
HAL Id: tel-03515492
https://theses.hal.science/tel-03515492

Submitted on 6 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint programming for design space exploration of
dataflow applications on multi-bus architectures

Amna Gharbi

To cite this version:
Amna Gharbi. Constraint programming for design space exploration of dataflow applications on multi-
bus architectures. Hardware Architecture [cs.AR]. Institut Polytechnique de Paris, 2021. English.
�NNT : 2021IPPAT018�. �tel-03515492�

https://theses.hal.science/tel-03515492
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T
01

8

Constraint Programming for Design
Space Exploration of Dataflow

Applications on Multi-Bus
Architectures

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 Institut Polytechnique de Paris (IPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Sophia Antipolis, le 10 Novembre, 2021, par

Amna Gharbi

Composition du Jury :

Alix Munier-Kordon
Professeure, Sorbonne Université Présidente

Sebastien Voss
Professeur, FH Aachen, University of Applied Sciences Rapporteur

Alain Girault
Directeur de recherche, INRIA Grenoble Rapporteur

Frédéric Mallet
Professeur, Université Côte d’Azur Examinateur

Ludovic Apvrille
Professeur, Télécom Paris Directeur de thèse

Renaud Pacalet
Directeur d’étude, Télécom Paris Co-directeur de thèse

Andrea Enrici
Ingénieur de recherche, Nokia Bell Labs France Co-encadrant de thèse

1

Remerciements

« L’interdépendance est une valeur qui surpasse l’indépendance. »

Stephen R. Covey

Ce travail est le résultat de mes efforts mais c’est sans doute grâce au soutien
et à l’accompagnement dont j’ai pu bénéficier que ce travail a vu le jour. C’est pour
cela que je dédie les premiers mots de ce manuscrit à toutes ces personnes qui ont
contribué à son aboutissement.

J’exprime toute ma reconnaissance à mes directeurs de thèse, Ludovic Apvrille
et Renaud Pacalet, pour m’avoir accueilli au sein du labSoC. Ils m’ont fourni tout le
soutien nécessaire pour réussir mon travail de recherche. Leurs conseils et leurs
remarques précieuses sont pour beaucoup dans le résultat final de ce travail. Enfin,
leurs nombreuses relectures et corrections de cette thèse ont été très appréciables.

Je remercie tout particulièrement Andrea Enrici de Nokia Bell Labs qui a tou-
jours été disponible et s’est toujours intéressé à l’avancée de mes travaux. Ses
encouragements m’ont aidé à persévérer dans les moments difficiles et ont gratifié
les efforts que j’ai fournis tout au long de ma recherche.

Ensuite, je tiens à remercier tous les membres de mon jury pour le temps qu’ils
ont consacré pour évaluer mon travail, ainsi que pour toutes les connaissances et
l’expertise qu’ils ont apportées. Je remercie mes rapporteurs: Alain Girault et Se-
bastien Voss d’avoir pris le temps de lire ma thèse et de donner des remarques
qui ont contribué à son amélioration, et les examinateurs : Alix Munier-Kordon et
Frédéric Mallet pour l’intérêt qu’ils portent à ma recherche.

Un remerciement tout particulier va aux personnes qui ont égayé mes journées
au labSoC. Merci à : Maysam, Matteo, Benjamin, Letitia, Minh et Le Van pour tous les
moments que nous avons partagés. J’ai eu beaucoup de chance d’être entourée par
vous pendant ces années. Merci à Rabéa pour toutes les informations utiles qu’elle
n’a pas hésité à partager avec moi et les précieux conseils qu’elle m’a donnés. Merci
à Tullio pour les discussions enrichissantes pendant les pauses-déjeuner.

2

Ce travail n’aurait certainement pas vu le jour sans le soutien et les sacrifices
immenses que mes parents, Najib et Malika, ont fourni. Leurs encouragements se
sont inscrits dans ma tête et ont résonné à chaque épreuve que j’ai pu traverser
me donnant force et détermination pour atteindre mes objectifs. Ils m’ont toujours
poussé à apprendre et étaient le flambeau qui illuminait mon chemin. Merci maman
et papa. Merci à mon frère, Ahmed, de m’avoir toujours diffusé un rayon de joie et
de bonne humeur.

Enfin, merci à mon partenaire et époux, Mohamed, pour son soutien incondi-
tionnel et son enthousiasme contagieux. Merci de m’avoir donné tout le soutien et
l’amour pour donner le meilleur de moi-même. Merci d’avoir été ma joie et ma source
de motivation quand elles me manquaient.

3

Résumé substantiel
Le travail de cette thèse s’inscrit dans le cadre d’une collaboration entre Télécom

Paris et Nokia Bell Labs France. Dans ce contexte, nous nous intéressons aux sys-
tèmes de traitement du signal. Un système de traitement du signal peut être perçu
comme un système qui reçoit un signal d’entrée, par exemple, une vidéo ou des
images, y applique un certain traitement, et produit un signal de sortie. Dans les
systèmes modernes de traitement du signal, plusieurs unités de calcul hétérogènes
sont embarquées sur la même puce et exécutent les tâches des applications en
parallèle et d’une manière distribuée. Dans ce contexte, l’infrastructure de commu-
nication devient un élément clé pour la distribution des tâches sur les différentes
unités de calcul en assurant le transfert des données d’une unité à l’autre.

Pour exploiter pleinement les capacités potentielles d’une architecture multipro-
cesseur, les décisions sur comment allouer et ordonnancer les tâches sur les unités
de calcul, ainsi que les transferts de données sur les ressources de communication
doivent être prises en compte. Il existe plusieurs architectures de communication
offrant différents avantages et limitations rendant chacune plus ou moins adaptée
selon les différents cas d’utilisation. Les architectures de communication couram-
ment utilisées incluent typiquement des bus partagés, ou des crossbars, ou ont
recours à du multi-bus avec des topologies personnalisables telles que les archi-
tectures hiérarchiques, les topologies en anneau, ou encore les réseaux sur puce.

