af-

ter some affine func-

tion fn,i(·) which can be

for example a convolu-

tion or the dot prod-

uct. Hence, the output

of a neuron is given by

yn,i = ϕn,i[pn,i], where

pn,i is the post-synaptic potential of the neuron defined as pn,i = fn,i(θn,i,yn−1). A

simplified representation is proposed in Fig. 2.1.

2.2.2 Iterative Pruning Strategy

To proceed with applying an iterative pruning strategy on a target DNN trained on a

specific dataset, we need to define a pruning policy, namely the strategy to select the

parameters to remove from the model, a fine tuning strategy that aims at both recovering

the performance of the model and to enforce sparsity, and a stop criterion, telling us

when to terminate the iterative pruning algorithm. An overview of the typical iterative

pruning scheme is presented in Fig. 2.2.

2.2.2.1 Pruning Policy and Stop Criterion

While most of the research focuses on how to perform fine-tuning, some devote their

efforts to jointly optimizing the model and providing specific metrics to rank the pa-

rameters or the neurons to remove from a DNN model. Despite big research efforts

Pruning in Deep Neural Networks 12

devoted in the last years, it has been found that ranking the parameters simply by their

magnitudes provides a fair trade-off in terms of performance and computation complex-

ity [92]. This is due to multiple effects, which include the regularizing effect of weight

decay. Despite this, finding the optimal threshold for the parameter’s removal remains

an open challenge, as most of the pruning algorithms fix it as a hyper-parameter.

The act of removing parameters from a DNN model is often referred to as thresholding.

Let us define τ(·) as a function that extracts a proper value to be employed for the

thresholding. When thresholding, we have

wn,i,j =

{
wn,i,j τ(wn,i,j) > T

0 otherwise,
(2.1)

where T is typically a hyper-parameter, or is found through a quantile function on the

parameters magnitudes distribution. For the mostly employed magnitude pruning ap-

proaches, we have that τ(·) = | · |, ranking the parameters according to their magnitude.

Similarly, gradient-based approaches rank the parameters according to the magnitude of

their gradient. Because of the stochasticity introduced by mini-batch-based optimizers,

parameters pruned during a thresholding iteration may be reintroduced by the follow-

ing fine-tuning iteration. To overcome this effect, pruned parameters are enforced not

to be updated during the following training iterations: we can name this behavior as

parameter pinning).

Figure 2.2: A general training procedure for iterative pruning approaches.
Image adapted from [1].

Pruning in Deep Neural Networks 13

Figure 2.3: A possible dynamic threshold selection strategy for pruning. Given an
initial model loss L̂ and a relative allowable worsening of the loss TWT , the algorithm
finds the threshold T to prune the parameters and stops when the search interval ∆T

drops below ε. Image adapted from [3].

Within my research, as an alternative to mainstream approaches, I have proposed a

method in [1, 3] where the threshold T is found as a function of a relative worsening

of the loss evaluated on the validation set. The pruning threshold T is selected so

that the performance worsens at most of a relative value we call thresholding worsening

tolerance (TWT) we provide as a hyper-parameter. We assume that, for small induced

perturbations, the loss function is locally a smooth, monotone function of T , if the

parameter’s population is sufficiently large. The threshold T can be found using a

bisection approach, converging to the choice of T value in log-time steps. A schematic

overview of this approach is provided in Fig. 2.3.

Finally, the typical stop criterion is informally synthesized as “the iterative procedure is

stopped when the performance degrades too much”. This means that, given the initial

model, the performance on a validation set is recorded, and when the fine-tuning can not

recover it (potentially within a certain tolerance), then the whole iterative procedure is

stopped. We will see that this can lead to some threats when working with real, noisy

datasets, due to a sparse double descent effect, in Sec. 2.4.

2.2.2.2 Zero-shot Pruning

Recently, it has been observed by Frankle and Carbin that only a small portion of

parameters are relevant to successfully conduct a model’s training [74]. This is also

known as the lottery ticket hypothesis, which underlying suggests that all the other

Pruning in Deep Neural Networks 14

parameters can be removed from the learning process before training, without affecting

the network performance. These latter parameters can effectively be determined a-

posteriori, and the current challenge is to find ways to determine them before training.

Lots of efforts have recently been devoted towards making pruning mechanisms more

efficient: for example, Wang et al. show that some sparsity is achievable pruning weights

at the very beginning of the training process [93], Liebenwein et al. build saliency scores

to rank filters to be pruned [94], or Lee et al., with their “SNIP”, are able to prune

weights in a one-shot fashion [95]. However, these approaches achieve limited sparsity

only, while strategies based on iterative pruning usually enable higher sparsity [20].

I have shown that the difficulty of performing zero-shot pruning is due to improper man-

agement of extreme pruning in the loss landscape. More specifically, when removing a

parameter a perturbation is introduced in the DNN model, which causes a drastic change

in the local landscape of the loss [23]. Without a proper thresholding mechanism, or

rather a look-ahead mechanism as in the lottery ticket hypothesis, it is unfortunately

very easy to land in locally flat regions for the loss, making the optimization problem

hard. On the contrary, as we will see in Sec. 2.7, it is possible to save computation in

back-propagation by resorting to pruning the back-propagation graph, even at initial-

ization. Notably, this problem has recently potentially found a way out, where some of

the research is being ignited by the Neural Tangent Kernel theory [96] and finds one of

its recent expressions in NTK-SAP [97].

2.2.2.3 Fine-tuning Strategies

Dropout Dropout aims at preventing a network from over-fitting by randomly drop-

ping some neurons at learning time [98]. Despite dropout tackling a different problem, it

has inspired some techniques aiming at sparsifying deep architectures. Kingma et al. [99]

have shown that dropout can be seen as a special case of Bayesian regularization. Fur-

thermore, they derive a variational method that allows to use dropout rates adaptively

to the data. Molchanov et al. [73] exploited such variational dropout to sparsify both

fully-connected and convolutional layers. In particular, the parameters having a high

dropout rate are always ignored and they can be removed from the network. Even if this

technique achieves good performance, it is quite complex and it is reported to behave

inconsistently when applied to deep architectures [100]. Furthermore, this technique re-

lies on the belief that the Bernoulli probability distribution (to be used with dropout) is

a good variational approximation for the posterior. Another dropout-based approach is

Targeted Dropout [101]: here, fine-tuning the ANN model is self-reinforcing its sparsity

by stochastically dropping connections. They also target structured sparsity without,

however, reaching state-of-the-art performance.

Pruning in Deep Neural Networks 15

Regularization-based Pruning Regularization-based approaches rely on an ex-

plicit regularization term (designed to enhance sparsity) to minimize the loss function

at training time. Louizos et al. propose a proxy for the ℓ0 regularization to prune the

network parameters during training [72]. Such a technique penalizes the non-zero value

of a parameter vector, promoting sparse solutions. As a drawback, it requires solv-

ing a complex optimization problem, besides the loss minimization strategy and other

regularization terms. In [102], Wen et al. propose a regularizer based on group lasso,

whose goal is to cluster filters in convolutional layers. However, such a technique can-

not be generalized to bulky fully-connected layers, where most of the complexity (in

terms of number of parameters) lies. A sound approach towards pruning parameters

consists of exploiting a ℓ2 regularizer in a prune-and-finetune scheme. In particular, a

standard ℓ2 regularization term is included in the minimized cost function (to penalize

the magnitude of the parameters): all the parameters dropping below some threshold

are pinpointed to zero, thus learning a sparser topology [92]. Such an approach is ef-

fective since regularization replaces ill-posed problems with nearby and stable ones by

introducing a prior on the parameters [103]. However, as a drawback, this method re-

quires preliminary training to learn the threshold value; furthermore, all the parameters

are blindly, equally penalized by their ℓ2 norm: some parameters, which can introduce

large errors (if removed), might drop below the threshold because of the regularization

term. This introduces sub-optimalities as well as instabilities in the pruning process.

Guo et al. attempted to address this issue with their DNS [104], where they propose

an algorithmic procedure to correct eventual over-pruning by enabling the recovery of

severed connections, or another possible approach has been proposed by He et al. with

a “soft pruning” strategy [105, 106]. Overall, the general lack of these formulations lies

in an explicit dependency of regularization strategies to the loss function.

2.3 Sensitivity-based Approaches

In this section, it is first formulated the sensitivity of the output of a DNN with respect

to the post-synaptic potential of a target neuron. If such a value is low, then we can

introduce a regularization that attempts to drive the norm of its parameters to zero

and to be, eventually, pruned (Sec. 2.3.1). Then, this is extended to a variant where we

target specific parameters (Sec. 2.3.2). As a reference scenario, according to the vast

majority of the literature, a multi-class classification problem with C labels is considered;

however, the same strategy can be extended to also other learning tasks.

Pruning in Deep Neural Networks 16

2.3.1 Neuron Sensitivity

It will be here presented the work “Serene: Sensitivity-based regularization of

neurons for structured sparsity in neural networks” [1]. It builds its foundations

on my prior work “Learning sparse neural networks via sensitivity-driven regu-

larization” [2].

Here I introduce the definition of neuron sensitivity. In this case, the objective would be

to prune entire neurons rather than single parameters to achieve what is referred to in the

literature as structured sparsity [102, 107, 108]. Let us assume that a pre-trained network

is already provided (and eventually trained through any vanilla training strategy). To

estimate the relevance of the i-th neuron belonging to the n-th layer, we evaluate the

neuron contribution to the network output yN . To this end, we first provide intuition

on how small variations of the post-synaptic potential pn,i of the neuron affect the k-th

output of the network yN,k. By a Taylor series expansion, for small variations of pn,i,

let us express the variation of yN,k as

∆yN,k ≈ ∆pn,i
∂yN,k

∂pn,i
. (2.2)

In the case ∆yN,k → 0, ∀k, for small variations of pn,i, yN,k does not change. Such a

condition allows to drive the post-synaptic potential pn,i to zero without affecting the

network output yN,k (and, for instance, its performance). Otherwise, if ∆yN,k ̸= 0, any

variation of pn,i might alter the network output, possibly impairing its performance. We

can now properly quantify the effect of small changes to the network output by defining

the neuron sensitivity. The sensitivity of the network output yN with respect to the

post-synaptic potential pn,i of neuron xn,i is:

Sn,i(yN , pn,i) =
1

C

C∑

k=1

∣∣∣∣
∂yN,k

∂pn,i

∣∣∣∣ . (2.3)

Intuitively, the higher Sn,i, the higher the fluctuation of yN for small variations of pn,i.

Before moving on, we would like to clarify our choice of leveraging the post-synaptic

potential pn,i rather than directly the neuron output yn,i in (2.3). To understand our

choice, we re-write (2.3) using the chain rule:

Sn,i(yN , pn,i) =
1

C

C∑

k=1

∣∣∣∣
∂yN,k

∂yn,i
· ∂yn,i
∂pn,i

∣∣∣∣ . (2.4)

https://ieeexplore.ieee.org/abstract/document/9456024
https://ieeexplore.ieee.org/abstract/document/9456024
https://proceedings.neurips.cc/paper/2018/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html

Pruning in Deep Neural Networks 17

Without loss of generality, let us assume
∂yN,k

∂yn,i
̸= 0. Under the hypothesis that pn,i < 0,

in case we are employing a rectifier activation such as ReLU,
∂yn,i

∂pn,i
= 0 for the considered

ReLU activation. Had we written (2.3) as a function of the neuron output yn,i, the

vanishing gradient
∂yn,i

∂pn,i
= 0 would have prevented us from correctly estimating the

neuron sensitivity.

Boundaries for the Sensitivity Given the complexity of efficiently coding (2.3) in

traditional automatic differentiation schemes (given that each possible output channel

k should be back-propagated in parallel), two computationally cheaper bounds to the

sensitivity function were derived. Popular frameworks for DNN training rely on dif-

ferentiation frameworks such as autograd, for automatic variable differentiation along

computational graphs. Such frameworks take as input some objective function and auto-

matically compute all the gradients along the computational graph. The major difficulty

in (2.3) lies in the need of computing the absolute value of the whole chain rule, output

element per output element. A lower bound to the sensitivity in (2.3) can be computed

as

Slow
n,i =

∣∣∣∣∣
1

C

C∑

k=1

∂yN,k

∂pn,i

∣∣∣∣∣ , (2.5)

which directly follows from the triangular inequality; and in the same spirit we can

derive the upper bound

Supper
n,i =

1

C

(
C∑

k=1

∣∣∣∣
∂yN,k

∂yN−1

∣∣∣∣

)
·

N−1∏

l=n+1

(∣∣∣∣
∂yl

∂yl−1

∣∣∣∣
)
· δn,i ·

∣∣∣∣
∂yn,i
∂pn,i

∣∣∣∣ , (2.6)

where δn,i is a one-hot vector that selects the i-th neuron in the n-th layer. Both of the

boundaries can be easily coded and requires only one back-propagation call.

Parameters Update Rule Now we show how the proposed sensitivity definition can

be exploited to promote neuron sparsification. As hinted before, if the sensitivity Sn,i

is small, i.e Sn,i → 0, then the target neuron yields a small contribution to the output

and its parameters may be moved towards zero with little perturbation. To this end, we

define the insensitivity function Sn,i as

Sn,i = max{0, 1 − Sn,i} = (1 − Sn,i) · Θ (1 − Sn,i) , (2.7)

where Θ(·) is the one-step function. Empirically it is observed that in typical DNN

learning regimes, it is rare to have Sn,i > 1, which would result in potential gradient

explosion issues. The higher the insensitivity of a neuron (i.e., Sn,i → 1 or equivalently

Sn,i → 0), the less the neuron affects the network output. Therefore, if Sn,i → 1,

Pruning in Deep Neural Networks 18

then the neuron contributes little to the network output, and its parameters θn,i can

be driven towards zero without significantly perturbing the network output. Using the

insensitivity definition in (2.7), it is proposed the following update rule:

θt+1
n,i,j = θtn,i,j − η

∂Lt

θtn,i,j
− λθtn,i,jS

t
n,i, (2.8)

where:

• the first contribution term is the classical minimization of a loss function L(·),
ensuring that the network still solves the target task, e.g. classification;

• the second one represents a penalty applied to the parameter θn,i,j belonging to

the target i-th neuron in the n-th layer, proportional to the insensitivity of the

output to its variations.

The whole approach described is here named SeReNe. Empirical results presented in [1]

show that the proposed approach enhances structured sparsity in DNNs while maintain-

ing comparable performance as traditional approaches, thanks to the regulation induced

by the sensitivity term.

2.3.2 Parameter-based Sensitivity

It will be here presented the work “Loss-based sensitivity regularization: towards

deep sparse neural networks” [3].

DNNs are typically trained via gradient descent-based optimization, i.e. minimizing the

loss function. Methods based on mini-batches of samples have gained popularity as they

allow better generalization than stochastic learning while also being memory and time-

efficient. A network parameter θn,i is updated towards the averaged direction which

minimizes the averaged loss for the minibatch, i.e. using stochastic gradient descent

or one of its variants. Our ultimate goal is to assess to which extent a variation of the

single parameter θi would affect the error on the network output yN : the parameters not

affecting the network output could be hardwired to zero, i.e. pruned away. In the same

spirit as done in Sec. 2.3.1, we can make a first attempt towards this end by introducing

a small perturbation ∆θn,i over θn,i and measuring the variation of yN as

∆yN =
∑

k

|∆yN,k| ≈ ∆θn,i
∑

k

∣∣∣∣
∂yN,k

∂θn,i

∣∣∣∣ . (2.9)

https://www.sciencedirect.com/science/article/abs/pii/S0893608021004706
https://www.sciencedirect.com/science/article/abs/pii/S0893608021004706

Pruning in Deep Neural Networks 19

A direct evaluation of (2.9), as already observed in Sec. 2.3.1, is computationally expen-

sive [2]. In this context, however, we can directly estimate the variations of the error

function, using some differentiable proxy, i.e. the loss function:

∆L ≈ ∆θn,i

∣∣∣∣
∂L
∂yN

· ∂yN

∂θn,i

∣∣∣∣ = ∆θn,i

∣∣∣∣
∂L
∂θn,i

∣∣∣∣ . (2.10)

The use of (2.10) in place of (2.9) shifts the focus from the output to the error of the

network. We can here define the sensitivity S(·) for a given parameter wi as

S(L, θn,i) =

∣∣∣∣
∂L
∂θn,i

∣∣∣∣ . (2.11)

Large S(·) values indicate large variations of the loss function for small perturbations of

θn,i. Plugging (2.11) directly in the optimization scheme is very computationally friendly,

given that ∂L
∂θn,i

should be calculated in any case to perform the loss minimization.

Given the sensitivity definition in (2.11), we can promote sparse topologies by pruning

parameters with both low sensitivity S(·) (i.e., in a flat region of the loss function

gradient, where a small perturbation of the parameter has a negligible effect on the loss)

and low magnitude. To this end, it is proposed the following parameter update rule to

promote sparsity:

θt+1
n,i = θtn,i − λΓ

(
L, θtn,i

)
− ∂L
∂θtn,i

[
η − sign

(
∂L
∂θtn,i

)
λΓ
(
L, θtn,i

)
]
, (2.12)

where

Γ (y, x) = x · P
(
∂y

∂x

)
, (2.13)

P (x) = Θ(1−|x|), and Θ(·) is the Heaviside function. In (2.12) we observe two different

components of the proposed regularization term: a weight decay-like term Γ (L,wi)

which is enabled/disabled by the magnitude of the gradient on the parameter; and a

correction term for the learning rate. In particular, the full learning process follows an

equivalent learning rate

η̃ = η − sign

(
∂L
∂θn,i

)
λΓ (L, θn,i) . (2.14)

In a nutshell, if we receive a signal from the loss gradient (meaning that we can optimize

in a given direction), the contribution from the regularization is shut down; on the

contrary, when we are in a flat region, we enforce regularization. This can be seen

as a proxy for a second-order optimization method, that tries to enforce sparsity in a

loss-aware fashion. A visualization of such an effect is displayed in Fig. 2.4.

Pruning in Deep Neural Networks 20

(a) (b) (c) (d)

Figure 2.4: Update rule effect on the parameters. The red dashed line is the tangent
to the loss function in the black dot, in blue the standard SGD contribution, in purple
the weight decay while in orange the LOBSTER contribution. Image adapted from [3].

Pruning Entropy Coding Bit streamSimplification Decompression

Figure 2.5: Neural network compression and pipeline (in the dashed box), inspired
by the MPEG-7 part 17 standard. Image taken from [16].

The overall approach described here is referred to as LOBSTER. More details, discussion,

and results are provided in [3].