Bien qu’il existe de nombreux travaux visant à automatiser la synthèse d’une
topologie optimale pour les architectures multi-bus, les travaux visant à identifier
une allocation et un ordonnancement des tâches et des communications se concen-
trent majoritairement sur le bus partagé ou sur les réseaux sur puce. Dans cette
thèse, nous proposons trois contributions pour combler cette lacune : 1) Une formu-
lation « Satisfiability Modulo Theories » (SMT) qui permet d’explorer les décisions
d’allocation et d’ordonnancement sur les architectures multi-bus pour l’optimisation
de la latence ; Nous démontrons son applicabilité pour produire des solutions pour
des applications connues. 2) Pour améliorer le passage à l’échelle de la recherche
optimale de la première contribution, nous proposons une nouvelle technique pour
élaguer l’espace des solutions devant être explorées. Notre évaluation démontre
un gain sur le passage à l’échelle. Finalement, 3) la consommation d’énergie par

4

les communications sur bus est étudiée ; nous montrons comment optimiser la la-
tence et la consommation conjointement. Nos évaluations montrent comment dif-
férents compromis entre latence et consommation d’énergie peuvent être étudiés.
De plus, nous montrons comment nos contributions ont été intégrées à un outil de
modélisation et de vérification particulièrement adapté à la conception des systèmes
embarqués au niveau système (TTool).

Dans cette thèse, nous considérons les applications de flux de données représen-
tées par des graphes de dépendances, où les nœuds représentent les tâches et les
arcs représentent les communications (ou des dépendances de données). Pour
les architectures, nous considérons des architectures avec des unités de calcul
hétérogènes, par exemple, un CPU, un DSP ou encore un accélérateur matériel
spécialisé en un type de traitement particulier. Les unités de calcul peuvent avoir
un ou plusieurs cœurs d’exécution. Pour l’architecture de communication, nous con-
sidérons les architectures à base d’un ou plusieurs bus. Ces derniers peuvent être
disposés selon diverses topologies, par exemple, linéairement, en arbre, en anneau,
ou encore d’une manière ad-hoc.

Nous proposons dans la première contribution de cette thèse un modèle de con-
traintes qui permet d’identifier : 1) une allocation des tâches sur les unités de cal-
cul, 2) une allocation des communications aux routes de bus et éventuellement de
bridges, 3) un ordonnancement des tâches sur les unités de calcul, et 4) une alloca-
tion des slots temporels sur les bus aux communications concurrentes. Le modèle
proposé peut être configuré pour prendre en compte des contraintes de deadline sur
les applications étudiées, ou encore pour minimiser la latence.

Pour évaluer la première contribution, nous avons sélectionné des applications de
traitement de signal utilisées pour évaluer des travaux connexes, au même niveau
d’abstraction. Ces applications sont : un filtre Sobel, un filtre SUSAN, une applica-
tion RASTA-PLP, et un encodeur JPEG. Nous montrons que l’approche proposée
permet d’analyser les décisions d’allocation et d’ordonnancement sur différentes
topologies de bus pour l’optimisation de la latence. Nous montrons aussi qu’elle
permet d’analyser les contentions sur les bus dues à la présence de plusieurs com-
munications concurrentes. Cependant, les temps de calculs observés montrent une
limitation majeure de l’approche vis à vis son passage à l’échelle.

Pour améliorer le passage à l’échelle de la recherche optimale de la première

5

contribution, nous proposons une nouvelle technique pour élaguer l’espace des so-
lutions. Cette technique consiste à définir des limites temporelles pour les tâches et
les communications. Ces limites sont pour une tâche : 1) le temps de début au plus
tôt, 2) le temps de fin au plus tôt, 3) le temps de début au plus tard, et 4) le temps
de fin au plus tard. Ainsi, lors de l’exploration de l’espace des solutions, uniquement
les ordonnancements qui respectent ces limites temporelles sont étudiés.

Nous comparons les temps de calcul obtenus avec la formulation initiale et ceux
que nous obtenons après l’application de la technique de réduction. Nous montrons
que nous obtenons une réduction significative des temps d’exécution d’au moins un
ordre de grandeur.

Dans les deux premières contributions, nous nous sommes uniquement concen-
trés sur l’optimisation de la latence. Cependant, dans les systèmes du monde réel,
il y a souvent plus d’un critère à satisfaire ou à optimiser, souvent en conflit l’un
avec l’autre. Ainsi, dans la troisième contribution, nous étudions l’extension de notre
approche pour tenir compte d’un deuxième critère. Comme dans cette thèse, nous
nous intéressons aux architectures de communication multi-bus, nous considérons
la consommation d’énergie par les communications comme deuxième critère. Nous
proposons donc trois approches pour étudier conjointement l’optimisation de la la-
tence et de la consommation.

La première approche peut être utilisée quand on recherche une solution qui min-
imise la latence en priorité et qui permet des réductions de la consommation mais
pas au détriment de la latence. Pour cela, nous nous appuyons sur la méthode
d’ordre lexicographique qui consiste à effectuer une première phase d’optimisation
de latence, puis une deuxième phase de minimisation de la puissance sous la con-
trainte de latence minimale. Bien sûr, la deuxième phase n’a de sens que lorsqu’il
existe plusieurs solutions minimisant la latence.

La deuxième approche permet d’obtenir des solutions minimisant la consom-
mation tout en respectant des deadlines définis a priori. Pour ce faire, nous nous
appuyons sur la méthode de la fonction objectif bornée qui minimise l’énergie sous
une contrainte de latence.

Finalement, la troisième approche vise à produire un ensemble de solutions
optimales de Pareto en se basant sur une variante de la méthode dite « epsilon-
constraint ». Dans cette approche, la solution la plus appropriée peut être sélection-

née parmi l’ensemble des solutions de Pareto généré.
Nous montrons que les trois approches permettent de générer différents com-

promis entre la latence et la consommation. Le passage à l’échelle de l’optimisation
bi-critère représente la limitation majeure de la troisième contribution, surtout en ce
qui concerne la troisième approche visant à générer un ensemble de solutions de
Pareto.