2.3.3 Better Structured or Unstructured Sparsity?

It will be here presented the work “On the role of structured pruning for neural

network compression” [16].

Traditionally, a large part of the literature focused on the so-called unstructured pruning,

ie. focusing on maximizing the number of pruned parameters for a given performance

target, without imposing constraints on the resulting tensor topology (similarly to what

the objective of LOBSTER in Sec. 2.3.2). These approaches, such as those referenced

by [92, 109], often achieve very high pruning ratios but may result in randomly sparse

parameter tensors.

In contrast, structured pruning approaches impose constraints on the pruning process

to enforce a more regular structure on the pruned topology (as achieved for SeReNe in

Sec. 2.3.1). These methods, exemplified by works like [72, 102], may lead to network

representations that are easier to store in memory, despite typically achieving lower

pruning ratios due to the additional constraints.

In the spirit of assessing the potential advantages and disadvantages of either of the

two approaches, it was conducted some quantitative comparisons for either structured

https://ieeexplore.ieee.org/abstract/document/9506708
https://ieeexplore.ieee.org/abstract/document/9506708

Pruning in Deep Neural Networks 21

Table 2.1: Benchmark of pruning strategies. From the left: percentage of pruned pa-
rameters, size of the simplified network topology, and size of the compressed bitstream.
Right: inference time on different embedded devices: Raspberry Pi 3B (RPi 3B),

Huawei P20 (P20), Xiaomi MI 9 (MI9) and Samsung Galaxy S6 lite (S6L).
Table taken from [16].

Dataset Arch. Pruning
Pruning Simplified Compressed Inference time [ms]

ratio [%] topology [MB] bitstream [MB] RPi 3B P20 MI9 S6L

CIFAR-10

VGG-16

No pruning - 60.0 3.6 647 204 153 251

LOBSTER [3] 92.44 58.61 1.61 610 191 146 242

SeReNe [1] 47.16 31.02 0.34 594 99 85 106

No pruning - 2.0 0.30 580 32 30 31

ResNet-32 LOBSTER [3] 81.19 1.96 0.12 545 32 26 30

SeReNe [1] 52.80 1.0 0.09 536 25 17 25

CIFAR-100 AlexNet

No pruning - 94.6 10.1 246 131 84 168

LOBSTER [3] 98.90 48.84 0.40 224 95 67 120

SeReNe [1] 59.87 37.07 0.20 186 75 53 96

ImageNet ResNet-101

No pruning - 178.4 26.24 11919 958 416 1008

LOBSTER [3] 87.39 173.87 9.24 11879 956 403 985

SeReNe [1] 1.09 172.53 7.51 11699 929 371 974

or unstructured pruning, choosing the MPEG-7 part 17 neural network compression

pipeline (synthetically displayed in Fig. 2.5). To this, it is added a simplification stage,

where neurons having no left parameters (ie. all its parameters are removed by the

pruning algorithm) are concretely removed by the architecture, generating no memory

or computation overhead. For such a purpose, a library named simplify has been

developed and open-sourced [110].

A quantitative comparison is reported in Tab. 2.1. The models here showcase the same

performance on the trained task for a matter of fair comparison. As anticipated, unstruc-

tured pruning approaches like LOBSTER can achieve an extremely high compression

ratio, effectively removing more parameters from the network. However, structured

pruning approaches like SeReNe produce more compact and simplified network topolo-

gies, which lead to benefits in terms of memory footprint and needed storage mem-

ory, besides faster computation. Despite a larger hype regarding achieving the highest

parameter removal percentages, when deploying DNNs on general-purpose hardware,

structured pruning approaches showcase their practical effectiveness.

A deeper discussion around this topic is presented in [16].

Pruning in Deep Neural Networks 22

2.4 Pruning while Training on Noisy Data

It will be here presented the work “DSD²: Can We Dodge Sparse Double Descent

and Compress the Neural Network Worry-Free?” [4]. However, this work builds

on top of preliminary results presented in “Dodging the Double Descent in Deep

Neural Networks” [22] and “Sparse Double Descent in Vision Transformers: real

or phantom threat?” [21], whose contribute is hinted in the section.

Beyond Traditional Bias-variance Trade-off In real-world scenarios, data acqui-

sition often introduces noise [111], whether from the data collection process itself or

during labeling. Various approaches have been proposed to mitigate annotation noise.

For instance, Li et al. suggest a unified distillation framework that leverages knowledge

from a small, clean dataset and semantic knowledge graphs to rectify noisy labels [112].

Other solutions draw inspiration from the beneficial aspects of noise in biological nervous

systems. Arani et al. demonstrate that introducing constructive noise at different levels

within a collaborative learning framework can effectively train models and distill de-

sirable characteristics in the student model, particularly for training high-performance,

compact, adversarially robust models [113].

However, when limited information is available about the noise, there’s a risk of overfit-

ting the training set, leading to a phenomenon known as the “memorization phase”. In

this phase, the model memorizes individual samples from the training set and may learn

incorrect features, thus impairing its generalization performance on unseen data [114].

Extreme over-parametrization
regime

over-parametrization
under-

parametrization

Validation/test
Loss

Size of the model

Classical regime

Figure 2.6: The double descent phenomenon
(dashed line). Image adapted from [22].

Recently, a surprising phenomenon

known as double descent (DD) [115]

has been observed in extremely

over-parametrized models. Be-

yond the traditional overfitting

regime, as the size of the model

increases, the generalization gap

between training and test per-

formance initially decreases and

then narrows further (Fig. 2.6).

This trend persists even with in-

creasingly larger models [116].

DD prompts inquiries into the optimal sizing of models to achieve the best performance

while minimizing their size. Numerous approaches have suggested employing regular-

ization functions to alleviate DD in models used for regression and classification tasks.

https://ojs.aaai.org/index.php/AAAI/article/view/29393
https://ojs.aaai.org/index.php/AAAI/article/view/29393
https://ieeexplore.ieee.org/abstract/document/10222624
https://ieeexplore.ieee.org/abstract/document/10222624
https://link.springer.com/chapter/10.1007/978-3-031-43153-1_41
https://link.springer.com/chapter/10.1007/978-3-031-43153-1_41

Pruning in Deep Neural Networks 23

0 20 48.7 73.7 89.2 95.6 98.8 99.8

40

60

80

100

Tr
ai

n
A

cc
ur

ac
y

[%
]

ε = 10%

ε = 20%

ε = 50%

0 20 48.7 73.7 89.2 95.6 98.8 99.8

50

60

70

80

90

Te
st

A
cc

ur
ac

y
[%

]

I II III IV

0 20 48.7 73.7 89.2 95.6 98.8 99.8

Sparsity ζ [%]

0.4

0.6

E
nt

ro
py

I/II

III/IV

(a)

0 20 48.7 73.7 89.2 95.6 98.8 99.8

20

40

60

80

100

Tr
ai

n
A

cc
ur

ac
y

[%
]

0 20 48.7 73.7 89.2 95.6 98.8 99.8

30

40

50

60

70

Te
st

A
cc

ur
ac

y
[%

]

I II III IV

0 20 48.7 73.7 89.2 95.6 98.8 99.8

Sparsity ζ [%]

0.4

0.6

0.8

E
nt

ro
py I/II

III/IV

(b)

Figure 2.7: Performance of ResNet-18 with different amount of noise ε on CIFAR-
10 (a) and CIFAR-100 (b). I: Light Phase. II: Critical Phase. III: Sweet Phase. IV:

Collapsed Phase. Figure taken from [4].

However, the practical application of these methods is hindered by the complexity in-

volved in optimally tuning the regularization hyperparameters and determining optimal

early stopping, as highlighted by [117].

The Sparse Double Descent While the conventional analysis of DD focuses on

transitioning from small models to larger ones, a recent study has identified a simi-

lar phenomenon occurring in the reverse direction – from an over-parametrized model

to a smaller one. This observation is made possible through pruning, and takes the

name of sparse double descent (SDD) [91]. In essence, while we know that in classical

regimes pruning can lead to performance enhancement as parameters are removed from

the model, followed by a performance drop, in SDD this trend can repeat, as sparsity

increases. Such a behavior questions traditional stop criteria as the pruning can be

wrongly early-stopped (as discussed in Sec. 2.2.2.1).

In the following, it will be first characterized the sparse double descent phenomenon

(Sec. 2.4.1), proposing a metric that hints when a model is entering the classical regime

that enables back stop criteria (Sec. 2.4.2), and then it will be proposed a regularization

strategy based on knowledge distillation that boosts the performance of a smaller student

model avoiding SDD regions (Sec. 2.4.3).

Pruning in Deep Neural Networks 24

2.4.1 Pruning Exhibits Sparse Double Descent

In this section, I will briefly report the occurrence of the sparse double descent phe-

nomenon, as observed in [91] and validated by my work [4].

Let us take a model trained on the train set Dtrain (whose performance is evaluated

on the validation set Dval). When we prune the ζ-th fraction of parameters from the

model (referred to as sparsity in Fig. 2.7), the parameters are projected to a parameter

sub-space. We here observe four phases, as also reported in [91]:

• first we have a light phase where the performance is almost constant (phase I);

• then a critical phase, where the performance degrades, occurs (phase II);

• thirdly the sweet phase where the performance increases again is observed

(phase III);

• finally, when the model becomes under-parameterized, the collapsed phase is achieved

(phase IV).

Worth of noticing, the last two phases are typically referred to as classical regime, where

the traditional bias-variance trade-off occurs, while the first two are the overparametriza-

tion regime.

Better Low or Extreme Over-parametrization? There’s currently a significant

debate regarding whether simple techniques, such as early stopping, suffice to achieve

good generalization performance. For instance, Rice et al. delve into extreme over-

parametrization for adversarially trained deep networks [118]. They note that overfitting

the training set significantly impairs robust performance in adversarially robust training

across multiple datasets, a challenge that can be addressed simply by employing early

stopping.

To combat overfitting, some works propose self-training to smooth logits, coupled with

stochastic weight averaging trained by the same model [119], or by employing stochastic

weight averaging independently [120]. While these studies primarily focus on DD, similar

effects can be applied to sparse double descent. The question arises: is it always the

case that the optimal model lies within the sweet phase?

In Fig. 2.7, we observe a correlation between the optimal model (denoted by a ⋆) and

the level of noise present in the dataset. Specifically, on CIFAR-10, the optimal model

falls within the sweet phase for ε values of 20% and 50%, whereas on CIFAR-100, it

Pruning in Deep Neural Networks 25

resides in it only for ε = 50%. Thus, empirical findings suggest a relationship between

the extent of noise in the training set and the positioning of the optimal model.

2.4.2 An Entropy-Based Interpretation to the Sparse Double Descent

Examining the SDD phenomenon through the lenses of learning dynamics, we are

prompted into the information bottleneck theory. This theory, initially proposed in

the works by Tishby [121, 122], estimates the mutual information between the layers’

processed information and the input and output variables. Consequently, it becomes

feasible to compute optimal theoretical limits and establish benchmarks for generaliza-

tion error. Several studies have embraced this theory, exploring variations in learning

dynamics based on the choice of activation functions employed [123]. Furthermore, ef-

forts have been made to refine estimation approaches, as evidenced by Pan et al. [124],

while verifying that the theory accommodates DD in regression tasks [125].

Inspired by this literature, we can conjecture that as the model size, measured in terms

of the number of parameters per neuron, decreases from the light phase, the entropy of

the features within the model remains stable, requiring only minor fine-tuning for the

parameters. However, upon exiting the interpolation regime immediately following the

interpolation threshold and entering the sweet phase, the entropy begins to decline.

To empirically validate this conjecture, Fig. 2.7 also reports the entropy of the activations

within the trained models. As it is possible to observe, the entropy is indeed stationary

or even growing in the first two phases, while declining in the last two. Such behavior

has been consistently observed across the typical datasets employed to study the SDD

phenomenon. This observation enables back traditional early stop criteria for pruning:

once the entropy of the activations starts declining, as we enter the classical regime, we

can use again the known criteria to stop the pruning. This allows us to also capture the

best fitting model, regardless whether it is located in the sweet or the light phase.

2.4.3 Distilling Knowledge to Avoid the Sparse Double Descent

While employing a standard ℓ2 regularization method can indeed help mitigate SDD,

it comes with its own set of drawbacks. Nakkiran et al. demonstrated that optimally-

tuned ℓ2 regularization can lead to monotonic test performance for certain linear regres-

sion models with isotropic data distributions, as both the sample size and model size

increase [126]. However, as highlighted by previous research [22], in certain image clas-

sification setups such as ResNet-18 on CIFAR datasets, SDD remains noticeable even

Pruning in Deep Neural Networks 26

0 20 48.7 73.7 89.2 95.6 98.8 99.8

70

80
Te

st
A

cc
ur

ac
y

[%
]

0 20 48.7 73.7 89.2 95.6 98.8 99.8
Sparsity ζ [%]

0.6

0.7

0.8

E
nt

ro
py

Vanilla
Pruned Teacher
Dense Teacher

(a)

0 20 48.7 73.7 89.2 95.6 98.8 99.8

40

60

80

Te
st

A
cc

ur
ac

y
[%

]

0 20 48.7 73.7 89.2 95.6 98.8 99.8
Sparsity ζ [%]

0.6

0.7

0.8

0.9

E
nt

ro
py

(b)

Figure 2.8: Performance of a shallow VGG-like model on CIFAR-10 for different label
noises. Left: ε = 20%. Right: ε = 50%. Figure adapted from [4].

with the use of ℓ2 regularization. This is due to the difficulty of optimally tuning the

regularization and training policies [21].

One possible approach, inspired by recent literature in both pruning [127, 128, 129]

and DD [130, 131], is to formulate a learning problem as a knowledge distillation one,

where an over-parametrized teacher regularizes a shallower student one model. Since

the (over-parametrized) teacher is in the light phase, it will embody good generalization,

driving the student to a solution that generalizes well. Given that the student will be

under-parameterized compared to the teacher, it will be forced directly into the sweet

phase, avoiding SDD.

In a quantitative numerical validation (of which one part is reported in Fig. 2.8, while

a more extensive analysis is reported in [4] for traditional convolutional architectures

and in [21] for Transformer models), we observe that applying distillation effectively

prevents a student to showcase SDD when pruned, which on the contrary happens in

vanilla scenarios.

Although further research is necessary and ongoing in this domain, my recent findings

suggest that the focus on model compression should transition from single parameters

to neurons or even entire layers.

2.5 Adapters in Pre-trained Models

It will be here presented the work “Mini but Mighty: Finetuning ViTs with Mini

Adapters” [14].

https://openaccess.thecvf.com/content/WACV2024/html/Marouf_Mini_but_Mighty_Finetuning_ViTs_With_Mini_Adapters_WACV_2024_paper.html
https://openaccess.thecvf.com/content/WACV2024/html/Marouf_Mini_but_Mighty_Finetuning_ViTs_With_Mini_Adapters_WACV_2024_paper.html

Pruning in Deep Neural Networks 27

Series Adaptera) b)

LayerNorm

MSA

Adapter

LayerNorm

MLP

Adapter

Input X

X

...

...

...

...

Zoom on adapter architecture

Frozen Learned XRemoved

Figure 2.9: The adapter structure injected into ViT model. MSA and MLP are multi-
head self-attention and feed-forward blocks, respectively. Image taken from [14].

With the uprisal of the new Vision Transformers (ViT) architectures [132, 133] and

their increasing size, a new class of approaches, namely Parameter-Efficient Training

(PET), have been popularized with the goal of adapting these large pre-trained models

to new tasks, with just a marginal increment of their parameters [134, 135, 136]. Despite

originally conceptualized for convolutional architectures [137, 138, 139, 140], they found

one of the most appealing applications in ViTs. This is due to their lack of inductive

biases, which makes their finetuning on new tasks easily susceptible to overfitting to

fine-tuning tasks [141, 142].

Adapters Among PET methods, adapters [143] and its variants [134, 144, 145] are

frequently employed for Natural Language Processing (NLP) tasks. In essence, adapters

are compact modules integrated into transformer blocks (constituted of two sub-layers: a

multi-head self-attention and a multilayer perceptron), typically applied after each sub-

layer. Their primary function is to facilitate efficient adaptation of data representation

for downstream tasks. Notably, adapters deliver comparable performance to full fine-

tuning (involving the update of all parameters), yet they demand a minimal number of

trainable parameters [143, 146].

More formally, let us consider the i-th adapter added to our pre-trained ViT, and

hi∈RMi denote its input, of size Mi. According to [143], adapters employ a first fully-

connected layer down-projecting hi into zi ∈ RNi with some non-linear activation ϕ(·).
This is parametrized by a linear projection matrix W down

i ∈ RMi×Ni . Then, a second

fully connected layer with parameters W up
i ∈ RNi×Mi up-samples zi, producing as out-

put ri ∈ RMi . Finally, a residual skip-connection is employed inside the adapter module

Pruning in Deep Neural Networks 28

5 10 15 20
0

20

40

60

80

5 10 15 20
Adapter index i

5 10 15 20
Adapter index iAdapter index i

Removed

Remaining
N

u
m

be
r

of
 n

eu
ro

ns
 n

i

(a) Local pruning: all datasets. (b) Global pruning: VGG-Flowers. (c) Global pruning: CIFAR-10.

Figure 2.10: Layer-wise analysis of adapter’s neurons distribution. Bar plots rep-
resent the number of neurons ni at each adapter i for VGG-Flowers and CIFAR-10,
respectively. Global neuron selection leads to different neuron distributions depending
on the dataset. Compared to VGG-Flowers, fewer adapters are completely removed on

CIFAR-10. Image taken from [14].

such that, if ri is close to zero, the whole adapter module degenerates to an identity

function. The total number of parameters in the adapter is 2 ·Ni ·Mi. A graphical

representation of adapters is portrayed in Fig. 2.9.

Given that the size of an adapter is determined a-priori, it is here tackled the quest

to properly size adapters for a specific downstream task. Leveraging on the peculiar

architecture of adapters, it is indeed possible to evaluate the impact of removing specific

dimensions (through structured pruning) on the computation flow of the entire backbone,

sizing properly each injected adapter for a specific downstream task. In the following,

it will be presented the core idea behind [14].

Finetuning ViTs with Mini Adapters at a Glance Based on the adapter design

introduced earlier, we can devise a specific threshold function: if an entire row in W down
i

and an entire column in W up
i are both zero, then our adapter is essentially equivalent to

one with a smaller dimension Mi. Thus, we propose a scoring function that calculates the

sum of the ℓ1 norm of the corresponding row in W down
i and the corresponding column

in W up
i . Specifically, our importance score to guide the structured pruning of adapters

is defined as follows:

Iij =
1

Ni +Mi

(
Mi∑

k=1

∣∣∣W down
i,j,k

∣∣∣+

Ni∑

k=1

∣∣∣W up
i,k,j

∣∣∣
)
, (2.15)

Differently from traditional structured pruning algorithms, this importance score en-

closes a “look-ahead” strategy: we observe, besides the output of a specific j-th neuron

in the hidden space, also the impact of such an output in the next layer, in the hindsight

of the final contribution to ri. This choice is empirically substantiated by numerous

studies in the literature [92, 147, 148, 149]. Notably, Iij is normalized by the total

number of parameters associated with a specific adapter dimension: such a normaliza-

tion facilitates fair comparison across adapters, even when they have different input and

hidden layer sizes.

Pruning in Deep Neural Networks 29

Fig. 2.10 reports the distribution of adapter’s sizes for two different tasks, compared

with a proportional greedy pruning as displayed in Fig. 2.10a. Different tasks prompt

varying allocations of adapters within the same pre-trained ViT. This variability is

motivated by factors like, for example, domain shift compensation. For instance, when

a ViT architecture is pre-trained on ImageNet-1k, most adapters tend to concentrate on

the last layers when the downstream task is VGG-Flowers, as the input distribution is

similar to the upstream samples. Conversely, the adapter allocation extends closer to

the input when the downstream task is CIFAR-10.

More details, experiments, and discussion can be found in [14].

2.6 Folding layers through pruning

It will be here presented the work “NEPENTHE: Entropy-Based Pruning as a

Neural Network Depth’s Reducer” [46] and The Simpler The Better: An Entropy-

Based Importance Metric To Reduce Neural Networks’ Depth [15]. This work

builds on top of the preliminary results presented in “Can Unstructured Pruning

Reduce the Depth in Deep Neural Networks?” [19].

In this whole Chapter, we have tackled the problem of parameter removal in DNN

models through pruning. Unfortunately, at least intuitively, none of the aforementioned

approaches is in general able to reduce the depth, namely the number of layers, in a

DNN.

The impact of removing individual parameters or whole filters on recent computing re-

sources, such as GPUs, in certain contexts can be considered marginal. Due to the

parallelization of computations, the size of layers, whether larger or smaller, is primarily

constrained by memory caching and core availability. The critical bottleneck in compu-

tation lies in the critical path that computations must traverse [150], a challenge that

can be addressed by strategically removing layers. While some existing works implicitly

address such concern, for example, employing knowledge distillation from deep teachers

to shallower students [151], they fail to a-priori guarantee no performance loss (given

that they impose a target shallow model), or avoid substantial perturbations. This mo-

tivates the exploration of designing an iterative pruning strategy, aimed at reducing the

model’s depth while preserving optimal performance.

Given the broad use of rectifier activation functions such as ReLU, GELU, and Leaky-

ReLU, we can identify the average state of a given neuron for the trained task (in short,

whether we are in the linear region(s)). From that, maximizing the utilization of one of

https://arxiv.org/abs/2404.16890
https://arxiv.org/abs/2404.16890
https://arxiv.org/abs/2404.18949
https://arxiv.org/abs/2404.18949
https://openaccess.thecvf.com/content/ICCV2023W/RCV/html/Liao_Can_Unstructured_Pruning_Reduce_the_Depth_in_Deep_Neural_Networks_ICCVW_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023W/RCV/html/Liao_Can_Unstructured_Pruning_Reduce_the_Depth_in_Deep_Neural_Networks_ICCVW_2023_paper.html

Pruning in Deep Neural Networks 30

Layer's index

En
tro

py

En
tro

py

En
tro

py

Layer's index Layer's index

Figure 2.11: The average neuron’s entropy calculated at the layer scale reduces as we
induce some sparsity in the model. The main challenge is to make the average neuron’s

entropy go to zero for some layers, as it will be possible to remove it.
Figure taken from [46].

the regions, it is possible to design an approach able to force a target neuron to behave

linearly through the state entropy’s minimization (Fig. 2.11). It has also been observed

that vanilla unstructured pruning is already implicitly minimizing such entropy, but is

hardly able to completely force a whole layer to utilize one of these regions.

2.6.1 Unstructured Pruning Naturally Reduces the Entropy

Preliminaries. Let us assume ϕ(·) is the rectifier of the l-th layer, populated by NL

neurons. We can monitor the output yxl,i of the i-th neuron from a given input x of the

dataset D and write it as yxl,i = ϕ(zxl,i). From this, we can define three possible “states”

for the neuron:

sxl,i =

+1 if yxl,i > 0

−1 if yxl,i < 0

0 if yxl,i = 0

(2.16)

More synthetically, for the output of the i-th neuron, we can easily identify in which of

these states we are by simply applying the sign(·) function to zxl,i, obtaining sxl,i = sign(zxl,i).

Informally, we can say that the neuron is in the ON state when sxl,i = +1 (as it is

typically the linear region) while it is in the OFF state when sxl,i = −1 (given that

limx→−∞ ϕ(x) = 0). There are a few exceptions to this, like LeakyReLU- in those cases,

even though the activation will not converge to zero, we still like to call it OFF state as,

given the same magnitude of input, the output’s magnitude is lower. The third state

sxl,i = 0 is a special case, as it can be either mapped as an ON or OFF state. From

the average over a batch of outputs for the neuron, we can obtain the probability (in

the frequentist sense) of the i-th neuron of being in either the ON or the OFF states

p(sl,i=+1) and p(sl,i=+1). From this, we can calculate the entropy of the i-th neuron

Pruning in Deep Neural Networks 31

-4 -2 −T 0 T 2 4

w

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

d
en

si
ty

fW (w)

f
Ŵ

(w)

(a)

−4 −2 0 2 4

z

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

d
en

si
ty

fo
r
f Z

(z
,T

)

T = 0

T = 0.2

T = 0.5

T = 1

T = 2

(b)

0 1 2 3 4

T

0.0

0.2

0.4

0.6

0.8

1.0

H
(T

)

(c)

Figure 2.12: Distribution of a layer’s parameters with magnitude pruning at threshold
T (a), pre-activation distribution at varying T under the assumption of independence
and centering of the Gaussian distributed input and layer’s parameters (b), and entropy
of the rectifier-activated neuron’s output as a function of T (c), all in the large N limit.

Figures adapted from [46].

in the l-th layer as

Hl,i = −
∑

sl,i=±1

p(sl,i) log2 [p(sl,i)] . (2.17)

With the definition in (2.17), Hl,i can be zero in two possible cases:

• sl,i =−1 ∀j. In this case, zl,i ≤ 0 ∀j. When employing a ReLU, the output of the

i-th neuron is always 0, and in this specific case, the neuron can be simply pruned.

• sl,i =+1 ∀j. In this case, zl,i ≥ 0 ∀j. The output of the i-th neuron is always the

same as its input,1 this neuron can in principle be absorbed by the following layer

as there is no non-linearity between them anymore.

By averaging the entropy values for the total number of neurons Nl inside the l-th layer,

we can estimate the average entropy Ĥl of the neurons in the l-th layer. Since we aim to

minimize the depth of deep neural networks by eliminating zero-entropy layers, we would

like to have Ĥl = 0. Unfortunately, directly minimizing the entropy in the optimization

function is hard as it relies on non-differentiable measures. In the following paragraph,

it will be shown that unstructured pruning naturally reduces (2.17).

Intuition Here we will suppress the layer and neuron indices (given that we will always

consider the same entity). Let us assume the input x for a given neuron is a sequence

of random variables X ∼ N (µX , σ
2
X). Similarly, we can assume the N parameters

populating such neuron, for a large N limit, follow as well a Gaussian distribution, and

we model it as W ∼ N (µW , σ
2
W). Let us apply a magnitude-based pruning mask to the

neuron’s parameters, where we apply some threshold T . As such, we obtain a modified

1or very close as in GeLU

Pruning in Deep Neural Networks 32

distribution for the layer’s parameters:

f
Ŵ

(w, T)=

1

σW
√

2π
exp

[
−1

2

(
w − µW
σW

)2
]

|w| > T

ψ(T)δ(w) |w| ≤ T,

(2.18)

where

ψ(T) =
1

2

[
erf

(
T − µW

σW
√

2

)
− erf

(−T − µW

σW
√

2

)]
(2.19)

is the fraction of parameters pruned, or pruning rate, δ(·) is the Dirac delta and erf(·)
is the error function. Fig. 2.12a displays an example of distribution when applying

magnitude pruning having threshold T against the original distribution. Under the

assumption of independent distributions, where µW = µX = 0 and σ2W = σ2X = 1, we

can obtain the distribution for the pre-activation z (resulting from the product of the

weights and the input, modeled through the random variable Z). According to the result

obtained by [152, 153], it can be expressed as

fZ(z, T) =
1

π
K0

∣∣∣∣∣∣

1

1 − erf
(

T√
2

) · z

∣∣∣∣∣∣

 , (2.20)

where Kn(·) is the n-th order modified Bessel function of the second kind. We can

observe, from Fig. 2.12b, how fZ(·) is affected by increasing the thresholding T . Now,

let us assume the activation function of such a neuron is a rectifier function, and we are

interested in observing what is the probability of the post-activation output being in the

linear region: we are interested in measuring

p[Z > 0] =
1

π

∫ +∞

ϵ
K0

∣∣∣∣∣∣

1

1 − erf
(

T√
2

) · z

∣∣∣∣∣∣

 dz =

1

2

1 − I

 ϵ

1 − erf
(

T√
2

)

 , (2.21)

where

I(x) = x[L−1(x)K0(x) + L0(x)K1(x)], (2.22)

Ln(·) is the n-th order modified Struve function, and ϵ is a positive small value. From

this, we can easily obtain the complementary probability p[Z ≤ ϵ] and calculate the

entropy between the two states. Due to finite numerical precision in the computation

(especially employing mixed precision and fast inference algorithms for Deep Learning,

but with standard IEEE 754 is ≈ 10−7), values below a given threshold can be approx-

imated to zero and we model this through ϵ, which motivates our choice.

Fig. 2.12c displays the entropy as a function of the thresholding parameter T : as we

observe, the entropy decreases given that the threshold increases: through unstructured

Pruning in Deep Neural Networks 33

pruning, the neuron’s output entropy is naturally minimized when employing rectified

activations, even in the oversimplified case here treated. In the following, we will present

how we are exploiting such a property of unstructured pruning towards layer entropy

minimization.

2.6.2 A Layer Entropy-Aware Pruning Score

Driven by the promising theoretical results derived in Sec. 2.6.1, it is here proposed a

relevance metric that will guide the unstructured pruning to lower the whole layer’s en-

tropy Ĥl, named NEPENTHE. As we aim to increase the number of zero-entropy layers,

intuitively more pruning should be applied to layers with lower entropy, as they are the

best candidates to be removed. Concurrently, to minimize the impact on performance,

only low-magnitude weights should be removed, as they are typically those providing

the lowest contribution to the neural network’s output [1, 3, 92]. To reach these two

objectives, it is here defined an intra-layer’s pruning irrelevance score Il:

Il =
1

Nl

Nl∑

i=1

Ĥl,i ·
1

∥θl∥0
∥θl,i∥1, (2.23)

where ∥θl∥0 is the l-th layer’s parameters cardinality (hence, not accounting for the

already pruned weights). This metric accounts for the average parameter’s magnitude

and the layer’s entropy at the same time: layers with few parameters but high entropy are

less prone to be removed than layers with more parameters but lower entropy (under the

same parameter’s norm constraint). Besides, the parameter’s magnitude of neurons with

zero entropy is not accounted for in the importance score calculation. Symmetrically, to

remove parameters from layers having lower pruning irrelevance, it is here defined the

inter-layer’s pruning relevance score Rl as

Rl =

1

Il
∑

j∈L
Ij if Il ̸= 0

0 otherwise.

(2.24)

This measure becomes as large as the l-th layer’s pruning irrelevance score is smaller,

compared to the others.

Numerical Validation We propose here a preliminary evaluation assessed on ResNet-

18 trained on CIFAR-10. A broader evaluation and experimental details can be found

in [46]. Table 2.2 reports the entropy trend of the six layers showing the lowest entropy.

The iterative magnitude approach (IMP) removes progressively, in this setup, the 50%

of the parameters from the model, following a vanilla global unstructured magnitude

Pruning in Deep Neural Networks 34

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1

Dense 0.647 0.680 0.728 0.785 0.791 0.797 91.66

IMP (iter #1) 0.585 0.650 0.699 0.725 0.767 0.778 92.29
IMP (iter #2) 0.506 0.580 0.647 0.654 0.700 0.722 92.25
IMP (iter #3) 0.256 0.623 0.658 0.672 0.682 0.737 92.46
IMP (iter #4) 0.192 0.660 0.667 0.676 0.698 0.763 92.27
IMP (iter #5) 0.136 0.589 0.648 0.727 0.728 0.791 92.44
IMP (iter #6) 0.093 0.447 0.640 0.650 0.764 0.765 91.89
IMP (iter #7) 0.055 0.335 0.487 0.592 0.640 0.775 91.66

NEPENTHE 0 0 0 0.014 0.121 0.942 92.55

Table 2.2: Trend in the bottom six layer’s entropies for ResNet-18 trained on CIFAR-
10. Table taken from [46].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Layers

0

100

200

300

400

500

N
u

m
b

er
of

n
eu

ro
n

s

OFF (Hl,i = 0)

ON (Hl,i = 0)

Hl,i 6= 0

Figure 2.13: Distributions of neuron states per layer for ResNet-18 trained on CIFAR-
10 pruned by NEPENTHE. In blue neurons having non-zero entropy, in orange always

OFF, and in red always ON. Figure taken from [46].

pruning approach. As expected, as the pruning progresses (and implicitly T grows),

the entropy is naturally decreased, showcasing very small values after some pruning

iterations. However, we also observe that as the entropy Ĥ1 decreases, the top-1 accuracy

begins to deteriorate. This happens as there is no proper pruning re-allocation, that

instead happens with NEPENTHE according to (2.24): indeed, in such case not only

does the performance remain high, but we can successfully remove three layers from the

model. Noticeably, Ĥ4 and Ĥ5 are also very low, while already starting from Ĥ6 the

entropy is very high. Contrarily to magnitude pruning where the entropy is in general

in intermediate-range values, NEPENTHE tries to push all the encoded information

toward layers having already high entropy, enabling effective layer removal with little

(or in this case no) performance loss.

This is also illustrated in Fig. 2.13, showing the distribution of the neuron states per

layer for ResNet-18 on CIFAR-10 trained with NEPENTHE. Our unstructured pruning

approach effectively removes three layers by pushing all the neurons inside low-entropy

layers to be either in the ON or in the OFF state. Besides, we also notice that in some

Pruning in Deep Neural Networks 35

layers (like the 1, 13, and 17) there are entire units at zero entropy- we also achieve some

structured sparsity by an unstructured approach, as already reported in some works [1,

92].

2.6.3 On-going Work for Layer Folding

The work illustrated in Sec. 2.6.1 and 2.6.2 shows it being successful in alleviating

deep neural networks’ computational burden by decreasing their depth. However, this

method also presents some limits: compressing already parameter-efficient architectures

that are not over-fitting remains challenging, and this approach is unable to reduce the

depth of an already under-fitting architecture. Nevertheless, this research direction is

new and less explored than traditional pruning and is recently gaining more and more

momentum [154, 155, 156]. One current research direction under investigation involves

the design of one-shot approaches to reduce the computational complexity, and the

employment of Optimal Transport [157, 158] to eventually match the output distribution

of different layers. Finally, another aspect to consider and not to underestimate is that

it is underly assumed that reducing the depth of a DNN model will always speed up

computation. Due to hardware optimizations, we know that having smaller kernels

typically makes computation faster due to the effects of memory transfer: it is not

obvious that, in GPU or TPU-equipped systems, a shallower DNN with larger kernels

will be faster than a deeper one. A study on these effects is currently being conducted,

evidencing some bottlenecks at the level of memory transfers.

2.7 Pruning Back-propagation: Neurons at Equilibrium

As hinted in Sec. 2.2.2.2, pruning a DNN model at initialization is hard; however, we

know that progressively during training some neurons have learned their input-output

function, meaning that they no longer need to be updated (and for instance, they might

not require to have their gradient been calculated). Finding these (evidently without

the full gradient calculation) leads to potential computation savings, without sacrificing

the performance. Sec. 2.7.1 first analyzes and defines what is the concept of “neuron

at equilibrium”, and then Sec. 2.7.2 sketches the road to prospectively move the same

notion to resource-constrained devices and potentially to hyper-parameters optimization.

Pruning in Deep Neural Networks 36

Figure 2.14: For a given time t the model (either in blue or orange) receives samples
from the validation set (in red or green). These outputs are squeezed, concatenated and
the obtained vector is then normalized, used to calculate υi. Image adapted from [6].

2.7.1 Neurons at Equilibrium

It will be here presented the work “To update or not to update? Neurons at

equilibrium in deep models” [6].

To save computation deriving from gradient computation (at a single neuron’s level), we

are here interested in assessing when the relationship between the input of the model and

the output of the i-th neuron is modified during training. When this happens, we say

the neuron is at non-equilibrium, meaning that its learned function, in the whole picture

(or in other words, taking into account the evolution of the neurons in the previous

layers as well), is still “evolving”. We are interested in identifying the scenarios where

the neuron is at equilibrium at the net of the interactions with the other neurons. To

assess it, let us define the cosine similarity υi between all the outputs of the i-th neuron

at time t and at time t− 1 for the whole validation set Dval. A schematic of this process

is visualized in Fig. 2.14. When υi = 1, the i-th neuron produces the same (eventually

scaled) output between the evaluation at time t and at time t− 1 for the same input x

of the model. However, when we have that limt→∞ υti = k, we say that the neuron is at

equilibrium. When k ̸= 1, this condition can be verified for example when working in

recurrent neural networks, or even when the learning rate is too high.

To assess the convergence to equilibrium, it is possible to introduce the variation of

similarities ∆υti = υti − υt−1
i that can be even expressed as a velocity introducing a

memory factor, to keep track of its evolution across the epochs.

The selection of the neurons at equilibrium is performed across a thresholding mech-

anism: all the neurons having a variation of similarities below ε (with ε modeling a

tolerance typically in the order of 10−3, as empirically assessed in [6]) are considered at

equilibrium and their gradient computation can be avoided for the whole next epoch.