Pour conclure, cette thèse s’intéresse aux architectures à base de bus mutiples.
Pour ce type de plateformes, les contributions déjà proposées étaient insuffisantes.
Le travail accompli dans le cadre de cette thèse comble cette lacune en permettant
d’étudier les décisions d’allocation et d’ordonnancement dans ces architectures. La
technique de réduction proposée apporte une amélioration significative des temps
d’exécution. La troisième contribution démontre la flexibilité de l’approche proposée
pour encoder différentes approches d’optimisation bi-critères et générer différentes
solutions de Pareto.

Nous identifions deux axes principaux pour les perspectives de ce travail. Le
premier axe porte sur l’extension de la formulation actuelle pour modéliser d’autres
aspects des systèmes étudiés. Par exemple, la consommation d’énergie des unités
de calcul ou encore la présence de mémoire partagée dans l’architecture. Le deux-
ième axe concerne l’élaboration de nouvelles techniques pour améliorer davantage
le passage à l’échelle. Pour cela, nous discutons de quelques idées comme la dé-
composition temporelle et la rupture de symétrie.

6

Contents

Contents 7

List of Figures 8

List of Tables 9

1 Introduction 13
1.1 Context . 13

1.1.1 Design Space Exploration . 13
1.1.2 Applications . 15
1.1.3 Architectures . 16
1.1.4 The segmented bus interconnect 18

1.2 Problem Statement . 19
1.3 Contribution . 20
1.4 Thesis Outline . 23

2 Context and Related Work 25
2.1 Design Space Exploration Problems 26

2.1.1 Application model . 26
2.1.2 Processing models: heterogeneity 27
2.1.3 Communication models . 28
2.1.4 Design decisions . 30
2.1.5 Design objectives . 31
2.1.6 Mapping and scheduling models 33

2.2 Design Space Exploration Techniques 34

7

2.2.1 Evaluation methods . 35
2.2.2 Search strategies . 35

2.3 Targeted Systems . 39
2.4 Existing Design Space Exploration Work 40
2.5 Summary and Conclusion . 48

3 A Satisfiability Modulo Theories Formulation for the Design Space Ex-
ploration (DSE) of Multi-Bus architectures 53
3.1 Introduction . 53
3.2 Problem definition . 55
3.3 Workload Model . 55
3.4 Architecture Model . 57
3.5 Deployment Solution . 59
3.6 The SMT formulation . 63

3.6.1 Decision variables . 64
3.6.2 Constraints . 67
3.6.3 Latency design objectives . 69

3.7 Implementation . 71
3.7.1 Overview of the implemented solution 71
3.7.2 Model-based design . 72
3.7.3 UML/SysML-to-SMT transformation 75
3.7.4 Model-based deployment solution 76

3.8 Evaluation . 76
3.8.1 Experiment 1: Best interconnect selection 77
3.8.2 Experiment 2: Scalability evaluation 82

3.9 Summary and limitations . 85

4 A Reduction Method to Prune the Design Space for the Problem of
Scheduling Tasks and Communications 87
4.1 Introduction . 87
4.2 A Satisfiability Modulo Theories (SMT) Model for the Problem of Schedul-

ing Tasks and Communications . 88
4.2.1 Assumptions . 90
4.2.2 The SMT Model . 90

8

4.3 Description of the Design Space Reduction Method 91
4.3.1 Overview . 91
4.3.2 The pre-analysis . 93
4.3.3 The reductions . 95
4.3.4 Example . 96

4.4 Evaluation . 97
4.4.1 Experiment 1: Influence on exploration run-time 99
4.4.2 Experiment 2: Influence on granularity 102
4.4.3 Experiment 3: Optimal solution search 103
4.4.4 Experiment 4: Adjusting granularity to solve larger scale prob-

lems . 105
4.5 Conclusion . 109

5 Extending the Latency SMT Model with a Power Consumption Model
for Multi-Bus Interconnects 113
5.1 Introduction . 113
5.2 Power Consumption Modeling for the Multi-Bus Interconnect 116

5.2.1 Scope and assumptions . 116
5.2.2 The SMT model . 117

5.3 DSE for Latency and Power Optimization 119
5.3.1 Approach 1: Minimize power under minimal latency 119
5.3.2 Approach 2: Minimize power under deadline constraints 120
5.3.3 Approach 3: Pareto optimality for latency and power consumption121

5.4 Evaluation . 122
5.4.1 Experiment 1: Evaluation of Approach 1 and Approach 2 122
5.4.2 Experiment 2: Generating Pareto optimal solutions using Ap-

proach 3 . 125
5.4.3 Experiment 3: Evaluating granularity effect 128

5.5 Conclusion . 132

6 Conclusion and Future Work 135
6.1 Summary of the contributions . 135

6.1.1 Summary of the first contribution 135
6.1.2 Summary of the second contribution 136

9

6.1.3 Summary of the third contribution 137
6.1.4 Summary of the integration to a Model-Driven Engineering (MDE)

design environment . 137
6.2 Conclusions . 138
6.3 Limitations and Improvements . 138
6.4 Future work . 139

6.4.1 Extending the approach with new specification 139
6.4.2 Refining the pre-analysis with task mapping information 140
6.4.3 Symmetry breaking in time slots allocation 141
6.4.4 Temporal decomposition . 143

Bibliography 145

10

List of Figures

1.1 The Y-chart approach for DSE [36]. 14

1.2 Example of dataflow application dependency graphs [50]. Nodes repre-
sent tasks. Edges represent communications between them, annotated
with the amount of data to exchange. 16

1.3 An example of a segmented bus communication architecture. 18

1.4 An optimized design space exploration approach for the mapping and
scheduling of tasks and communications on multi-bus architectures. . . . 22

1.5 The software architecture of TTool for the Unified Modeling Language
(UML)/Systems Modeling Language (SysML) profile DIPLODOCUS. . . . 23

2.1 Pipelined and non-pipelined scheduling models 34

3.1 Examples of applications’ Directed Acyclic Graphs (DAGs). Vertexes rep-
resent tasks, edges represent data dependencies annotated with the amount
of exchanged data. 57