We observe that this evaluation comes at the cost of memorizing the activations from

https://proceedings.neurips.cc/paper_files/paper/2022/hash/8b2fc235787852ead92da2268cd9e90c-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8b2fc235787852ead92da2268cd9e90c-Abstract-Conference.html

Pruning in Deep Neural Networks 37

0 100 200

Epochs

10−3

10−2

10−1

L
ea

rn
in

g
R

at
e

0 100 200

Epochs
0 100 200

Epochs

0.0

0.5

1.0

B
p

ro
p

.
F

L
O

P
s

p
er

it
er

.×108

0.0

0.5

1.0

1.5

2.0

U
p

d
at

ed
N

eu
ro

n
s

×103

50

60

70

80

90

A
cc

u
ra

cy

(a) ResNet-32 trained with SGD.

0 100 200

Epochs

10−3

10−2

10−1

L
ea

rn
in

g
R

at
e

0 100 200

Epochs
0 100 200

Epochs

0.0

0.5

1.0

B
p

ro
p

.
F

L
O

P
s

p
er

it
er

.×108

0.0

0.5

1.0

1.5

2.0

U
p

d
at

ed
N

eu
ro

n
s

×103

50

60

70

80

90

A
cc

u
ra

cy

(b) ResNet-32 trained with Adam.

Figure 2.15: Back-propagation FLOPs (left, orange), updated neurons (center,
green), and classification accuracy (right, red) for ResNet-32 trained on CIFAR-10.

Image taken from [6].

the previous evaluation, and it costs one forward propagation on Dval plus the cosine

similarity evaluation.

A set of both quantitative and qualitative experiments is reported in [6], which validate

the approach, able to scale down the FLOPs demand for back-propagation up to more

than 60% when training on Transformers, and observing that some optimizers like Adam,

given their specific formulation, lead more neurons to equilibrium states than SGD

(Fig. 2.15). Finally, we observe that the size of the validation set can be relatively small

for the neuron equilibrium estimation (for image classification tasks it can be down one

image per class only). This is due to the larger sampling happening in convolutional

layers, where one image already produces multiple outputs.

In follow-up works, it has also been shown that the threshold ε can be also made learn-

able: leveraging on [159], we can apply a gradient directly to it already at training time,

and tuning it in a loss-informed fashion. This indeed leads to even higher savings in

terms of computation without performance loss [24].

2.7.2 Follow-ups of Neurons at Equilibrium

I present here two follow-ups opened by neurons at equilibrium: one is more oriented

to hardware-constrained optimization, while the other is linked to hyperparameters-free

optimization.

Pruning in Deep Neural Networks 38

2.7.2.1 Neurons at Equilibrium with a Memory and a Computation Budget

It will be here presented the work “Towards On-device Learning on the Edge:

Ways to Select Neurons to Update under a Budget Constraint” [26].

The field of on-device learning is experiencing a rapid growth, driven by the proliferation

of embedded devices for IoT applications. Currently, the predominant approach involves

offline training of models followed by compression and deployment on-device solely for

inference. However, this approach often leads to suboptimal performance due to shifts

in real data distribution compared to the training data [25]. Embedded devices face

significant constraints in computational and memory resources during training, making it

particularly challenging to train models. In on-device learning utilizing backpropagation,

two main approaches are often combined to optimize training accuracies under resource

constraints: enhancing the efficiency of the architecture and implementing sparse updates

schemes. Focusing on the latter, there are primarily two prevailing approaches: statically

determining the backpropagation graph or allowing for its dynamic evolution.

A prominent example in the first category is undoubtedly the work by Lin et al.,

where they introduce an innovative algorithm-system co-design framework named Sparse

Update [160]. Overcoming the memory constraints of IoT devices, they successfully

achieved on-device training using just 256 kB of memory. This was made possible

through a predefined selection of layers and weights to update.

In one of my recent works [26], it is explored the second category of approaches, employ-

ing Neurons at Equilibrium [6] as a metric to determine which neurons to update. In

contrast to the approach outlined in Sec. 2.7.1, the purpose is not to exclude neurons at

equilibrium here. Instead, it is prioritized updating neurons starting from those mostly

in a non-equilibrium state, and continuing until the memory and computation budget

is reached. While this approach may not guarantee optimality, according to the prelim-

inary analysis reported in [26], on average it outperforms a static update scheme like

SU, thanks to its dynamic adaptivity to the specific downstream task. The preliminary

experiments are highly promising in this regard, illustrating the greater potential of a

dynamic update scheme compared to a static one.

2.7.2.2 Estimating Neural Velocity to Scaling the Learning Rate

Hyperparameter tuning plays an important role in a successful neural network’s training.

Among these are, for example, the learning rate and the policy used to adjust it over

time. On the other hand, choosing the right stop conditions, namely the conditions to be

met to declare early completion of training is also important to avoid potential overfit.

https://openaccess.thecvf.com/content/WACV2024W/SCIoT/html/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.html
https://openaccess.thecvf.com/content/WACV2024W/SCIoT/html/Quelennec_Towards_On-Device_Learning_on_the_Edge_Ways_To_Select_Neurons_WACVW_2024_paper.html

Pruning in Deep Neural Networks 39

Hyper-parameters can be tuned in different ways, from manual initialization to compu-

tationally expensive grid search. Yet, finding suitable hyperparameters requires holding

some validation samples out of the training set. Holding out samples from training

entails however several drawbacks. First, the model’s learning capability is reduced,

especially when few annotated samples are available. Second, the validation set may

not represent the true distribution, leading to inexact hyperparameter tuning [161]. For

these reasons, there is a lot of interest nowadays in validation-less learning approaches.

One work-in-progress is to tune the learning rate decay policy and the stopping criterion

without needing a held-out validation set. From the intuition as in Sec. 2.7.1, it is

possible to derive a neural velocity as the trend of neurons to “change” during training.

If the velocity drops to zero, then the neuron itself has converged to a stable solution,

and the training can be terminated: this property of the proposed velocity definition

allows one to cut the training times. One intriguing possibility is to assess the neural

velocity without necessarily resorting to a validation set but rather randomly sampling

noise to the input, making this estimation data-free in contexts when little data is indeed

available. One speculation here is that on overfitting regimes the velocity is very low

but not null - identifying such a trend on the validation set, and properly characterizing

the threshold ε to apply, can be the key to success.

Chapter 3

Biases in Deep Neural Networks

In this Chapter, the problem of debiasing will be treated. Although part of the literature

is quite old and deepened its roots way before the advent of Deep Learning, the problem

setup revolving around DNN debiasing is relatively new and requires proper contextu-

alization. Given that my works are mostly oriented toward Computer Vision and that

a big bulk of works focus on this area, the focus here will be mostly on the problem

of debiasing for image classification. It is indeed known that Large Language Models

(LLMs) and Generative Models are (or in general, can be) affected by the problem of

biases in generation [162]: however, the same concepts that will be explored here can be

transposed in more advanced setups.

3.1 Structure of the Chapter

In this Chapter, I will first introduce the problem and threat represented by biased

predictions and, more in general, outputs (Sec. 3.2). Then, I will provide one possible

categorization of debiasing approaches commonly employed by the literature (Sec. 3.3).

Roughly, it is possible to divide them into supervised and “unsupervised” approaches.

After these preliminaries, I will present my contributions, summarized as follows.

• It has been developed a supervised debiasing approach, named Entanging and Dis-

entangling (EnD) [7]: in classification tasks, it entangles unbiased representations

of the same target while disentangles representations of the same bias (Sec. 3.4).

This work had a follow-up, that improved hyper-parameter tuning and provided

an interpretation in the metric space [8].

• Contrarily to a standard approach taken by part of the literature [163, 164, 165], I

have shown that removing entirely the information related to the bias might harm

40

Biases in Deep Neural Networks 41

the performance of an unbiased classifier [30]. More specifically, a proper debiasing

approach re-weights the information related to the bias (Sec. 3.5).

• Inspired by [30], it has been proposed an unsupervised debiasing approach [9].

Specifically, when observing the latent space at the output of the encoder, there

is one specific learning iteration when the bias is maximally fitted. It is possible

to identify such a moment by observing the distances of misclassified samples (on

the training set) by looking at distances from the Voronoi boundary of the target

class. It is possible to extract at this point the information on bias-target alignment

(the underlying assumption here is that the misclassified samples do not have the

dominant bias for the target class) and it is possible to apply a simple strategy to

train an unbiased model (Sec. 3.6).

3.2 The Threat of Biases

Recently, AI trustworthiness has been recognized as a major prerequisite for people and

societies to use and accept such systems [166, 167]. In April 2019, the High-Level Expert

Group on AI of the European Commission defined the three main aspects of trustworthy

AI [166]: it should be:

• lawful - respecting all the regulations and laws;

• ethical - respecting all the basic ethical principles and values;

• robust - technically and accounting for the social environment.

Providing a warranty on this topic is currently a matter of study and discussion.

Regarding AI robustness, Attenberg et al. examined the challenge of identifying the

so-called “unknown unknowns” within data [168]. These unknown unknowns represent

instances where DNNs process information in unintended ways while exhibiting high

confidence in their predictions. Such behavior has impacted numerous recent AI-based

solutions, including those aimed at COVID detection from radiographic images. Re-

grettably, some of the early datasets available at the begin of the pandemic were often

heavily biased [31]. Consequently, models frequently displayed overconfident predictions

of COVID diagnoses due to the presence of unwanted biases. These biases included the

detection of catheters or medical devices for positive patients, patient age (given that

at the beginning of the pandemic, most infected individuals were elderly), or even the

identification of data origins (where negative cases were augmented using samples from

unrelated datasets) [31, 169, 170].

Biases in Deep Neural Networks 42

Figure 3.1: Pedestrian on the cross-
walk (left) and on the road (right). If
the model assumes pedestrians can be
on the road if there is a crosswalk, it

can have false negatives.

Learned biases can indeed harm the gener-

alization ability of Deep Neural Networks

(DNNs) [163, 164, 171, 172, 173, 174]. For

instance, in the context of image classi-

fication tasks such as detecting pedestri-

ans, if environmental cues (e.g., the pres-

ence of a sidewalk/crosswalk - Fig. 3.1)

become spuriously correlated with the tar-

get classes, neural networks may exploit

such correlations as shortcuts for classi-

fication [175], thereby leading to perfor-

mance degradation when presented with images containing different backgrounds (e.g.,

pedestrian crossing the road not on pedestrian crossing lanes).

Many existing debiasing methods rely on prior knowledge about the bias, such as the

presence of auxiliary labels indicating side information or the characteristics of the

bias [7, 8, 163, 172, 176, 177]. However, obtaining these labels or information about

the bias can be prohibitively expensive due to annotation costs or highly noisy, prompt-

ing the development of bias-agnostic approaches. Recent studies have revealed that bias

features are often learned early in the training process [174, 178]: there are samples

where the bias is learned alongside the target, leading to improved performance on the

training set, and others where the bias leads to misaligned predictions. Bias-agnostic

approaches typically leverage biased information from the training set by amplifying

the initial features learned using methods like Generalized Cross-Entropy [179] and then

discouraging their learning in an “unbiased” model. However, there’s no guarantee that

the earliest features learned are indeed the biased ones, posing a challenge in detecting

and effectively addressing bias agnostically.

3.3 Overview on Debiasing Approaches

In this section, I briefly review state-of-the-art techniques designed to prevent models

from learning biases. The techniques can be grouped into (but not limited to) two main

categories: supervised approaches, where the information related to the bias is made

available, and unsupervised ones, when such information is not shared at training time.

Biases in Deep Neural Networks 43

3.3.1 Supervised Debiasing Approaches

Supervised debiasing methods are typically divided into three categories: pre-processing

methods, which modify the dataset before classification; in-processing methods, which

modify the learning process of the model; and post-processing methods, which directly

modify the output of the DNN.

Preprocessing Methods Among the most used preprocessing methods in the litera-

ture, driven data augmentation plays a prominent role. Generative Adversarial Networks

(GANs) are widely used to generate realistic images: StyleGANs [180] is indeed one of

the most used GANs in this context. For example, Kang et al. used it to generate

handwritten text in specific styles [181]. In image classification, Geirhos et al. used

style transfer to augment ImageNet with texture-bias-conflicting elements to create a

more texture-balanced dataset [173].

Postprocessing Methods These methods have the advantage of neither re-training

models nor requiring additional data for the training. With their Reject Option Clas-

sification, for example, Kamiran et al. proposed to take the samples classified with the

most uncertainty (outside a predefined confidence margin) and to change their class to

decrease the Disparate Impact metric [182]. In this same context, Equalized Odds Post-

processing proposed by Hardt et al. maximizes the Equalized Odds metric [183]. Despite

the potential advantages of these approaches, a major drawback lies in the low degrees of

freedom for the corrections (since they can only access post-classification information),

which limits their practical effectiveness.

In-processing: Debiasing within Training Most of the debiasing methods in

the literature work directly on the model, learning from a biased dataset. In general,

unbiased elements are weighted more than biased elements. This simple yet effective

approach is nowadays very popular in supervised setups [184]. Other methods tackle

supervised debiasing by adding regularization terms during the training of the deep

model, which is the case of methods such as the proposed EnD [7] (and presented in

Sec. 3.4) and FairKL [8]. Another intuitive approach relies upon simply removing the

biased features from each sample in the dataset and performing the so-called fairness by

blindness. However, the phenomenon known as encoding redundancy [183] states that

information is very rarely encoded only once in the data [185], so removing a single value

or label is probably not sufficient to remove the effect of the bias on classification.

Biases in Deep Neural Networks 44

3.3.2 Unsupervised Debiasing Approaches

Some recent methods do not rely on bias labels because they can be difficult to obtain

on real-life datasets and we will refer to them as “unsupervised” or “bias-agnostic”. All

of these approaches follow a general scheme, which is typically divided into two phases:

bias inference, where a first model, often called “bias capturing”, aims to capture biases

in the data; and bias mitigation, where a second model is trained to avoid the biases

captured by the first model. These approaches rely on prior knowledge, which may be

more or less specific to the target task.

Bias in the Texture Texture bias is a significant concern in image classification,

leading some research to specifically target it [173]. Rebias [163], for instance, focuses

on learning representations that significantly differ from those obtained using small

receptive fields in convolutional layers, which are inherently biased towards learning

specific textures. Addressing the same challenge of texture bias, HEX [177] suggested

utilizing the gray-level co-occurrence matrix to encourage representations that are color-

independent.

Bias Generates Imbalances between Groups Some unsupervised approaches

involve identifying bias groups that optimize certain fairness metrics and training mod-

els to have representations orthogonal to those inferred by the biases. For instance,

DebiAN [186] proposed by Li et al., alternates between training bias-capturing and

unbiased models, with the goal of minimizing the Equal Opportunity fairness metric.

Similarly, EIIL [187] introduced by Creager et al., identifies biases by maximizing the

violation of an invariance principle measured by the objective function IRMv1 [188].

PGI [189] builds upon EIIL by minimizing the KL divergence of predictions over these

groups.

Bias is Learned Early Some recent methods operate under the assumption that bias

features are easy to learn, particularly in the first stages of training. With LfF [174],

Nam et al. proposed a loss reweighing technique based on this premise: they train

a biased neural network and enhance the predictions from its early stages (where the

notion of “early stage” remains however blurry and stays as a hyper-parameter). Con-

currently, they train a debiased model by amplifying the weights of “difficult samples”.

Building on this idea, DFA [178] introduced by Lee et al. employed data augmenta-

tion to disentangle bias features from intrinsic features using latent representations from

bias-capturing and unbiased models. Similarly, LWBC [190] by Kim et al. directs the

training of their primary classifier towards the most challenging samples identified by

Biases in Deep Neural Networks 45

their classifier committee. Lastly, with PGD [191], Ahn et al. utilizes the magnitude of

sample gradients as a metric to increase their importance. Building on the shoulders of

the findings in this context, it has been developed a strategy to detect biased samples by

looking at their distribution in the latent space. The underlying assumption here is that

indeed the bias is learned early- hence the misclassified samples in early learning stages

are the most informative to extract such information (as will be discussed in Sec. 3.6).

3.4 Entangling and Disentangling Deep Representations

It will be here presented the work “EnD: Entangling and Disentangling deep

representations for bias correction” [7].

In this study, it has been introduced a supervised debiasing regularization technique

named “EnD”, which aims to disentangle biased features while intertwining deep features

extracted from patterns belonging to the same target class. The objective of EnD is to

mitigate the propagation of bias within the DNN. Interestingly and differently from a

portion of the literature, while we acknowledge the presence of the bias through a label

on the data sample, we stay in principle agnostic regarding the nature of these biases

(whether they manifest as specific colors, image features, or otherwise, that would enable

other pre-processing strategies).

EnD operates by regularizing the output of a specific layer (typically the output of the

encoder) within the deep model to establish an information bottleneck. This regulariza-

tion process entangles feature vectors extracted from data belonging to the same target

class while disentangling features extracted from data labeled with the same bias label.

By training the deep model to minimize both the loss and EnD simultaneously, biased

features are discouraged in favor of unbiased ones.

EnD at a Glance Our primary objective is to train our model to accurately classify

data into the possible classes while mitigating the influence of bias features present in

the data. To achieve this, we intend to introduce an information bottleneck, limiting

the use of bias-related information for the target classification task.

Given that yi is the output vector for a given data sample from the encoder (we sup-

press here the layer index), after a vector normalization step converting it to ỹ, we

can construct a similarity matrix between all the samples in the training (mini) batch,

denoted as G = (ỹ)′ · ỹ, where (·)′ signifies the transposed matrix and ỹ represents

per-representation normalization. G is a special case of a Gramian matrix, where each

https://openaccess.thecvf.com/content/CVPR2021/html/Tartaglione_EnD_Entangling_and_Disentangling_Deep_Representations_for_Bias_Correction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Tartaglione_EnD_Entangling_and_Disentangling_Deep_Representations_for_Bias_Correction_CVPR_2021_paper.html

Biases in Deep Neural Networks 46

gi,j falls within the range [−1,+1], indicating the difference in direction between any

two vectors yi and yj . The matrix G exhibits several properties:

• it is symmetric and positive semi-definite;

• all elements on the main diagonal are exactly 1 by construction;

• if the subset of outputs ỹ forms an orthonormal basis (or G is full-rank), then

G = I by definition.

Leveraging these properties, we formulate the regularization strategy, which comprises

two terms:

• a disentangling term, whose task is to try to de-correlate as much as possible all

the patterns belonging to the same bias class b;

• an entangling term, which attempts to force correlations between data from dif-

ferent bias classes but having the same target class t.

More details on the formulation for these terms and on the numerical experiments can

be found in [7]. Specifically, it is found that the disentangling term (that acts as a bias

information remover) should contribute less than the entangling term (that weights more

the information extracted by samples that are unbiased). Empirical results validate the

effectiveness of this approach, which however has a major drawback: properly tuning

the balance between entangling, disentangling, and loss on the target task can be very

delicate. This issue has been solved through more recent work [8]. In this, the entangling

and disentangling terms are formulated following the contrastive learning approach,

assuming that biased samples belonging to the same class are negative (mimicking the

disentangling term) and unbiased ones positive ones. The introduction of a margin

between these samples models how strong the entangling/disentangling constraint should

be, making the hyper-parameter optimization process much simpler.

3.5 Is Debiasing Equivalent to Information Removal?

In this section, I briefly present the problem of information removal in deep learning.

It is possible to group it into two large families: privacy preservation approaches and

debiasing techniques.

Biases in Deep Neural Networks 47

Privacy Preservation Recently, with advancements in computational capabilities,

there has been a surge in research focusing on privacy preservation within computational

frameworks. A study by Dwork et al. investigated the amount of noise required to ensure

“differential privacy” [192] in data. Duchi et al. formalized convergence boundaries for

training and explored the trade-off between privacy guarantees and the utility of resulting

statistical estimators [193].

This knowledge has also been applied to deep learning frameworks, as demonstrated by

Abadi et al. [194], who introduced tuned noise in the update rule to preserve privacy.

Another approach to safeguard data privacy is federated learning. In this approach, pri-

vate datasets are owned by the data proprietors, who train local neural network models

directly. The model parameters are then transmitted to a master node, which distributes

the general parameter configuration to all private computational nodes. This method,

proposed by Shokri and Shmatikov, should enable parallel and private computation [195].

However, it does not address ethical biases such as gender or race; its primary guarantee

is the non-disclosure of original data, though some sensitive information may still be

exposed.

How Close is Debiasing to Information Removal? In some contexts, neural

network debiasing implies a form of information removal. As an example, in HEX [177]

the bias is identified within the texture and is explicitly removed prior to the learning

process itself. Some works suggest the use of GANs to entirely clean up the dataset

with the aim of providing fairness [196, 197], while others insert a GAN in the middle of

the architecture to clean up the internal representation of data, purifying datasets from

the bias [198]. At the architectural level, as also stated in [174], works like [163] force

debiased models to learn a set of bias-independent features from the model. Specifically,

in their work, Bahng et al. develop an ensembling-based technique called ReBias: this

consists of solving a min-max problem where the target is to promote the independence

between the network prediction and all biased predictions. Even works like [164] claim

to remove entirely the information of the bias from the feature embedding, leveraging

adversarial learning and gradient inversion. Similar claims are made by Thong et al.,

where the bias mitigation problem is addressed by discouraging the optimization direc-

tions that favor the classifier to be biased [165].

For such a segment of literature, there is the (implicit) belief that debiasing and re-

moving the information related to the bias are essentially the same concept. In the

next section, through the proper design of an approach that removes specific informa-

tion flowing inside the DNN model (IRENE), I evidence that debiasing approaches can

entirely remove the information related to the bias, but that at the same time, such a

Biases in Deep Neural Networks 48

Figure 3.2: Schematics of IRENE. Image adapted from [30].

choice can be sub-optimal (Sec. 3.5.1). The purpose of debiasing is indeed just to balance

the utilization of the information related to the bias to other features.

3.5.1 IRENE: Information Removal at the Bottleneck

It will be here presented the work “Information removal at the bottleneck in deep

neural networks” [30]. A different strategy sharing the same goals and coming

as a natural evolution of [7], “Disentangling private classes through regulariza-

tion” [10], will not be presented.

In this section, I introduce IRENE, a technique designed to eliminate targeted informa-

tion at the bottleneck (which in our case is the output of the encoder) of DNNs. This

approach estimates the information deemed “private” using an auxiliary classifier, en-

abling the assessment of the information to be removed at the bottleneck. Subsequently,

information removal is accomplished by minimizing a differentiable proxy of the mutual

information between bias labels extracted at the bottleneck.

IRENE at a Glance Let us associate to each input sample x a target output ŷ and

a companion ground truth label b̂, marking a piece of different information from the

task-related one (as it could be the information related to the bias). The objective here

is to prevent its propagation for solving a specific task (like classification). To this end,

after defining z as the output of the encoder, we would like to minimize I(z, b̂), where

I(a, b) is the mutual information between a and b. Directly minimizing this quantity

is computationally unfeasible: I overcome this difficulty by distilling from z how much

information related from b̂ is filtering employing an auxiliary classifier.

The whole training procedure, as synthesized in Fig. 3.2, includes the minimization of

three terms.

• The loss L(y, ŷ), to be minimized to train the model to learn the target task.

https://bmvc2022.mpi-inf.mpg.de/488/
https://bmvc2022.mpi-inf.mpg.de/488/
https://www.sciencedirect.com/science/article/pii/S092523122300735X
https://www.sciencedirect.com/science/article/pii/S092523122300735X

Biases in Deep Neural Networks 49

Table 3.1: Extract of results for the CelebA dataset (taken from [30]). Here the
gender is the information to remove.

Prediction accuracy Gender prediction accuracy
Target Method (trained task) (information to remove)

[%](↑) [%](↓)

Blond hair

RUBi [172] 95.29±0.14 88.55±1.22
Rebias [163] 95.59±0.11 88.50±3.78

LearnedMixin [176] 90.01±2.66 74.09±2.66
IRENE 95.24±0.29 53.58±10.71

Heavy makeup

RUBi [172] 90.40±0.08 95.17±1.11
Rebias [163] 90.28±0.34 93.78±2.55

LearnedMixin [176] 84.88±3.28 68.09±10.55
IRENE 83.31±3.41 51.98±9.56

• The loss L(b, b̂), to be minimized to train the information removal head to extract

all the information about b̂ from the bottleneck z.

• The mutual information I(b, b̂), to be minimized to accomplish our purpose of

erasing the information from the bottleneck z of the model. It is evidently key not

to update the parameters within the information removal head.

In [30] it is conducted an empirical analysis on the common setups for the debiasing

community. Evidently, in simple setups where the bias and the target features are

spatially and conceptually disentangled (like the background color and the shape of a

number for the BiasedMNIST dataset), completely removing the information of the color

from the bottleneck benefits the generalization ability of the model. However, in more

complex setups, like recognizing the attribute “heavy makeup” in the CelebA dataset

removing the information of the gender, makes the task to be solved much harder,

harming the generalization of the model (as also reported in Tab. 3.1). This shows that

performing model debiasing does not mean removing the information of the bias, but

rather re-weighting it.

3.6 Unsupervised Debiasing by Looking at the Bottleneck

It will be here presented the work “Mining bias-target Alignment from Voronoi

Cells” [9].

I present here an unsupervised debiasing technique that determines the best timing for

extracting bias-target alignment information by observing, at the output of the encoder,

the relative distances of misclassified samples to the Voronoi boundary of the correct

target class. Leveraging this insight, it is possible to train an unbiased model by assigning

https://openaccess.thecvf.com/content/ICCV2023/html/Nahon_Mining_bias-target_Alignment_from_Voronoi_Cells_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Nahon_Mining_bias-target_Alignment_from_Voronoi_Cells_ICCV_2023_paper.html

Biases in Deep Neural Networks 50

Vanilla Network
Training

Unbiased Network
Training Samples

Weighting

Bias-Target
Misalignment
Information

Removal

Voronoi Cells
Inspection

Mining of the
Bias-Target

Misalignment

Dataset

Figure 3.3: Overview of Mining bias-target alignment from Voronoi cells.
Image taken from [9].

greater weight to bias-misaligned samples and mitigating bias-alignment information

from the bottleneck layer.

The key contribution of this approach lies in its bias-agnostic nature, which guides the

extraction of bias-target alignment information during the training of a standard model.

Specifically, we extract this information when the distances of misclassified samples to

the Voronoi boundary of the target class are maximized. Subsequently, we utilize the bias

alignment information to adjust the loss contribution of each sample, thereby facilitating

the learning of misaligned samples. Notably, since no prior information regarding the

bias is a-priori given, through the whole process we are unable to associate a semantic

meaning to it - this is currently a work in progress.

Mining Bias-target Alignment at a Glance Let us consider a supervised learning

setup (but unsupervised bias-wise), where we have a dataset D, where each sample x

is associated with a ground truth target label y. A given deep neural network, trained

for e epochs, produces a certain output trying to match the desired one through the

minimization of a loss function L(·). Unfortunately, this learning process does not

impose any prior on the specific subset of features that are extracted, which can lead

to a biased prediction over unseen data. We want to fight this effect. As synthetically

displayed in Fig. 3.3, the approach is composed of two main steps.

First, the bias is inferred by the learning of a vanilla model: at the end of each epoch (or

after a few iterations), the target class centroids and the Voronoi boundaries between

them are computed from the well-classified samples at the bottleneck layer. The distance

of the misclassified samples to the Voronoi boundary is computed to find the epoch

e∗ when the bias-target alignment is maximally learned. As visualized in Fig. 3.4,

missing the exact extraction time results in having a model fitting on other features and

Biases in Deep Neural Networks 51

Initialization

Target
Bias

Epoch

Target
Bias

Target
Bias

Ideal classificationEpoch

Target
Bias

Figure 3.4: Representation of latent representations of a dataset at different learning
stages. The target classes are shapes and the bias is color. Arrows represent the
distance between misclassified elements and the Voronoi boundary (here represented

by H). Image taken from [9].

not exclusively on the bias, making the bias extraction process harder. To distinguish

between bias-misaligned samples and bias-aligned ones, we assume that, after a few

learning steps, the farther a misclassified sample is from its target Voronoi cell (defined

in the bottleneck layer’s output space), the more it has been strongly pulled by an

attractor. Such an attractor, since it is not its target class centroid, can be considered

as resulting from some bias. Hence, when the average distance between the misclassified

samples and their target Voronoi cell reaches its maximum, the model has learned bias

features, selecting the epoch e∗. At this point, we can collect the bias-target alignment

information (saying, that all the correctly classified samples are bias-target aligned, while

the misclassified ones are bias-target misaligned).

Then, a debiasing process follows: from the distances gathered from the previous step,

we assign each sample a weight, which will be used in the weighted loss. In addition, at

the bottleneck layer, we minimize the information about bias misalignment: this favors

the unbiasedness of the classification head (it is here used a similar approach as IRENE,

described in Sec. 3.5.1).

A complete set of experiments validating this approach is presented in [9]. Across empir-

ical validation, we find that the proposed approach is not only state-of-the-art among the

Table 3.2: Results on CelebA, targeting the attribute “blond”, with a bias towards
gender. In yellow is the best supervised approach. Table taken from [9].

Method Bias agnostic
Test accuracy [%] (↑)
Unbiased Bias-Conflicting

Vanilla ✓ 79.0 59.0
EnD [7] ✗ 86.9 76.4

LNL [164] ✗ 80.1 61.2
DI [199] ✗ 90.9 86.3

BiasCon + BiasBal [200] ✗ 91.4 87.2
Group DRO [201] ✓ 85.4 83.4

LfF [174] ✓ 84.2 81.2
Mining bias-target alignment ✓ 90.2±1.1 84.5±2.0

Biases in Deep Neural Networks 52

unsupervised debiasing approaches, but in many setups, it stands among supervised ap-

proaches, and in some cases even shows superior performance. This effect can be due for

example to imperfect bias label annotation employed in supervised scenarios. It is here

reported, in Tab. 3.2, the performance achieved on the CelebA dataset for the “blond”

attribute in dataset unbalanced training. In comparison even with non bias-agnostic

(supervised) approaches, Mining bias-target alignment places itself competitively with

other supervised approaches.

Chapter 4

Conclusion and Future Research

In this manuscript, I have presented some of my research since the end of my Ph.D.

Specifically, I have worked on two core aspects of Deep Learning: making models effi-

cient, and understanding how the information is processed and imposing restrictions to

it. This translated into two research branches I have led in the last five years.

In the first branch, began at the end of my Ph.D. [2], I took care of exploiting efficiency

for DNNs through the concept of pruning. Along such a path, it was important to ex-

plore alternatives to magnitude pruning [92] and its variants [72, 73], countering the lack

of explicit loss constraints. In such a spirit, a sensitivity-based approach that senses the

perturbations of the output when some specific parameter (or groups of parameters) are

removed [1, 3, 14] has been proposed. Besides, it was also explored the challenging case

when pruning is performed on noisy datasets, giving rise to the sparse double descent

phenomenon [91]. This unfortunately challenges all the traditional pruning schemes, as

early stop criteria might be suboptimal. To counter this, a framework that enables-back

these schemes has been developed, through the employment of an entropic measure of

the activations in the DNN, that discerns the occurrence of the classical bias-variance

trade-off phase from the overparametrization regime [21]. Besides, it was shown that

it is possible to avoid sparse double descent when resorting to knowledge distillation

schemes [21]. On the exciting wave of the lottery ticket hypothesis [74], perspectives of

zero-shot pruning (namely, pruning already at initialization) have been explored. De-

spite some works suggesting this as a concrete possibility [95, 202], in my works it was

validated that iterative algorithms are still more performant [20]: due to a projection

caused by pruning, the loss landscape becomes progressively flatter, making the opti-

mization process hard [23]. However, locking the optimization process for a subset of

parameters while allowing those having high error signal, can be an effective way of

53

Conclusion and Future Research 54

saving computation at training time: through the estimation of equilibrium for neurons,

it is possible to save computation when backpropagating the error signal [6].

The second branch, regarding feature selection, attracted my interest while working

within the European project DeepHealth, between 2019 and 2021. There, I was collab-

orating on three use cases, and all of them were medical tasks: detection of colorectal

cancer, acute ischemic stroke treatment, and lung cancer diagnosis. Besides, during

the COVID pandemic, I collaborated within the CLAIRE COVID initiative, working

on data provided by our local hospitals. From this experience, I got in touch with the

problem of bias in data: the very first benchmarks for detecting COVID from Chest

X-Ray images with DNNs were built by taking negative samples from the Chest X-Ray

dataset, which collects radiographic images from children. As we remember, the first

COVID cases were all aged people: this was producing misleading results by the com-

munity [31]. This, associated with the presence of medical devices, annotations on the

side of the radiography etc. are essentially spurious correlations with the target task,

which can give rise to the insurgence of bias in the prediction. I got personally interested

in such a phenomenon, proposing first a work that disentangles bias features from the

latent space [7, 8], and then, after observing that debiasing is not equivalent to removing

all the information related to the bias (but simply reweighting it [30]), I worked to move

the first steps to perform debiasing when the bias labels are unavailable [9]. What lies

beyond the horizon for debiasing is to improve the efficiency of these approaches: right

now, the most popular paradigm is to train a model twice: first, to capture the bias, then

to train without over-relying on it. Finding a way to sense the insurgence of it already

at training time, and minimizing its dominance through regularization, is certainly of

interest to the community.

In synthesis, my research project lies at the intersection of model efficiency, efficient

learning, and feature selection. In the following, I will discuss some natural challenges

arising from my research, outlining potential directions and approaches to undertake.

4.1 Efficient Deep Learning On-device

As discussed in Chapter 2, the deployment of larger and larger DNNs is nowadays made

possible through a joint effort of technical advancements that enable these models to be

trained effectively to counter the gradient vanishing problem, the larger availability of

computational resources [203] and some steps moved to compress these models. In par-

ticular, according to Sevilla et al., the release of AlphaGo [204] in late 2015 historically

marked the advent of a new era, which they call the “Large Scale Era” [205]. While

on the one hand such a trend showcased the strength of DNNs, on the other hand it

https://deephealth-project.eu/
https://deephealth-project.eu/success-story/
https://deephealth-project.eu/success-story/
https://deephealth-project.eu/success-story-12-acute-ischemic-strokes-treatment/
https://deephealth-project.eu/success-story-6-lung-cancer-diagnosis/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871022/
https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5
https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5

Conclusion and Future Research 55

raises concerns linked to power consumption and the requirement of larger embedded

systems [206]: this makes the deployment of these models in extremely constrained en-

vironments difficult. Examples of hardware-constrained resources are edge devices such

as mobile phones and embedded systems, where high computation costs or memory oc-

cupation should be kept at bay. While one possible solution, very popular in the last

decade, relied on cloud resources, it comes at some costs: the imperative of faster and

stronger connectivity (with associated costs in terms of energy and infrastructure) and

concerns linked to the privacy of the shared data with far servers is making the paradigm

shifting to perform most (or all) the computation at the edge.

Federating the Model’s Learning Efficient deep learning methods can have a

significant impact on distributed systems and embedded devices for artificial intelligence.

One explored pathway, where data is not directly shared with a central server but

the model’s training is decentralized, is constituted by federated learning. In such a

setup, multiple computation nodes collaborate to train a joint model, while at the same

time ensuring that data is never explicitly shared, but instead model’s parameters [207]

or their gradients [195] are shared in update rounds [208]. Due to the decentralized

nature of the data, federated learning for real applications faces the pressing challenge

of performing local computations on non-independently or identically distributed data,

which can harm the model’s generalization and convergence. Besides, other technical

difficulties include potentially longer convergence time, node’s (a)synchronicity, and the

extremely high bandwidth requirement challenges for federated learning [209]. These

technical difficulties are being currently explored by the community [210, 211, 212, 213],

but another very relevant challenge, typical in federated learning setups (despite the

premises), is that it is still sensitive to information leakage, showcasing vulnerabilities

to reconstruction attacks [214, 215, 216].

Continual Learning In several real-life applications, learning is a continual process

that adapts to incoming data streams [217]. Continually updating a DNN on a data

stream (where one realistic assumption is the high data correlation and for instance im-

balances in the gradient estimation) leads to catastrophic forgetting [218]: prior knowl-

edge is overwritten (and for instance, forgot) in favor of the new one injected. Although

multiple approaches have historically fought this phenomenon [219, 220], they typi-

cally rely on schemes involving full adaptation of the DNN model on the typical simple

benchmarks [221, 222, 223]. One recent opportunity is offered by foundation models,

which offer big prospects in terms of adaptability to downstream tasks through efficient

learning schemes [224, 225, 226, 227, 228]. While some works are already tackling such

challenge [229, 230, 231, 232], such a field still lives in its infancy regarding the trade-off

between computation demand and generalization guarantees.

Conclusion and Future Research 56

Efficient Learning on Resource-constrained Hardware When moving the train-

ing (or adaptation) of a DNN to an edge device, where the challenge is to deal with

energy consumption (or from a different perspective, latency constraints / computation

demand) and memory, a series of technical challenges emerge. These are not frequently

accounted for in schemes like federated or continual learning, while on the contrary, they

are key to be solved before and then deployed in synergy with solutions for those.