3.2 Communication mapping scenarios. 59

3.3 A data transfer where 5 data fragments (DFk, k ∈ {1 . . . 5}) are transferred
on a route of 3 buses, BusA, BusB and BusC in order. 61

3.4 An example showing communications scheduling on a route. A communi-
cation on a bus between two tasks X and Y during a slot is denoted XY,N
where N is the size of the data fragment in arbitrary data units (du). . . . 63

3.5 The mapping of a task t to a Processing Unit (PU) p and in particular to
a Processing Element (PE) c ∈ p, denoted by decision variables xt,p and
zt,c respectively. 66

11

3.6 Overview of the design space exploration workflow. The explanation of
the pre-analysis sub-module will be given in Chapter 4. 72

3.7 A SysML Block Diagram of an application model in TTool/DIPLODOCUS.
Blocks represent tasks while links between blocks represent data depen-
dencies. 73

3.8 Parameters of task D from Figure 3.7. 73

3.9 UML activity diagram of task B from Figure 3.7. 74

3.10 A UML Deployment diagram of an architecture model in TTool/DIPLODOCUS. 75

3.11 The dependency graphs of our testbench. Edges are labeled with the
number of exchanged data packets. Tasks are labeled with their execution
times. 77

3.12 Common block diagram of Architecture 2 and Architecture 3. 78

3.13 Gantt chart for the solution found for Architecture 1 (1 cell = 1 slot). 79

3.14 Gantt chart for the solution found for Architecture 2 (1 cell = 1 slot). 80

3.15 Gantt chart for the solution found for Architecture 3 (1 cell = 1 slot). 81

3.16 Block diagram of Architecture A. Specialized Digital Signal Processors
(DSPs) and the hardware accelerator are associated with the following
operation sets: ODSP 1 = {Huff, DCT}, ODSP 2 = {pows, comp, filter},
ODSP 3 = {gx, gy}, ODSP 4 = {USAN} and OHwA = {CS}. Bus 3 has a
bandwidth of 64 du/slot and Bus 1 and Bus 2 have each a bandwidth of
32 du/slot. 83

3.17 Solver run-time to produce a deadline-aware solution, as a function of
different workloads, such that granularity is set to 1 slot = 1 cycle. 84

3.18 Solver run-time to produce a deadline-aware solution, as a function of
exploration granularity for workload sosurajp. 85

4.1 An optimized DSE approach for the mapping and scheduling of tasks and
communications. 89

4.2 An overview of the reduction method. 92

4.3 A task from the DAG annotated with temporal boundaries. 94

4.4 An example of an application A where each task t ∈ T A is annotated with
the tuples ⟨ESt, EFt⟩ (top annotation) and ⟨LSt, LFt⟩ (bottom annotation). 96

12

4.5 Solver run-time to produce a deadline-aware solution, as a function of
different workloads using initial formulation and optimized formulation, 1
slot = 1 cycle. 99

4.6 Pre-analysis run-time against the solver run-time to produce a deadline-
aware solution, as a function of different workloads using optimized for-
mulation. 100

4.7 Comparison of the size of the SMT model, as the number of created vari-
ables and constraints, before and after applying the reduction method, as
a function of different workloads. 101

4.8 Solver run-time to produce a deadline-aware solution, as a function of
exploration granularity using initial formulation and optimized formulation
for workload sosurajp. 102

4.9 Search run-time to produce an optimal solution using the optimized formu-
lation and a complementary Binary Search (BS), against run-time values
to find a first deadline-aware solution using the initial formulation, as a
function of different workloads. 104

4.10 Block diagram of Architecture B used in Experiment 4. 105

4.11 Block diagram of Architecture C used in Experiment 4. 106

4.12 Block diagram of Architecture D used in Experiment 4. 106

4.13 Block diagram of Architecture E used in Experiment 4. 107

4.14 Run-time to search the minimal latency solution on Architecture B using
two levels of granularity (1 and 3), as a function of different workloads. . . 108

4.15 Run-time to search the minimal latency solution on Architecture C using
two levels of granularity (1 and 3), as a function of different workloads. . . 109

4.16 Run-time to search the minimal latency solution on Architecture D using
two levels of granularity (1 and 3), as a function of different workloads. . . 111

4.17 Run-time to search the minimal latency solution on Architecture E using
two levels of granularity (1 and 3), as a function of different workloads. . . 112

5.1 Run-time to search the minimal power consumption: 1) under deadlines
constraints (dea-minpow), 2) under minimum latencies (minlat-minpow),
on Architecture A, as a function of different workloads. 123

13

5.2 (Blue dashed staircase) Approximate Pareto front and (solid red stair-
case) actual Pareto front found using Approach 3. 125

5.3 Run-time to search the minimal power consumption under minimum la-
tencies on Architecture B, using two levels of granularity (1 and 3), as a
function of different workloads. 128

5.4 Run-time to search the minimal power consumption under minimum la-
tencies on Architecture C, using two levels of granularity (1 and 3), as a
function of different workloads. 129

5.5 Run-time to search the minimal power consumption under minimum la-
tencies on Architecture D, using two levels of granularity (1 and 3), as a
function of different workloads. 131

5.6 Run-time to search the minimal power consumption under minimum la-
tencies on Architecture E, using two levels of granularity (1 and 3), as a
function of different workloads. 132

6.1 Excerpt of an application graph where each task t is annotated with the
tuple of earliest start and finish times ⟨ESt, EFt⟩. Task A has a duration
of 11 time slots. Tasks Bi, i ∈ {1 . . . 5} have each a duration of 7 time slots. 141

6.2 Example of symmetric solutions in slot allocation. 142
6.3 Example illustrating time decomposition of the DSE problem. 144

14

List of Tables

2.1 A summary of selected related work . 48

3.1 Notations for the SMT formulation . 65

4.1 Execution times of application A tasks on 3 PEs. 97
4.2 Examples of the reductions applied on application A from Figure 4.4. . . . 97
4.3 Optimality gap (%) and speed-up factor of solutions found at granularity =

3, compared to solutions found at granularity = 1, for a set of workloads. . 110

5.1 Interconnect power reduction percentage and approximate overall power
reduction for all workloads, on Architecture A, for dea-minpow and minlat-
minpow. 124

5.2 Quality gap (%) and speed-up (positive values) or slow-down (negative
values) factor of solutions found at granularity = 3, compared to solutions
found at granularity = 1, for a set of workloads. 130

15

Glossary

CP Constraint Programming. 39, 40, 43–45, 100

CPU Central Processing Unit. 22, 31, 42, 54, 62, 71, 72, 74, 91

DAG Directed Acyclic Graph. 7, 52, 53, 60, 81, 85

DMA Direct Memory Access. 6, 31, 41, 54–56

DSE Design Space Exploration. 3, 8, 19–21, 35–37, 39, 40, 44, 47–49, 59, 65, 69,
73–75, 79, 80, 91, 92, 94–97, 99

DSP Digital Signal Processor. 13, 22, 62, 71, 72, 74, 91

FFT Fast Fourier Transform. 53

FPGA Field Programmable Gate Array. 13, 22, 28, 31, 42, 47

GPU Graphics Processing Unit. 22

HSDF Homogeneous Synchronous Data-Flow. 40, 42

ILP Integer Linear Programming. 38, 40, 41, 43–45, 100

LP Linear Programming. 38, 39

MILP Mixed-Integer Linear Programming. 38, 42, 45

MPSoC Multi-Processor System on a Chip. 13, 15, 20, 22, 74, 91

17

NoC Network on a Chip. 14, 22, 47, 80, 81

PE Processing Element. 53–56, 60–63

PU Processing Unit. 54–56, 60, 62

RTL Register Transfer Level. 15, 17

SAT Boolean Satisfiability Problem. 30, 39, 40, 42, 45

SDF Synchronous Data Flow. 36, 37, 40–43

SMT Satisfiability Modulo Theories. 3, 4, 8, 9, 26, 28, 30, 34, 39–41, 43–45, 47, 48,
59, 60, 65, 68, 69, 76, 79–81, 88, 92, 94, 96, 97, 99, 100

SysML Systems Modeling Language. 3, 6, 7, 26, 27, 65, 66, 68, 69

UML Unified Modeling Language. 3, 6, 7, 26, 27, 65–69

18

Chapter 1

Introduction

1.1 Context

The work of this thesis is part of a collaboration between Télécom Paris and Nokia
Bell Labs France. In this context, we focus on the system-level Design Space Ex-
ploration (DSE) of embedded systems for the execution of signal processing appli-
cations. We focus on multi-bus architectures that are well-suited for the deployment
of signal processing applications. In this Section, we will first define the scope and
aim of the DSE in this thesis, in subsection 1.1.1. Then, we will define the target
applications and architectures respectively in subsections 1.1.2 and 1.1.3.

1.1.1 Design Space Exploration

In the systems we target, a DSE process aims at identifying the mapping and schedul-
ing of both application tasks and communications between these tasks, such that de-
sign constraints and objectives are met. Design constraints refer to the set of require-
ments that are inherent to application and architecture definitions, and that mapping
and scheduling decisions should respect. Basically, design constraints concern the
application constraints (e.g., precedence constraints between tasks) and capacities
of the architecture (e.g., memory capacity, connectivity scheme). Design objectives
refer to performance goals, that are, for a given system metric, the proposed so-
lution should either be below or over a given threshold (Satisfy), or optimal (Min-

19

imize/Maximize). Examples are minimizing latency, satisfying real-time deadlines,
minimizing power consumption or maximizing throughput. DSE analyzes different
alternatives of mapping and scheduling, and selects for deployment the decisions
which are compliant with design constraints, and satisfy best design objectives. This
decision-making is a key step in embedded systems design [41] but is also complex
and time-consuming [30,53]. In fact, the majority of DSE problems (e.g., scheduling
problems) for a multiprocessor architecture are NP-hard [25,59].

One way to deal with the complexity of embedded systems design is to raise
the level of abstraction from which the design is perceived to the so-called system-
level [30]. Keutzer et al. [34] suggest that design decisions must be taken at the
highest level of abstraction to allow exploiting all the degrees of freedom that are
available. In fact, high-level abstractions allow global design methodologies by omit-
ting precise circuit behavior details [30]. The work of this thesis, as well as the
discussions in this manuscript, are located at the system-level of abstraction.

Architecture
Resources

Design Space
Exploration

Deployment Solution

Design Constraints
and Objectives

Applications

Figure 1.1: The Y-chart approach for DSE [36].

DSE is typically supported by means of automatic or semi-automatic design tools
and methods. DSE is often associated with the Y-chart approach [36], illustrated in
Figure 1.1. The Y-Chart takes as input one or several applications and the available
architecture resources, as well as design constraints and objectives. Subsequently, it
relies on analysis and search techniques to navigate the design space and evaluate

20

potential design candidates. Finally, it outputs a deployment solution that describes
the decisions which were taken. In this thesis, a deployment solution refers to a
mapping and a scheduling that we define as follows.

• Mapping is the spatial allocation of architecture resources (processing re-
source, communication resource) and their assignment to application parts
(tasks, communications). A mapping concerns the association of tasks to pro-
cessing resources as well as the mapping of communications to paths (routes)
from the architecture.

• Scheduling is the temporal allocation of architecture resources to application
parts. It refers to the scheduling of tasks on processing resources and the
scheduling of data transfers between tasks on communication resources.

1.1.2 Applications

The dataflow paradigm is a very good fit for signal processing applications [21]. A
dataflow application consists of a set of processing steps (tasks)—which operate on
data to transform it— related by data dependencies (communications), which aim at
exchanging data between tasks. Mapping of communications should resolve how
data transfers between the related tasks can be performed by architectural compo-
nents. A dataflow application is specified by means of a dependency graph where
nodes represent tasks and edges represent communications between them.