Models trained offline on a large-scale dataset built up at a given time notoriously tend

to fall victim to data drift when deployed “in the wild” [233]. Its combination with

online learning strategies has the potential to enable continuous model improvement

after deployment [234], thus adapting the model predictions to observed evolutions in

the data distribution. Moving the computation entirely on the edge, when possible, pro-

vides stronger security and privacy guarantees, as the attacker should physically access

the device and can not intercept the information flow. The main challenge limiting the

feasibility of on-device learning with current learning schemes lies in the computational

cost of backpropagation since gradient computation and parameter updating are consid-

erably more expensive than the forward pass. Some approaches circumvent the memory

problem by exploring alternatives to backpropagation, including the use of unsuper-

vised learning for image segmentation [235], the Forward-Forward algorithm [236], and

PEPITA [237], which in the longer period might constitute a valid option. At the current

state, however, these methods underperform compared to backpropagation-based solu-

tions. One option to reduce the backpropagation cost is provided by Lin et al., showing

that it is possible to fine-tune a deep neural network with just 256 KB of memory while

maintaining good performance [160] thanks to the careful selection of a sub-network to be

updated. Orthogonal to this work, Yang et al. proposes to reduce the number of unique

elements in the gradient map by patch-based compression of the input and gradients of

a given layer with respect to the output, thus reducing memory cost and accelerating

the learning process [238]. These two works, jointly with my current research [6, 26],

suggest that the backpropagation flow is typically sparse: identifying the error signal

propagation accounting for memory and computation cost is the next challenge to be

tackled, and prospectively can suggest the design, through Neural Architecture Search

schemes, of more finetuning-friendly DNNs.

4.2 Multimodal Foundation Models Collapse

In the last few years, we have witnessed a general transition from specialized DNNs

trained on (relatively) limited data to more general foundation models [55]. Their prac-

tical success lies in their potential to operate in the “open-world”, (sometimes arguably)

Conclusion and Future Research 57

claiming zero-shot abilities [239]. A typical grouping of these models, proposed in the

literature, consists of Large Language Models (LLMs) [240, 241, 242], Vision Trans-

formers Models (ViTs) [132, 133], Latent Diffusion Models [243, 244], and Multimodal

models [245, 246], where multimodal data such as text and images are aligned and

processed into a unique latent space. The potential of the latter is evident: it is very

frequent to collect data in multimodality, and treating jointly the information coming

from this adds information that aids in the accomplishment of a target task. One com-

mon example comes from the medical domain, where besides the result of exams (that

can consist of time series like ECG or images like X-Ray images), medical reports can

be either employed as ground truth or as part of the input for illness forecasting. A

proper design of latent space alignment mechanisms enables a convenient combination

and pipelining of these already large models to accomplish a target goal [247, 248, 249,

250]. A viable scheme employed to train multimodal models consists of training first

the models in a single modality in isolation, and then in a second phase performing a

joint fine-tuning: this is computationally convenient and at the same time conditions

the learning problem avoiding gradient vanishing and instability issues. However, after

obtaining a working large multimodal model, one question arises: is all the complexity

put in place really necessary?

As analyzed in Sec. 2.6, unstructured pruning, if properly conditioned, can induce a

phenomenon of layer collapse, where an entire layer is linearizable and merged with

the next one. This effect is also motivated by the known typical high redundancy in

DNNs [251, 252]. Such a process requires to be gradual and loss-informed: large pertur-

bations in multimodal foundation models are not tolerable, as recovering performance

can be an extremely hard and computationally expensive task. This suggests that tra-

ditional pruning schemes like [3, 92, 253] are not the best choice for solving such a task.

One intriguing possibility is offered by Optimal Transport, a mathematical framework

with deep historical roots [254, 255] useful for probability distribution discrepancy quan-

tification. Through the design of a proper regularization function, it could be possible

to weakly induce distribution matching between input and output distribution of (se-

quences of) layers in the large model. It is not unrealistic that unimodal models, when

deployed to solve a different (downstream) task, might not require the same complexity,

and on the contrary, might suggest the uprisal of shortcuts that can precociously merge

multimodal information. Such a research line has the potential to make these models

scale in terms of computation and memory, and potentially enhance the error signal at

fine-tuning time, further enhancing their generalization capability.

Conclusion and Future Research 58

4.3 Understanding the Bias Encoding in Deep Models

As we have seen in Chapter 1 and 3, debiasing approaches are being more and more

explored in the last luster due to upcoming regulations through the AI Act, and despite

multiple efforts conducted by the community, all the typical approaches require heavy

training procedures for either properly tuning the hyper-parameters of the models, or

training multiple times the neural networks. This comes at another very relevant envi-

ronmental cost, and besides it is not granted that such solutions can always apply to

any architecture/task. This is particularly motivated by the inherent lack of knowledge

behind the propagation of the information linked to the bias through the DNN model.

A deeper understanding of it would seemingly lead to cheaper and more immediate and

cheap training.

One trend of research around debiasing approaches focuses on LLM and foundation

models, given the big threat the generative model can effectively represent for the world

community. Notably, one trending subtopic in the community is unlearning [256, 257,

258]: large models trained on prohibited data (typically for copyright issues) should

forget them, hopefully not resorting to the same expensive training scheme. This has

links with some presented works on privacy and/or providing guardrails. As already

evidenced in Sec. 3.5, there is a fundamental difference between hiding information and

debiasing: the latter still allows the use of such information but in a more balanced

way. Some works are already showing that debiasing large models might be easier than

expected: for example, properly disabling some heads in the Multihead Self-Attention

block in Transformers can remove biases [259]. However, this research still lives in its

infancy, and current state-of-the-art methods are certainly inapplicable to large-scale

models due to their computational costs. In a recent work, however, I have shown

the existence, in DNN models affected by bias, of sub-networks that are unbiased, in

a supervised debiasing setup [28]. Similar to what Frankle and Carbin did for their

lottery ticket hypothesis [74], however, this existence has been only empirically shown:

efficient methods to retrieve it without resorting to supervised methods are still a matter

of research by the community.

Identifying (sub-)architectures that encode (or repel) certain features in the longer term

would open the doors to joint work between feature selection and complexity reduction.

By designing minimal architectures that satisfy known criteria in terms of information

propagation, it would be possible to build a system of hierarchical rules to compose ad-

hoc models compliant with specific regulations. Such a longer-term objective rightfully

frames itself within the context of interpretable AI, given that, through a bottom-up

approach, it would be possible to understand how the deployed DNN works.

My works

[1] Enzo Tartaglione, Andrea Bragagnolo, Francesco Odierna, Attilio Fiandrotti,

and Marco Grangetto. “SeReNe: Sensitivity-Based Regularization of Neurons for

Structured Sparsity in Neural Networks”. In: IEEE Transactions on Neural

Networks and Learning Systems (2021).

[2] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini. “Learn-

ing sparse neural networks via sensitivity-driven regularization”. In: Advances

in Neural Information Processing Systems. 2018.

[3] Enzo Tartaglione, Andrea Bragagnolo, Attilio Fiandrotti, and Marco Grangetto.

“Loss-based sensitivity regularization: towards deep sparse neural networks”. In:

Neural Networks (2022).

[4] Victor Quétu and Enzo Tartaglione. “DSD2: Can We Dodge Sparse Double De-

scent and Compress the Neural Network Worry-Free?” In: AAAI Conference

on Artificial Intelligence. 2024.

[5] Enzo Tartaglione, Stéphane Lathuilière, Attilio Fiandrotti, Marco Cagnazzo, and

Marco Grangetto. “HEMP: high-order entropy minimization for neural network

compression”. In: Neurocomputing 461 (2021).

[6] Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. “To update or not

to update? Neurons at equilibrium in deep models”. In: Advances in Neural

Information Processing Systems 35 (2022).

[7] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. “End: Entan-

gling and disentangling deep representations for bias correction”. In: IEEE/CVF

conference on Computer Vision and Pattern Recognition. 2021.

[8] Carlo Alberto Barbano, Benoit Dufumier, Enzo Tartaglione, Marco Grangetto,

and Pietro Gori. “Unbiased Supervised Contrastive Learning”. In: International

Conference on Learning Representations. 2023.

[9] Rémi Nahon, Van-Tam Nguyen, and Enzo Tartaglione. “Mining bias-target Align-

ment from Voronoi Cells”. In: IEEE/CVF International Conference on

Computer Vision. 2023.

59

My works 60

[10] Enzo Tartaglione, Francesca Gennari, Victor Quétu, and Marco Grangetto. “Dis-

entangling private classes through regularization”. In: Neurocomputing 554

(2023).

[11] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini. “Learn-

ing sparse neural networks via sensitivity-driven regularization”. In: Advances

in Neural Information Processing Systems 31 (2018).

[12] Carl De Sousa Trias, Mihai Petru Mitrea, Attilio Fiandrotti, Marco Cagnazzo,

Sumanta Chaudhuri, and Enzo Tartaglione. “Find the Lady: Permutation and

Re-synchronization of Deep Neural Networks”. In: AAAI Conference on Ar-

tificial Intelligence. Vol. 38. 19. 2024.

[13] Olivier Laurent, Adrien Lafage, Enzo Tartaglione, Geoffrey Daniel, Jean marc

Martinez, Andrei Bursuc, and Gianni Franchi. “Packed Ensembles for efficient

uncertainty estimation”. In: International Conference on Learning Repre-

sentations. 2023.

[14] Imad Eddine Marouf, Enzo Tartaglione, and Stéphane Lathuilière. “Mini but

Mighty: Finetuning ViTs With Mini Adapters”. In: IEEE/CVF Winter Confer-

ence on Applications of Computer Vision. 2024.

[15] Victor Quétu, Zhu Liao, and Enzo Tartaglione. “The Simpler The Better: An

Entropy-Based Importance Metric To Reduce Neural Networks’ Depth”. In: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer. 2024.

[16] Andrea Bragagnolo, Enzo Tartaglione, Attilio Fiandrotti, and Marco Grangetto.

“On the role of structured pruning for neural network compression”. In: IEEE

International Conference on Image Processing. IEEE. 2021.

[17] Chenxi Lola Deng and Enzo Tartaglione. “Compressing explicit voxel grid repre-

sentations: fast nerfs become also small”. In: IEEE/CVF Winter Conference on

Applications of Computer Vision. 2023.

[18] Francesco Di Sario, Riccardo Renzulli, Enzo Tartaglione, and Marco Grangetto.

“Two is Better than One: Achieving High-Quality 3D Scene Modeling with a

NeRF Ensemble”. In: International Conference on Image Analysis and Process-

ing. Springer. 2023.

[19] Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. “Can Unstruc-

tured Pruning Reduce the Depth in Deep Neural Networks?” In: IEEE/CVF

International Conference on Computer Vision Workshops. 2023.

My works 61

[20] Enzo Tartaglione, Andrea Bragagnolo, and Marco Grangetto. “Pruning Artifi-

cial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp

Minima”. In: International Conference on Artificial Neural Networks. Springer

International Publishing, 2020.

[21] Victor Quétu, Marta Milovanović, and Enzo Tartaglione. “Sparse Double Descent

in Vision Transformers: real or phantom threat?” In: International Conference

on Image Analysis and Processing. Springer. 2023.

[22] Victor Quétu and Enzo Tartaglione. “Dodging the Double Descent in Deep Neural

Networks”. In: IEEE International Conference on Image Processing. 2023.

[23] Enzo Tartaglione. “The Rise of the Lottery Heroes: Why Zero-Shot Pruning is

Hard”. In: IEEE International Conference on Image Processing. 2022.

[24] Ziyu Li, Enzo Tartaglione, and Van-Tam Nguyen. “SCoTTi: Save Computation

at Training Time with an adaptive framework”. In: IEEE/CVF International

Conference on Computer Vision Workshops. 2023.

[25] Gabriele Spadaro, Riccardo Renzulli, Andrea Bragagnolo, Jhony H Giraldo, At-

tilio Fiandrotti, Marco Grangetto, and Enzo Tartaglione. “Shannon Strikes Again!

Entropy-Based Pruning in Deep Neural Networks for Transfer Learning Under

Extreme Memory and Computation Budgets”. In: IEEE/CVF International Con-

ference on Computer Vision Workshops. 2023.

[26] Aël Quélennec, Enzo Tartaglione, Pavlo Mozharovskyi, and Van-Tam Nguyen.

“Towards On-device Learning on the Edge: Ways to Select Neurons to Update

under a Budget Constraint”. In: IEEE/CVF Winter Conference on Applications

of Computer Vision Workshops. 2024.

[27] Enzo Tartaglione and Marco Grangetto. “A non-discriminatory approach to eth-

ical deep learning”. In: 2020 IEEE 19th International Conference on Trust, Se-

curity and Privacy in Computing and Communications (TrustCom). IEEE. 2020.

[28] Rémi Nahon, Ivan Luiz De Moura Matos, Van-Tam Nguyen, and Enzo Tartaglione.

Debiasing surgeon: fantastic weights and how to find them. 2024.

[29] Carlo Alberto Barbano, Enzo Tartaglione, and Marco Grangetto. “Bridging the

gap between debiasing and privacy for deep learning”. In: IEEE/CVF Interna-

tional Conference on Computer Vision Workshops. 2021.

[30] Enzo Tartaglione. “Information Removal at the bottleneck in Deep Neural Net-

works”. In: British Machine Vision Conference. 2022.

My works 62

[31] Enzo Tartaglione, Carlo Alberto Barbano, Claudio Berzovini, Marco Calandri,

and Marco Grangetto. “Unveiling COVID-19 from Chest X-ray with deep learn-

ing: a hurdles race with small data”. In: Int. J. Environ. Res. Public Health 17.18

(2020).

[32] Enzo Tartaglione, Marco Grangetto, Davide Cavagnino, and Marco Botta. “Delv-

ing in the loss landscape to embed robust watermarks into neural networks”. In:

International Conference on Pattern Recognition. IEEE. 2021.

[33] Carl De Sousa Trias, Mihai Mitrea, Enzo Tartaglione, Attilio Fiandrotti, Marco

Cagnazzo, and Sumanta Chaudhuri. “A hitchhiker’s guide to white-box neural

network watermarking robustness”. In: European Workshop on Visual Informa-

tion Processing. IEEE. 2023.

[34] Enzo Tartaglione, Beatrice Biancardi, Maurizio Mancini, and Giovanna Varni. “A

hitchhiker’s guide towards transactive memory system modeling in small group

interactions”. In: Companion Publication of the 2021 International Conference

on Multimodal Interaction. 2021.

[35] Carlo Alberto Barbano, Daniele Perlo, Enzo Tartaglione, Attilio Fiandrotti, Luca

Bertero, Paola Cassoni, and Marco Grangetto. “Unitopatho, a labeled histopatho-

logical dataset for colorectal polyps classification and adenoma dysplasia grad-

ing”. In: IEEE International Conference on Image Processing. IEEE. 2021.

[36] Carlo Alberto Barbano, Enzo Tartaglione, Claudio Berzovini, Marco Calandri,

and Marco Grangetto. “A two-step radiologist-like approach for covid-19 computer-

aided diagnosis from chest x-ray images”. In: International Conference on Image

Analysis and Processing. Springer. 2022.

[37] Umberto A Gava, Federico D’agata, Enzo Tartaglione, Riccardo Renzulli, Marco

Grangetto, Francesca Bertolino, Ambra Santonocito, Edwin Bennink, Giacomo

Vaudano, Andrea Boghi, et al. “Neural Network-derived perfusion maps: a Model-

free approach to computed tomography perfusion in patients with acute ischemic

stroke”. In: Frontiers in Neuroinformatics 17 (2023).

[38] Yinghao Wang, Rémi Nahon, Enzo Tartaglione, Pavlo Mozharovskyi, and Van-

Tam Nguyen. “Optimized preprocessing and tiny ml for attention state classifi-

cation”. In: IEEE Statistical Signal Processing Workshop. IEEE. 2023.

[39] Van-Tam Nguyen, Enzo Tartaglione, and Tuan Dinh. “AIoT-based Neural De-

coding and Neurofeedback for Accelerated Cognitive Training: Vision, Directions

and Preliminary Results”. In: 2023 IEEE Statistical Signal Processing Workshop

(SSP). IEEE. 2023.

My works 63

[40] Marta Milovanović, Enzo Tartaglione, Marco Cagnazzo, and Félix Henry. “Learn

How to Prune Pixels for Multi-View Neural Image-Based Synthesis”. In: IEEE

International Conference on Multimedia and Expo Workshops. IEEE. 2023.

[41] Melan Vijayaratnam, Marco Cagnazzo, Giuseppe Valenzise, and Enzo Tartaglione.

“All Predictions Matter: an Online Video Prediction Approach”. In: 2023 11th

European Workshop on Visual Information Processing (EUVIP). IEEE. 2023.

[42] Melan Vijayaratnam, Marta Milovanović, Marco Cagnazzo, Enzo Tartaglione,

and Giuseppe Valenzise. “Unified Measures for the Rate-Distortion-Latency Trade-

Off”. In: 2023 IEEE International Conference on Visual Communications and

Image Processing (VCIP). IEEE. 2023.

[43] Alberto Presta, Attilio Fiandrotti, Enzo Tartaglione, and Marco Grangetto. “A

Differentiable Entropy Model for Learned Image Compression”. In: International

Conference on Image Analysis and Processing. Springer. 2023.

[44] Alberto Presta, Gabriele Spadaro, Enzo Tartaglione, Attilio Fiandrotti, and Marco

Grangetto. “Domain Adaptation for Learned Image Compression with Supervised

Adapters”. In: 2024 Data Compression Conference (DCC). IEEE. 2024.

[45] Riccardo Renzulli, Enzo Tartaglione, Attilio Fiandrotti, and Marco Grangetto.

“Capsule networks with routing annealing”. In: International Conference on Ar-

tificial Neural Networks. Springer. 2021.

[46] Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. NEPENTHE:

Entropy-Based Pruning as a Neural Network Depth’s Reducer. 2024.

Bibliography

[47] Kunihiko Fukushima. “Cognitron: A self-organizing multilayered neural network”.

In: Biological cybernetics (1975).

[48] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted

boltzmann machines”. In: International Conference on Machine Learning. 2010.

[49] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural

networks”. In: Proceedings of the fourteenth international conference on artificial

intelligence and statistics. JMLR Workshop and Conference Proceedings. 2011.

[50] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep

feedforward neural networks”. In: Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics. JMLR Workshop and Conference

Proceedings. 2010.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification”. In:

Proceedings of the IEEE international conference on computer vision. 2015.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-

ing for image recognition”. In: IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2016.

[53] DP Kingma. “Adam: a method for stochastic optimization”. In: International

Conference on Learning Representations. 2014.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”.