Examples of dataflow applications are Sobel and SUSAN filtering algorithms il-
lustrated in Figure 1.2. SUSAN (Smallest Univalue Segment Assimilating Nucleus),
Figure 1.2b, is a noise-reduction algorithm for edge and corner detection in images.
It uses nonlinear filtering to reduce noise in an image while preserving its underlying
structure [60]. Here, task direction produces data which is consumed by task thin:
after task direction has determined the direction of an edge to decide whether or not
a pixel is an edge point, a thinning algorithm (thin) is applied to the detected edges.
Sobel is a filtering algorithm used to emphasize edges on an image. It performs a
2-D spatial gradient measurement on an image and emphasizes regions of high spa-
tial frequency which correspond to edges. In a signal processing system, multiple
applications, such as Sobel and SUSAN, can run in parallel and have their tasks and

21

gy

getPixel

gx

abs

48 8

48 8

(a) Sobel application model

getImage usan direction thin putImage
8 16 24 16

(b) SUSAN application model

Figure 1.2: Example of dataflow application dependency graphs [50]. Nodes rep-
resent tasks. Edges represent communications between them, annotated with the
amount of data to exchange.

communications compete to shared resources. Besides, applications are often sub-
ject to one or several design objectives. In case multiple applications are executed
in parallel, different timing design objectives can be associated to each application
to account for various levels of criticality. For instance, while the execution of an ap-
plication A should end before a real-time deadline, the execution of an application B

should be as short as possible.

1.1.3 Architectures

A major evolution in embedded system design was enabled by the migration from
the single processing paradigm to parallelization [79]. Multi-Processor Systems on
a Chip (MPSoCs) were developed to parallelize calculations on multiple processing
resources in order to meet design objectives in the areas of communications, signal
processing, multimedia, networking [78, 79]. . . To reach the design objectives of ap-
plications, MPSoC architectures tend to be heterogeneous such that various types of
processing resources (e.g., Digital Signal Processor (DSP), general-purpose Central
Processing Unit (CPU), Graphics Processing Unit (GPU)) are integrated within a sin-

22

gle chip and prompted to work in parallel on various applications calculations (tasks).
In this context, communications, in the form of data exchanges between different pro-
cessing resources, become crucial and represent a key enabler to distribute tasks
over multiple processing resources.

There is a range of communication architectures (also referred to as intercon-
nect in this thesis) that can be deployed in a MPSoC design, each offering a certain
trade-off between design objectives [46], and thus are more or less adapted to the
communication needs of a given application. For example, while Networks on a
Chip (NoCs) scale better with the number of components connected, shared buses
frequently have lower power consumptions and smaller area costs [45]. The shared
bus is known as the simplest communication architecture. It consists of parallel wires
to which all system components are connected. Only one component can transfer
data on the shared bus at any given time. Consequently, increasing the number of
components will lead to contentions and performance degradations, which translate
to a poor scalability. Crossbar is a communication architecture with a set of buses
operating in parallel. It can be partial (i.e., each component is connected to only
a subset of the others) or full (i.e., each component is connected to all others) de-
pending on the connectivity requirements. A NoC [7] consists of a network of routers
and links where data is sent through the network in form of packets. The multi-bus
(also referred to as the segmented bus in this manuscript) comes half way between
the shared bus and the NoC. It is a bus-based communication architecture where the
system bus is split into two or multiple segments (also called buses, or bus segments
in this thesis). Each segment connects a subset of system components and oper-
ates in parallel to other segments. Different bandwidth capacities can be allocated to
each bus segment, depending on the communication needs of components locally
connected to the segment. For example, a hierarchical bus can be seen as a seg-
mented bus for which some design restrictions on the structure and protocol have
to be respected. In this thesis, we focus on multi-bus communication architectures
which will be discussed further in the next Section.

23

Bridge

Bridge

DSP GPU DSP

CPU HwA

DSP GPU

Segment 1

Segment 2

Segment 3

Figure 1.3: An example of a segmented bus communication architecture.

1.1.4 The segmented bus interconnect

The segmented bus is a communication architecture that was first proposed in the
late 90’s [13] as an alternative to shared bus architectures (i.e., a single bus con-
necting all system components). These architectures suffer of scalability issues: as
the number of connected components increases, the length of the bus wires and
the load capacitances increase. In turn, this translates to longer signal propagation
delays and to increased power consumption [46].

To overcome this limitation, the segmented bus proposes to split the system bus
into segments such that each bus segment behaves as a normal bus, shared be-
tween a reduced set of local components. Each segment is allowed to operate in
parallel to other segments and unused segments can be deactivated. Segmentation
fosters parallel processing and communications, and reduces power consumption,
as communications do not need to activate and utilize the entire bus system [81].
Figure 1.3 gives an example of an architecture with a three-bus segments commu-
nication architecture. Data can cross as many bus segments as needed to reach
the intended destination. For instance, a data transfer between the GPU connected
to Segment 1 and the DSP on Segment 3 activates all the bus segments. The
inter-segment communications are governed by means of bridge components. A
data transfer between the CPU and the hardware accelerator (HwA) connected to

24

Segment 2 involves only the latter segment to be active. Segment 1 and Segment
3 remain inactive as long as none of their local components is involved in a data
transfer.

Multi-bus interconnects are the preferred communication architecture in many
designs (e.g., MPEG-4 decoder [73], Spiking Neural Network (SNN) [6]), thanks to
improvements they offer in terms of latency, power consumption and area cost. In
terms of performance characteristics, they can be positioned halfway between the
simple but poorly scalable shared-bus architectures and the more complex NoCs.

In this thesis, we focus on multi-bus (segmented) communication architectures.
We aim at providing methods and tools to allow investigating mapping and schedul-
ing of dataflow applications (i.e., signal, image and video processing applications)
that allow engineers to evaluate and compare the performance of bus-based inter-
connects with different topologies (e.g., shared, segmented)

1.2 Problem Statement

Designing a multi-bus architecture, even when the number and type of processing
resources have been fixed, comes with a set of entangled issues that need to be
solved. These issues include: how many bus segments to create? What is the
bandwidth of each bus segment? How to connect segments to each other? Where to
place processing resources as well as which tasks to map to these resources? How
to map and schedule concurrent communications and avoid contentions? These
issues are also typically subject to conflicting design objectives such as minimum
latency and power consumption.