In: Advances in Neural Information Processing Systems (2017).

[55] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,

Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma

Brunskill, et al. “On the opportunities and risks of foundation models”. In: arXiv

preprint arXiv:2108.07258 (2021).

[56] Andrey Nikolayevich Tikhonov et al. “On the stability of inverse problems”. In:

Dokl. akad. nauk sssr. 1943.

64

Bibliography 65

[57] Andrei Nikolaevich Tikhonov. “On the solution of ill-posed problems and the

method of regularization”. In: Doklady akademii nauk. Russian Academy of Sci-

ences. 1963.

[58] Valentin Konstantinovich Ivanov. “On linear problems which are not well-posed”.

In: Doklady akademii nauk. Russian Academy of Sciences. 1962.

[59] Anatolii Borisovich Bakushinskii. “A general method of constructing regularizing

algorithms for a linear incorrect equation in Hilbert space”. In: Zhurnal Vychis-

litel’noi Matematiki i Matematicheskoi Fiziki (1967).

[60] J Hadamard. “Princeton University Bulletin”. In: 1902 (1902).

[61] George Backus and Freeman Gilbert. “The resolving power of gross earth data”.

In: Geophysical Journal International (1968).

[62] RS Anderssen. “The linear functional strategy for improperly posed problems”.

In: Inverse Problems: Proceedings of the Conference held at the Mathematical

Research Institute at Oberwolfach, Black Forest, May 18–24, 1986. Springer. 1986.

[63] AK Louis. “Approximate inverse for linear and some nonlinear problems”. In:

Inverse problems (1996).

[64] Douglas M Bates and Grace Wahba. A truncated singular value decomposition

and other methods for generalized cross-validation. University of Wisconsin, De-

partment of Statistics, 1983.

[65] PC Hansen. “The truncatedSVD as a method for regularization, BIT, 27, 534–

553”. In: CrossRef MathSciNet MATH (1987).

[66] Heinz W Engl, Karl Kunisch, and Andreas Neubauer. “Convergence rates for

Tikhonov regularisation of non-linear ill-posed problems”. In: Inverse problems

(1989).

[67] Martin Hanke, Andreas Neubauer, and Otmar Scherzer. “A convergence analysis

of the Landweber iteration for nonlinear ill-posed problems”. In: Numerische

Mathematik (1995).

[68] Barbara Kaltenbacher. “Some Newton-type methods for the regularization of

nonlinear ill-posed problems”. In: Inverse Problems (1997).

[69] Barbara Kaltenbacher, Frank Schöpfer, and Thomas Schuster. “Iterative methods

for nonlinear ill-posed problems in Banach spaces: convergence and applications

to parameter identification problems”. In: Inverse Problems (2009).

[70] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of

inverse problems. Springer Science & Business Media, 1996.

[71] Martin Benning and Martin Burger. “Modern regularization methods for inverse

problems”. In: Acta numerica (2018).

Bibliography 66

[72] Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural

Networks through L0 Regularization”. In: International Conference on Learning

Representations. 2018.

[73] D. Molchanov, A. Ashukha, and D. Vetrov. “Variational dropout sparsifies deep

neural networks”. In: International Conference on Machine Learning. 2017.

[74] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding

sparse, trainable neural networks”. In: International Conference on Learning Rep-

resentations (2019).

[75] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification

with deep convolutional neural networks”. In: Advances in Neural Information

Processing Systems. 2012.

[76] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for

large-scale image recognition”. In: International Conference on Learning Repre-

sentations (2015).

[77] The Motion Picture Expert Group. “Compression of neural networks for multi-

media content description and analysis”. In: (MPEG 125 - Marrakesh).

[78] Yao Lu, G. Lu, R. Lin, Jinxing Li, and D. Zhang. “SRGC-Nets: Sparse Repeated

Group Convolutional Neural Networks”. In: IEEE Transactions on Neural Net-

works and Learning Systems (2020).

[79] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. “Mobilenets: Ef-

ficient convolutional neural networks for mobile vision applications”. In: arXiv

preprint arXiv:1704.04861 (2017).

[80] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Ar-

chitecture Search”. In: International Conference on Learning Representations.

2019.

[81] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture

search: A survey”. In: Journal of Machine Learning Research (2019).

[82] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect:

Training deep neural networks with binary weights during propagations”. In:

Advances in Neural Information Processing Systems (2015).

[83] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-

drew Howard, Hartwig Adam, and Dmitry Kalenichenko. “Quantization and

training of neural networks for efficient integer-arithmetic-only inference”. In:

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018.

Bibliography 67

[84] Simon Wiedemann, Heiner Kirchhoffer, Stefan Matlage, Paul Haase, Arturo Mar-

ban, Talmaj Marinč, David Neumann, Tung Nguyen, Heiko Schwarz, Thomas

Wiegand, et al. “Deepcabac: A universal compression algorithm for deep neural

networks”. In: IEEE Journal of Selected Topics in Signal Processing (2020).

[85] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. “Once-

for-all: Train one network and specialize it for efficient deployment”. In: arXiv

preprint arXiv:1908.09791 (2019).

[86] Hrushikesh N Mhaskar and Tomaso Poggio. “Deep vs. shallow networks: An ap-

proximation theory perspective”. In: Analysis and Applications (2016).

[87] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. “SGD learns over-

parameterized networks that provably generalize on linearly separable data”. In:

2018.

[88] Michael C Mozer and Paul Smolensky. “Skeletonization: A technique for trim-

ming the fat from a network via relevance assessment”. In: Advances in Neural

Information Processing Systems. 1989.

[89] Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”. In:

Advances in Neural Information Processing Systems. 1990.

[90] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding”.

In: International Conference on Learning Representations (2016).

[91] Zheng He, Zeke Xie, Quanzhi Zhu, and Zengchang Qin. “Sparse Double Descent:

Where Network Pruning Aggravates Overfitting”. In: International Conference

on Machine Learning. PMLR. 2022.

[92] Song Han, Jeff Pool, John Tran, and William Dally. “Learning both weights and

connections for efficient neural network”. In: Advances in Neural Information

Processing Systems. 2015.

[93] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and

Xiaolin Hu. “Pruning from Scratch.” In: AAAI Conference on Artificial Intelli-

gence. 2020.

[94] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus.

“Provable Filter Pruning for Efficient Neural Networks”. In: International Con-

ference on Learning Representations. 2020.

[95] N. Lee, Thalaiyasingam Ajanthan, and P. Torr. “SNIP: Single-shot Network

Pruning based on Connection Sensitivity”. In: International Conference on Learn-

ing Representations (2019).

Bibliography 68

[96] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel:

Convergence and generalization in neural networks”. In: Advances in Neural In-

formation Processing Systems (2018).

[97] Yite Wang, Dawei Li, and Ruoyu Sun. “NTK-SAP: Improving neural network

pruning by aligning training dynamics”. In: arXiv preprint arXiv:2304.02840

(2023).

[98] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. “Dropout: a simple way to prevent neural networks from overfit-

ting”. In: The Journal of Machine Learning Research (2014).

[99] Durk P Kingma, Tim Salimans, and Max Welling. “Variational dropout and the

local reparameterization trick”. In: Advances in Neural Information Processing

Systems. 2015.

[100] Trevor Gale, Erich Elsen, and Sara Hooker. The State of Sparsity in Deep Neural

Networks. 2019.

[101] Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton.

“Learning Sparse Networks Using Targeted Dropout”. In: CoRR (2019).

[102] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. “Learning

structured sparsity in deep neural networks”. In: Advances in Neural Information

Processing Systems (2016).

[103] Charles W. Groetsch. Inverse Problems in the Mathematical Sciences. Vieweg,

1993.

[104] Yiwen Guo, Anbang Yao, and Yurong Chen. “Dynamic network surgery for effi-

cient dnns”. In: Advances in Neural Information Processing Systems. 2016.

[105] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. “Soft filter

pruning for accelerating deep convolutional neural networks”. In: arXiv preprint

arXiv:1808.06866 (2018).

[106] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. “Filter pruning via geo-

metric median for deep convolutional neural networks acceleration”. In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2019.

[107] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. “Learning with structured

sparsity”. In: International Conference on Machine Learning. 2009.

[108] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang.

“Chasing sparsity in vision transformers: An end-to-end exploration”. In: Ad-

vances in Neural Information Processing Systems (2021).

[109] K. Ullrich, M. Welling, and E. Meeds. “Soft weight-sharing for neural network

compression”. In: International Conference on Learning Representations. 2019.

Bibliography 69

[110] Andrea Bragagnolo and Carlo Alberto Barbano. “Simplify: A python library for

optimizing pruned neural networks”. In: SoftwareX (2022).

[111] Shivani Gupta and Atul Gupta. “Dealing with noise problem in machine learning

data-sets: A systematic review”. In: Procedia Computer Science (2019).

[112] Yuncheng Li, Jianchao Yang, Yale Song, Liangliang Cao, Jiebo Luo, and Li-Jia

Li. “Learning from noisy labels with distillation”. In: IEEE/CVF International

Conference on Computer Vision. 2017.

[113] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. “Noise as a resource for learning

in knowledge distillation”. In: IEEE/CVF Winter Conference on Applications of

Computer Vision. 2021.

[114] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.

“Early-learning regularization prevents memorization of noisy labels”. In: Ad-

vances in Neural Information Processing Systems (2020).

[115] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. “Reconciling mod-

ern machine-learning practice and the classical bias–variance trade-off”. In: Pro-

ceedings of the National Academy of Sciences (2019).

[116] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and

Ilya Sutskever. “Deep Double Descent: Where Bigger Models and More Data

Hurt”. In: International Conference on Learning Representations. 2020.

[117] Kelvin Kan, James G Nagy, and Lars Ruthotto. “Avoiding The Double Descent

Phenomenon of Random Feature Models Using Hybrid Regularization”. In: arXiv

preprint arXiv:2012.06667 (2020).

[118] Leslie Rice, Eric Wong, and J. Zico Kolter. “Overfitting in adversarially robust

deep learning”. In: International Conference on Machine Learning. 2020.

[119] Tianlong Chen, Zhenyu (Allen) Zhang, Sijia Liu, Shiyu Chang, and Zhangyang

Wang. “Robust Overfitting may be mitigated by properly learned smoothening”.

In: International Conference on Learning Representations. 2021.

[120] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-

drew Gordon Wilson. “Averaging weights leads to wider optima and better gen-

eralization”. In: UAI (2018).

[121] N Tishby, FC Pereira, W Bialek, B Hajek, and RS Sreenivas. Proceedings of the

37th Annual Allerton Conference on Communication, Control and Computing.

1999.

[122] Naftali Tishby and Noga Zaslavsky. “Deep learning and the information bottle-

neck principle”. In: IEEE Information Theory Workshop. 2015.

Bibliography 70

[123] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy

Kolchinsky, Brendan Daniel Tracey, and David Daniel Cox. “On the Information

Bottleneck Theory of Deep Learning”. In: International Conference on Learning

Representations. 2018.

[124] Ziqi Pan, Li Niu, Jianfu Zhang, and Liqing Zhang. “Disentangled information

bottleneck”. In: AAAI Conference on Artificial Intelligence. 2021.

[125] Vudtiwat Ngampruetikorn and David J. Schwab. “Information bottleneck theory

of high-dimensional regression: relevancy, efficiency and optimality”. In: Advances

in Neural Information Processing Systems. 2022.

[126] Preetum Nakkiran, Prayaag Venkat, Sham M. Kakade, and Tengyu Ma. “Optimal

Regularization can Mitigate Double Descent”. In: International Conference on

Learning Representations. 2021.

[127] Yoon Kim and Alexander M Rush. “Sequence-level knowledge distillation”. In:

EMNLP (2016).

[128] Baiyun Cui, Yingming Li, and Zhongfei Zhang. “Joint structured pruning and

dense knowledge distillation for efficient transformer model compression”. In:

Neurocomputing (2021).

[129] Zeyuan Wei, Li Hao, and Xueliang Zhang. “Model Compression by Iterative Prun-

ing with Knowledge Distillation and Its Application to Speech Enhancement”.

In: Interspeech. 2022.

[130] Luca Saglietti and Lenka Zdeborová. “Solvable model for inheriting the regular-

ization through knowledge distillation”. In: Proceedings of the 2nd Mathematical

and Scientific Machine Learning Conference. 2022.

[131] Jinhyuk Park and Albert No. “Prune your model before distill it”. In: European

Conference on Computer Vision. 2022.

[132] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. “An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale”. In: International Conference on Learning Rep-

resentations. 2020.

[133] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen

Lin, and Baining Guo. “Swin transformer: Hierarchical vision transformer using

shifted windows”. In: IEEE/CVF International Conference on Computer Vision.

2021.

Bibliography 71

[134] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham

Neubig. “Towards a Unified View of Parameter-Efficient Transfer Learning”. In:

International Conference on Learning Representations. 2021.

[135] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu

Wang, Weizhu Chen, et al. “LoRA: Low-Rank Adaptation of Large Language

Models”. In: International Conference on Learning Representations. 2021.

[136] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath

Hariharan, and Ser-Nam Lim. Visual Prompt Tuning. 2022.

[137] Rodrigo Berriel, Stéphane Lathuillère, Moin Nabi, Tassilo Klein, Thiago Oliveira-

Santos, Nicu Sebe, and Elisa Ricci. “Budget-aware adapters for multi-domain

learning”. In: IEEE/CVF International Conference on Computer Vision. 2019.

[138] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. “Piggyback: Adapting a single

network to multiple tasks by learning to mask weights”. In: European Conference

on Computer Vision. 2018.

[139] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. “Learning multiple

visual domains with residual adapters”. In: Advances in Neural Information Pro-

cessing Systems (2017).

[140] Sylvestre-Alvise Rebuffi, Andrea Vedaldi, and Hakan Bilen. “Efficient Parametriza-

tion of Multi-domain Deep Neural Networks”. In: 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2018.

[141] Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and

Chang Xu. “Cmt: Convolutional neural networks meet vision transformers”. In:

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[142] Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri, and Marco De

Nadai. “Efficient Training of Visual Transformers with Small Datasets”. In: Ad-

vances in Neural Information Processing Systems. 2021.

[143] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De

Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. “Parameter-

efficient transfer learning for NLP”. In: International Conference on Machine

Learning. PMLR. 2019.

[144] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. “Compacter:

Efficient low-rank hypercomplex adapter layers”. In: Advances in Neural Infor-

mation Processing Systems (2021).

[145] Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Hen-

derson. “Parameter-efficient Multi-task Fine-tuning for Transformers via Shared

Hypernetworks”. In: ACL/IJCNLP. 2021.

Bibliography 72

[146] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna

Gurevych. “AdapterFusion: Non-Destructive Task Composition for Transfer Learn-

ing”. In: Proceedings of the 16th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: Main commentthree. Online: Association

for Computational Linguistics, Apr. 2021.

[147] Yves Chauvin. “A back-propagation algorithm with optimal use of hidden units”.

In: Advances in Neural Information Processing Systems (1988).

[148] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. “Prun-

ing Convolutional Neural Networks for Resource Efficient Inference”. In: Inter-

national Conference on Learning Representations. 2017.

[149] Alex Renda, Jonathan Frankle, and Michael Carbin. “Comparing rewinding and

fine-tuning in neural network pruning”. In: arXiv preprint arXiv:2003.02389 (2020).

[150] Christian H.X. Ali Mehmeti-Göpel and Jan Disselhoff. “Nonlinear Advantage:

Trained Networks Might Not Be As Complex as You Think”. In: International

Conference on Machine Learning. 2023.

[151] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a

neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[152] Cecil C Craig. “On the frequency function of xy”. In: The Annals of Mathematical

Statistics (1936).

[153] Antonio Seijas-Maćıas and Amı́lcar Oliveira. “An approach to distribution of the

product of two normal variables”. In: Discussiones Mathematicae Probability and

Statistics (2012).

[154] Amir Ben Dror, Niv Zehngut, Avraham Raviv, Evgeny Artyomov, Ran Vitek, and

Roy Jevnisek. “Layer folding: Neural network depth reduction using activation

linearization”. In: arXiv preprint arXiv:2106.09309 (2021).

[155] Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng

Tao. “Inducing neural collapse in imbalanced learning: Do we really need a learn-

able classifier at the end of deep neural network?” In: Advances in Neural Infor-

mation Processing Systems (2022).

[156] Like Hui, Mikhail Belkin, and Preetum Nakkiran. “Limitations of neural collapse

for understanding generalization in deep learning”. In: arXiv preprint arXiv:2202.08384

(2022).

[157] Yunqiang Li, Jan C van Gemert, Torsten Hoefler, Bert Moons, Evangelos Eleft-

heriou, and Bram-Ernst Verhoef. “Differentiable transportation pruning”. In:

IEEE/CVF International Conference on Computer Vision. 2023.

Bibliography 73

[158] Alexander Theus, Olin Geimer, Friedrich Wicke, Thomas Hofmann, Sotiris Anag-

nostidis, and Sidak Pal Singh. “Towards Meta-Pruning via Optimal Transport”.

In: arXiv preprint arXiv:2402.07839 (2024).

[159] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. “Automatic differentiation in machine learning: a survey”.

In: Journal of Marchine Learning Research (2018).

[160] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song

Han. “On-device training under 256kb memory”. In: Advances in Neural Infor-

mation Processing Systems (2022).

[161] Prechelt Lutz. “Automatic early stopping using cross validation: quantifying the

criteria”. In: Neural Networks (1998).

[162] Moreno D’Incà, Elia Peruzzo, Massimiliano Mancini, Dejia Xu, Vidit Goel, Xingqian

Xu, Zhangyang Wang, Humphrey Shi, and Nicu Sebe. “OpenBias: Open-set Bias

Detection in Text-to-Image Generative Models”. In: arXiv preprint arXiv:2404.07990

(2024).

[163] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh.

“Learning De-biased Representations with Biased Representations”. In: Interna-

tional Conference on Machine Learning. 2020.

[164] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim.

“Learning Not to Learn: Training Deep Neural Networks With Biased Data”. In:

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[165] William Thong and Cees G. M. Snoek. “Feature and Label Embedding Spaces

Matter in Addressing Image Classifier Bias”. In: British Machine Vision Confer-

ence. 2021.

[166] European Commission (AI HLEG). Ethics guidelines for trustworthy AI. High-

Level Expert Group on Artificial Intelligence, 2019.

[167] Baobao Zhang and Allan Dafoe. “Artificial intelligence: American attitudes and

trends”. In: Available at SSRN 3312874 (2019).