Ideally, during design, all these issues would be addressed in an integrated man-
ner so that their inherent interdependencies could be analyzed, and globally optimal
design decisions could be taken. However, in practice, a unified solving of all these
issues may be prohibitively expensive. Thus, basically, design methodologies focus
on solving several issues, separately, like finding an optimized topology and place-
ment of processing resources [17, 55, 56], or address mapping and scheduling but
restrict the number of buses to a unique bus [35,39,50,51].

This lack in design methodologies for segmented bus architectures results into
an under-utilization of their full potential. For instance, common designs typically

25

segment buses in only two parts: high-speed and low-speed processing resources,
while a larger spectrum of communication schemes could be explored and tailored to
the application communication needs. Moreover, lacking systematic methodologies
to study application communication needs (e.g., mapping and scheduling concurrent
communications) on a target architecture usually leads to oversizing the interconnect
bandwidth, that is, wasted cost and area.

In this thesis, we provide methods, techniques and tools for the design space
exploration of segmented bus architectures with various topologies. We focus on
topologies pre-defined by a user and leave the automation of topology synthesis for
future work.

The contributions of this thesis target the following problems:

• How to efficiently map and schedule tasks and communications of multiple
independent applications on a multi-bus architecture (example in Figure 1.3)
such that design objectives on latency and power consumption are satisfied?

• What is the minimum bandwidth required on each bus under latency and
power consumption design objectives?

1.3 Contribution

The work of this thesis consists in providing a Constraint Programming (CP)-based
DSE approach for tasks and communications of dataflow applications. The proposed
approach relies specifically on Satisfiability Modulo Theories (SMT). The aim of the
proposed DSE is to find a mapping and scheduling of tasks and communications on
an existing, fixed, multi-bus architecture. However, it can also be used to guide
the design of new architectures (e.g., number of buses, interconnect topology), by
comparing the found solutions for various architectures and selecting the architecture
that best meets the design objectives. In the following, unless otherwise stated, we
will use the terms design (and DSE), for both activities.

Communications between processing resources are allowed to traverse a single
bus segment or as many bus segments as needed. If several routes are available
between a pair of processing resources, the exploration procedure selects the route
that best satisfies the design objectives. The aim of the proposed DSE is to provide

26

a mapping and scheduling of tasks and communications such that design objec-
tives on latency and power consumption of the multi-bus interconnect are met. A
design objective on latency for a given application could be either to satisfy a dead-
line constraint, or to minimize latency. Multiple applications competing for shared
resources can be examined and deployed simultaneously. Besides, we derive es-
timations on the minimum bandwidth required on each bus segment such that the
latency design objective is met and the overall power consumption of buses is mini-
mized. To improve the scalability, we propose a technique which aims at accelerating
the joint solving of task and communication scheduling by pruning the temporal do-
mains where variables for the scheduling of tasks and communications are defined.
This allows to focus scheduling solutions on temporal domains, which are feasible
with respect to precedence relationships and architecture capacities. The proposed
technique brings a significant improvement to the DSE run-time.

The steps of the proposed DSE approach are illustrated in Figure 1.4. Steps 2
and 3 denote our contributions. Once applications and architecture models are cap-
tured and design objectives are specified in Step 1, Step 2 performs an analysis of
the input applications and architecture models to calculate temporal boundaries for
tasks and communications. This step aims at reducing the run-time spent of Step 4.
Step 3 translates input models, design objectives and constraints into a SMT model
which describe the joint mapping and scheduling of tasks and communications. This
SMT model is optimized thanks to the pre-analysis performed in Step 2. A state-of-
the-art SMT solver is used to solve the formulation in Step 4 and return a mapping
and scheduling solution if the formulas are satisfiable. If none of the candidates in the
design space meets the design constraints and objectives, the user may need to re-
fine the input specification. The output mapping and scheduling solution is optimized
with respect to latency and power consumption of the interconnect.

We integrated our approach into a state-of-the-art design environment: TTool [2,
3]. TTool is a free and open-source UML/SysML framework supporting several UML
profiles, including DIPLODOCUS [72] that targets hardware/software partitioning.
TTool/DIPLODOCUS allows a user to model systems through UML/SysML diagrams
and provides automated formal verification, transaction-based simulation and code
generation for a given target hardware. However TTool/DIPLODOCUS lacks an en-
gine to perform automatic DSE at system-level. We address this lack by the integra-

27

2. Static analysis to prune temporal domains
 associated to the joint scheduling

 of tasks and communications

No valid solutions
could be found

Refine

3. Generation of an optimized SMT formulation
 for the mapping and scheduling of tasks

 and communications on multi-bus
architectures

1. Applications and architecture modeling,
and design objectives specification

5. Output of mapping and scheduling solution

4. SMT-based solving

Figure 1.4: An optimized design space exploration approach for the mapping and
scheduling of tasks and communications on multi-bus architectures.

tion of our contributions tightly within TTool/DIPLODOCUS.

Figure 1.5 illustrates the software architecture of TTool/DIPLODOCUS after the
integration of our DSE. It takes input applications and architecture models with their
properties as UML/SysML diagrams, performs system-level DSE according to the
flow described in Figure 1.4, and outputs the deployment solution. The output so-
lution can itself represent an input to further investigation at lower abstraction levels
like transaction-based simulation. In Figure 1.5, a transformation to C++ code allows
to perform simulations for the generated deployment solution.

28

UML/SysML Specification Models

System-Level Design Space Exploration

Deployment Solution

Intermediate Format (IF, Java data structure)

ProVerif
Formal

Verification
(Security)

TML
Task Modeling

Language

C
Application
Executable

Code

C++
Simulation,

Formal Verification
(Safety, performance)

Models-to-data-structure Transformations

Figure 1.5: The software architecture of TTool for the UML/SysML profile
DIPLODOCUS.

1.4 Thesis Outline

The remainder of this thesis is organized as follows.

• In Chapter 2, we identify the components of a DSE approach at system-level
and discuss the criteria that define and differentiate DSE problems and solving
techniques. Then, we position our contribution according to these criteria and
argue our choices. Finally, we review existing DSE works most closely related
to ours and highlight the differences with respect to our work.