[168] Joshua Attenberg, Panos Ipeirotis, and Foster Provost. “Beat the machine: Chal-

lenging humans to find a predictive model’s “unknown unknowns””. In: Journal

of Data and Information Quality (JDIQ) (2015).

[169] Ioannis D Apostolopoulos and Tzani A Mpesiana. “Covid-19: automatic detection

from x-ray images utilizing transfer learning with convolutional neural networks”.

In: Physical and Engineering Sciences in Medicine (2020).

[170] Prabira Kumar Sethy and Santi Kumari Behera. “Detection of coronavirus dis-

ease (covid-19) based on deep features”. In: Preprints (2020).

Bibliography 74

[171] Mohsan Alvi, Andrew Zisserman, and Christoffer Nell̊aker. “Turning a blind eye:

Explicit removal of biases and variation from deep neural network embeddings”.

In: European Conference on Computer Vision Workshops. 2018.

[172] Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. “Rubi:

Reducing unimodal biases for visual question answering”. In: Advances in Neural

Information Processing Systems. 2019.

[173] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.

Wichmann, and Wieland Brendel. “ImageNet-trained CNNs are biased towards

texture; increasing shape bias improves accuracy and robustness.” In: Interna-

tional Conference on Learning Representations. 2019.

[174] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. “Learn-

ing from Failure: Training Debiased Classifier from Biased Classifier”. In: Ad-

vances in Neural Information Processing Systems. 2020.

[175] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland

Brendel, Matthias Bethge, and Felix A Wichmann. “Shortcut learning in deep

neural networks”. In: Nature Machine Intelligence (2020).

[176] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. “Don’t Take the Easy

Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases”. In:

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language Pro-

cessing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Asso-

ciation for Computational Linguistics, 2019, pp. 4067–4080.

[177] Haohan Wang, Zexue He, Zachary L. Lipton, and Eric P. Xing. “Learning Ro-

bust Representations by Projecting Superficial Statistics Out”. In: International

Conference on Learning Representations. 2019.

[178] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. “Learn-

ing debiased representation via disentangled feature augmentation”. In: Advances

in Neural Information Processing Systems (2021).

[179] Zhilu Zhang and Mert Sabuncu. “Generalized cross entropy loss for training deep

neural networks with noisy labels”. In: Advances in Neural Information Process-

ing Systems (2018).

[180] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. “StarGAN v2:

Diverse Image Synthesis for Multiple Domains”. In: IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2020.

[181] Lei Kang, Pau Riba, Marcal Rusinol, Alicia Fornes, and Mauricio Villegas. “Con-

tent and style aware generation of text-line images for handwriting recognition”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

Bibliography 75

[182] Faisal Kamiran, Asim Karim, and Xiangliang Zhang. “Decision theory for discrimination-

aware classification”. In: 2012 IEEE 12th international conference on data min-

ing. IEEE. 2012.

[183] Moritz Hardt, Eric Price, and Nati Srebro. “Equality of opportunity in supervised

learning”. In: Advances in Neural Information Processing Systems (2016).

[184] Faisal Kamiran and Toon Calders. “Data preprocessing techniques for classifica-

tion without discrimination”. In: Knowledge and information systems (2012).

[185] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. “Discrimination-aware

data mining”. In: Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining. 2008.

[186] Zhiheng Li, Anthony Hoogs, and Chenliang Xu. “Discover and mitigate unknown

biases with debiasing alternate networks”. In: European Conference on Computer

Vision. Springer. 2022.

[187] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. “Environment infer-

ence for invariant learning”. In: International Conference on Machine Learning.

PMLR. 2021.

[188] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. “Invari-

ant risk minimization”. In: arXiv preprint arXiv:1907.02893 (2019).

[189] Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron C. Courville. “Sys-

tematic generalisation with group invariant predictions”. In: International Con-

ference on Learning Representations. 2021.

[190] Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, and Suha Kwak. “Learn-

ing debiased classifier with biased committee”. In: Advances in Neural Informa-

tion Processing Systems (2022).

[191] Sumyeong Ahn, Seongyoon Kim, and Se-Young Yun. “Mitigating Dataset Bias

by Using Per-Sample Gradient”. In: International Conference on Learning Rep-

resentations. 2023.

[192] Cynthia Dwork and Jing Lei. “Differential privacy and robust statistics”. In:

Proceedings of the forty-first annual ACM symposium on Theory of computing.

2009.

[193] John C Duchi, Michael I Jordan, and Martin J Wainwright. “Privacy aware learn-

ing”. In: Journal of the ACM (JACM) (2014).

[194] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. “Deep learning with differential privacy”. In: Pro-

ceedings of the 2016 ACM SIGSAC conference on computer and communications

security. 2016.

Bibliography 76

[195] Reza Shokri and Vitaly Shmatikov. “Privacy-preserving deep learning”. In: Pro-

ceedings of the 22nd ACM SIGSAC conference on computer and communications

security. 2015.

[196] Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. “Fairgan: Fairness-aware

generative adversarial networks”. In: 2018 IEEE International Conference on Big

Data. IEEE. 2018.

[197] Prasanna Sattigeri, Samuel C Hoffman, Vijil Chenthamarakshan, and Kush R

Varshney. “Fairness gan”. In: arXiv preprint arXiv:1805.09910 (2018).

[198] David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. “Learning ad-

versarially fair and transferable representations”. In: arXiv preprint arXiv:1802.06309

(2018).

[199] Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle Genova, Prem Nair,

Kenji Hata, and Olga Russakovsky. “Towards fairness in visual recognition: Ef-

fective strategies for bias mitigation”. In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2020.

[200] Youngkyu Hong and Eunho Yang. “Unbiased classification through bias-contrastive

and bias-balanced learning”. In: Advances in Neural Information Processing Sys-

tems (2021).

[201] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. “Dis-

tributionally Robust Neural Networks”. In: International Conference on Learning

Representations. 2020.

[202] Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. “The difficulty of

training sparse neural networks”. In: arXiv preprint arXiv:1906.10732 (2019).

[203] Toru Baji. “Evolution of the GPU Device widely used in AI and Massive Parallel

Processing”. In: 2018 IEEE 2nd Electron devices technology and manufacturing

conference (EDTM). IEEE. 2018.

[204] Fei-Yue Wang, Jun Jason Zhang, Xinhu Zheng, Xiao Wang, Yong Yuan, Xiaoxiao

Dai, Jie Zhang, and Liuqing Yang. “Where does AlphaGo go: From church-turing

thesis to AlphaGo thesis and beyond”. In: IEEE/CAA Journal of Automatica

Sinica (2016).

[205] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,

and Pablo Villalobos. “Compute trends across three eras of machine learning”.

In: 2022 International Joint Conference on Neural Networks. IEEE. 2022.

[206] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy

Considerations for Deep Learning in NLP”. In: Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics. 2019.

Bibliography 77

[207] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. “Communication-efficient learning of deep networks from decen-

tralized data”. In: Artificial intelligence and statistics. PMLR. 2017.

[208] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-

mode, Rachel Cummings, et al. “Advances and open problems in federated learn-

ing”. In: Foundations and trends® in machine learning (2021).

[209] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. “On

the Convergence of FedAvg on Non-IID Data”. In: International Conference on

Learning Representations. 2020.

[210] Hatem Osama Ismail, Mohamed Waleed Fakhr, and A andMohamed. “A feder-

ated pure vision transformer algorithm for computer vision using dynamic aggre-

gation model”. In: NeuroQuantology (2022).

[211] Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. “Linear

convergence in federated learning: Tackling client heterogeneity and sparse gra-

dients”. In: Advances in Neural Information Processing Systems (2021).

[212] Debora Caldarola, Barbara Caputo, and Marco Ciccone. “Improving generaliza-

tion in federated learning by seeking flat minima”. In: European Conference on

Computer Vision. Springer. 2022.

[213] Tom Overman, Garrett Blum, and Diego Klabjan. “A primal-dual algorithm for

hybrid federated learning”. In: AAAI Conference on Artificial Intelligence. 2024.

[214] Anastasia Pustozerova and Rudolf Mayer. “Information leaks in federated learn-

ing”. In: Proceedings of the network and distributed system security symposium.

2020.

[215] Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Konstantinov, and Martin Vechev.

“Data Leakage in Federated Averaging”. In: Transactions on Machine Learning

Research (2022).

[216] Mark Vero, Mislav Balunović, Dimitar Iliev Dimitrov, and Martin Vechev. “TabLeak:

Tabular data leakage in federated learning”. In: International Conference on Ma-

chine Learning. PMLR. 2023.

[217] Heitor Murilo Gomes, Jean Paul Barddal, Fabŕıcio Enembreck, and Albert Bifet.

“A survey on ensemble learning for data stream classification”. In: CSUR (2017).

[218] Robert M French. “Catastrophic forgetting in connectionist networks”. In: Trends

in cognitive sciences (1999).

Bibliography 78

[219] Marc Masana, Xialei Liu, Bart lomiej Twardowski, Mikel Menta, Andrew D Bag-

danov, and Joost van de Weijer. “Class-incremental learning: survey and per-

formance evaluation on image classification”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (2022).

[220] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey

of Continual Learning: Theory, Method and Application. 2023.

[221] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-

nieszka Grabska-Barwinska, et al. “Overcoming catastrophic forgetting in neural

networks”. In: Proceedings of the national academy of sciences (2017).

[222] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez,

and Andrew D Bagdanov. “Rotate your networks: Better weight consolidation

and less catastrophic forgetting”. In: International Conference on Pattern Recog-

nition. 2018.

[223] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual learning through

synaptic intelligence”. In: International Conference on Machine Learning. 2017.

[224] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu

Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. “Dualprompt:

Complementary prompting for rehearsal-free continual learning”. In: European

Conference on Computer Vision. 2022.

[225] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren,

Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. “Learning to prompt

for continual learning”. In: IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition. 2022.

[226] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. “S-prompts learning with pre-

trained transformers: An occam’s razor for domain incremental learning”. In:

Advances in Neural Information Processing Systems (2022).

[227] Andrés Villa, Juan León Alcázar, Motasem Alfarra, Kumail Alhamoud, Julio

Hurtado, Fabian Caba Heilbron, Alvaro Soto, and Bernard Ghanem. “Pivot:

Prompting for video continual learning”. In: IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2023.

[228] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla,

Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira.

“CODA-Prompt: COntinual Decomposed Attention-Based Prompting for Rehearsal-

Free Continual Learning”. In: IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2023.

Bibliography 79

[229] Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. “A sim-

ple baseline that questions the use of pretrained-models in continual learning”.

In: NeurIPS Workshop on Distribution Shifts. 2022.

[230] Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting Class-

Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity

are All You Need. 2023.

[231] Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard

E Turner. “First Session Adaptation: A Strong Replay-Free Baseline for Class-

Incremental Learning”. In: IEEE/CVF International Conference on Computer

Vision. 2023.

[232] Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton

van den Hengel. “Ranpac: Random projections and pre-trained models for con-

tinual learning”. In: Advances in Neural Information Processing Systems (2024).

[233] Berkman Sahiner, Weijie Chen, Ravi K Samala, and Nicholas Petrick. “Data

drift in medical machine learning: implications and potential remedies”. In: The

British Journal of Radiology (2023).

[234] Tyler L Hayes and Christopher Kanan. “Online continual learning for embedded

devices”. In: arXiv preprint arXiv:2203.10681 (2022).

[235] Junhuan Yang, Yi Sheng, Yuzhou Zhang, Weiwen Jiang, and Lei Yang. “On-

Device Unsupervised Image Segmentation”. In: arXiv preprint arXiv:2303.12753

(2023).

[236] Geoffrey Hinton. “The forward-forward algorithm: Some preliminary investiga-

tions”. In: arXiv preprint arXiv:2212.13345 (2022).

[237] Danilo Pietro Pau and Fabrizio Maria Aymone. “Suitability of Forward-Forward

and PEPITA Learning to MLCommons-Tiny benchmarks”. In: 2023 IEEE In-

ternational Conference on Omni-layer Intelligent Systems (COINS). 2023.

[238] Yuedong Yang, Guihong Li, and Radu Marculescu. “Efficient On-device Training

via Gradient Filtering”. In: IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2023.

[239] Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, Daliang Xu, Qipeng Wang,

Bingyang Wu, Yihao Zhao, Chen Yang, Shihe Wang, et al. “A survey of resource-

efficient llm and multimodal foundation models”. In: arXiv preprint arXiv:2401.08092

(2024).

Bibliography 80

[240] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding”.

In: North American Chapter of the Association for Computational Linguistics.

2019.

[241] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. “How to index

item ids for recommendation foundation models”. In: Proceedings of the Annual

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval in the Asia Pacific Region. 2023.

[242] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. “Llama: Open and efficient foundation language models”. In: arXiv

preprint arXiv:2302.13971 (2023).

[243] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. “High-resolution image synthesis with latent diffusion models”. In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 2022.

[244] Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q

Weinberger. “Latent diffusion for language generation”. In: Advances in Neural

Information Processing Systems (2024).

[245] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. “Learning transferable visual models from natural language supervision”.

In: International Conference on Machine Learning. PMLR. 2021.

[246] Nanyi Fei, Zhiwu Lu, Yizhao Gao, Guoxing Yang, Yuqi Huo, Jingyuan Wen,

Haoyu Lu, Ruihua Song, Xin Gao, Tao Xiang, et al. “Towards artificial general

intelligence via a multimodal foundation model”. In: Nature Communications

(2022).

[247] John Lee, Max Dabagia, Eva Dyer, and Christopher Rozell. “Hierarchical opti-

mal transport for multimodal distribution alignment”. In: Advances in Neural

Information Processing Systems (2019).

[248] Thomas Theodoridis, Theocharis Chatzis, Vassilios Solachidis, Kosmas Dimitropou-

los, and Petros Daras. “Cross-modal variational alignment of latent spaces”. In:

Proceedings of the IEEE/CVF conference on computer vision and pattern recog-

nition workshops. 2020.

[249] Manuel Ladron De Guevara, Jose Echevarria, Yijun Li, Yannick Hold-Geoffroy,

Cameron Smith, and Daichi Ito. “Cross-modal Latent Space Alignment for Image

to Avatar Translation”. In: IEEE/CVF International Conference on Computer

Vision. 2023.

Bibliography 81

[250] Liqi He, Zuchao Li, Xiantao Cai, and Ping Wang. “Multi-modal latent space

learning for chain-of-thought reasoning in language models”. In: AAAI Confer-

ence on Artificial Intelligence. 2024.

[251] Yifei Yang, Zouying Cao, and Hai Zhao. “LaCo: Large Language Model Pruning

via Layer Collapse”. In: arXiv preprint arXiv:2402.11187 (2024).

[252] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel

A. Roberts. “The Unreasonable Ineffectiveness of the Deeper Layers”. In: ArXiv

(2024).

[253] Yang He and Lingao Xiao. “Structured Pruning for Deep Convolutional Neural

Networks: A Survey”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence (2023).

[254] Cédric Villani. Optimal transport : old and new. Springer, 2009.

[255] Gabriel Peyré and Marco Cuturi. “Computational Optimal Transport”. In: Foun-

dations and Trends in Machine Learning (2018).

[256] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. “Ma-

chine unlearning”. In: 2021 IEEE Symposium on Security and Privacy (SP).

IEEE. 2021.

[257] Ayush Kumar Tarun, Vikram Singh Chundawat, Murari Mandal, and Mohan

Kankanhalli. “Deep regression unlearning”. In: International Conference on Ma-

chine Learning. PMLR. 2023.

[258] Junyaup Kim and Simon S Woo. “Efficient two-stage model retraining for ma-

chine unlearning”. In: IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2022.

[259] Abdelrahman Zayed, Gonçalo Mordido, Samira Shabanian, Ioana Baldini, and

Sarath Chandar. “Fairness-aware structured pruning in transformers”. In: AAAI

Conference on Artificial Intelligence. 2024.

	1 Introduction
	1.1 Regularization and its Role in Deep Learning
	Background on Regularization

	1.2 The Role of Regularization in my Work
	1.3 Structure of the Manuscript

	2 Pruning in Deep Neural Networks
	2.1 Structure of the Chapter
	2.2 Typical Pruning Scheme
	2.2.1 Preliminaries and Definitions
	2.2.2 Iterative Pruning Strategy
	2.2.2.1 Pruning Policy and Stop Criterion
	2.2.2.2 Zero-shot Pruning
	2.2.2.3 Fine-tuning Strategies
	Dropout
	Regularization-based Pruning

	2.3 Sensitivity-based Approaches
	2.3.1 Neuron Sensitivity
	Boundaries for the Sensitivity
	Parameters Update Rule

	2.3.2 Parameter-based Sensitivity
	2.3.3 Better Structured or Unstructured Sparsity?

	2.4 Pruning while Training on Noisy Data
	Beyond Traditional Bias-variance Trade-off
	The Sparse Double Descent

	2.4.1 Pruning Exhibits Sparse Double Descent
	Better Low or Extreme Over-parametrization?

	2.4.2 An Entropy-Based Interpretation to the Sparse Double Descent
	2.4.3 Distilling Knowledge to Avoid the Sparse Double Descent

	2.5 Adapters in Pre-trained Models
	2.6 Folding layers through pruning
	2.6.1 Unstructured Pruning Naturally Reduces the Entropy
	2.6.2 A Layer Entropy-Aware Pruning Score
	2.6.3 On-going Work for Layer Folding

	2.7 Pruning Back-propagation: Neurons at Equilibrium
	2.7.1 Neurons at Equilibrium
	2.7.2 Follow-ups of Neurons at Equilibrium
	2.7.2.1 Neurons at Equilibrium with a Memory and a Computation Budget
	2.7.2.2 Estimating Neural Velocity to Scaling the Learning Rate

	3 Biases in Deep Neural Networks
	3.1 Structure of the Chapter
	3.2 The Threat of Biases
	3.3 Overview on Debiasing Approaches
	3.3.1 Supervised Debiasing Approaches
	Preprocessing Methods
	Postprocessing Methods
	In-processing: Debiasing within Training

	3.3.2 Unsupervised Debiasing Approaches
	Bias in the Texture
	Bias Generates Imbalances between Groups
	Bias is Learned Early

	3.4 Entangling and Disentangling Deep Representations
	3.5 Is Debiasing Equivalent to Information Removal?
	Privacy Preservation
	How Close is Debiasing to Information Removal?

	3.5.1 IRENE: Information Removal at the Bottleneck

	3.6 Unsupervised Debiasing by Looking at the Bottleneck

	4 Conclusion and Future Research
	4.1 Efficient Deep Learning On-device
	4.2 Multimodal Foundation Models Collapse
	4.3 Understanding the Bias Encoding in Deep Models

	My works
	Bibliography