• Chapter 3 presents our SMT formulation for the DSE of architectures with
a multi-bus interconnect. The proposed formulation captures joint tasks and
communications mapping and scheduling and allows to analyze their interde-
pendencies. We solve this formulation using a state-of-the-art SMT solver in
order to propose a solution which satisfies deadlines or minimize latencies for

29

multiple applications. The Chapter also presents a case study that shows how
the approach efficiently assists the designer in selecting the best interconnect
topology for a given set of applications.

• In Chapter 4, our technique to prune the design space and accelerate the SMT
solving step is introduced. The speed-up is evaluated for a benchmark of a
set of real-world applications. Experiments demonstrate the efficiency of our
technique to drastically reduce the DSE run-time.

• Chapter 5 presents our modeling of power consumption of the multi-bus inter-
connect which has two objectives: first assess the power consumed by buses
in order to minimize it. Second, capture the bandwidth requirements of each
bus in order to compute the minimum per-bus bandwidth required to achieve
the design objectives on latency and power consumption.

• Chapter 6 concludes the manuscript and gives insights into future directions for
the work accomplished in this thesis.

30

Chapter 2

Context and Related Work

In this thesis, we study the Design Space Exploration (DSE) of dataflow applications
on architectures with a multi-bus interconnect, at Electronic System-Level (ESL) of
abstraction. ESL is a design methodlogy that focuses on high abstraction level. It
is defined in [5] as "the utilization of appropriate abstractions in order to increase
comprehension about a system, and to enhance the probability of a successful im-
plementation of functionality in a cost-effective manner, while meeting necessary
constraints". In this chapter, we focus only on works at ESL of abstraction. The DSE
problem consists in the decision problem of finding a mapping and a scheduling of
tasks and communications with respect to some design objectives. To solve these
problems, DSE techniques are needed. In this Chapter, we have identified two main
classes of criteria to organize the related work. The first class concerns aspects that
define the DSE problem to be solved, like the target architecture characteristics—
and how these are accounted for during mapping and scheduling—or the design
objectives to achieve (e.g., minimize latency, minimize power consumption). The
second class refers to the techniques proposed to solve the DSE problem like the
search strategies used to navigate the design space towards sought solutions. We
will discuss these criteria in details in this chapter. Afterwards, we will position our
work with respect to the targeted systems. Following that, we will discuss existing
work and highlight why it is not suited to solve the problem we study in this thesis.
Finally, we conclude and motivate the choices of our work.

The remainder of this Chapter is articulated in five Sections: Sections 2.1 and 2.2

31

define the criteria that we identified to classify DSE work: Section 2.1 discusses the
different aspects and assumptions that define a DSE problem such as the design
decisions, the target architecture model and the scheduling solution model. Sec-
tion 2.2 explains the key components of a DSE approach (e.g., the search strategy)
and different alternatives for each component. Section 2.3 positions and motivates
our contribution with regard to the criteria discussed in Sections 2.1 and 2.2. In
Section 2.4, we review existing DSE work most closely related to our work. Finally,
Section 2.5 concludes this chapter and gives an overview of the contributions of this
thesis, their motivations, and how our work is different from the existing literature.

2.1 Design Space Exploration Problems

2.1.1 Application model

In this Section, we discuss the Model of Computation (MoC) used to capture applica-
tions. A MoC describes the set of rules that govern the execution of an application,
by defining the semantics of its components and how they interact. Here, we discuss
the Synchronous Data Flow (SDF) paradigm, and other graphs that can be derived
by applying transformation to an original SDF graph. We focus on the SDF for its
relevance for signal processing applications and for reasons we will discuss in this
paragraph.

Synchronous Data Flow

SDF [37] model is very commonly used in DSE work for signal processing applica-
tions. SDF is a dataflow paradigm proposed to describe signal processing applica-
tions, in a way that concurrency inherent to an application is exposed. The definition
of a SDF graph is given in Definition 2.1.1.

Definition 2.1.1 (SDF graph). A SDF graph G is a tuple ⟨A, E⟩ where A is a finite
set of vertexes denoting computations (called actors) and E is a finite set of directed
edges denoting First In First Out (FIFO) channels between these actors. Any actor
can fire (perform its computation) as soon as enough input data (called token) are

32

available on its incoming arcs. Edges are annotated with a the number of tokens
consumed and produced by each actor firing.

In a SDF graph, production and consumption rates of actors are known a priori.
SDF allow for static scheduling at design time, thereby, minimizing run time over-
head. In SDF, all computations and data communications can be scheduled stati-
cally. During DSE, SDF graphs can be analyzed, as such, or after being transformed
to other forms.

Acyclic and Homogeneous Synchronous Data Flow In order to expose the par-
allelism in an application (i.e., parallelism of computation, and parallelism of data),
a special case of SDF, called Homogeneous Synchronous Data-Flow (HSDF), can
be obtained by applying a transformation on the original SDF. In a HSDF graph, the
amount of tokens exchanged on edges are homogeneous, i.e., production = con-
sumption. HSDF graphs exhibit the potential parallelism in an application. As such,
more options for the mapping of actor firing (task) and data exchange (communica-
tion) can be explored, compared to an original SDF graph.

Acyclic Homogeneous Synchronous Data-Flow (AHSDF) is a sub-class of SDF
where cycles are banned, i.e., there is no path that starts at a given node, traverses
a directed sequence of edges and loops back to the same node. By banning cycles,
acyclic graphs are useful to isolate a single iteration of the application. Therefore,
the AHSDF both exposes the potential parallelism in an application, and allows to
isolate a single iteration of the application.

2.1.2 Processing models: heterogeneity

A processing model refers to the processing resources deployed on the architec-
ture. Heterogeneity of a processing model is described with respect to how different
deployed processing resources are from each other. We identify three processing
models with respect to their level of heterogeneity.

• Homogeneous: Processing resources are all identical (e.g., Kalray MPPA-256
platform [69]).

33

• Weakly heterogeneous: Processing resources are all identical, but the clock
frequency, memory size or other parameters are different.

• Strongly heterogeneous: Processing resources can be of different types
(e.g., generic CPU, DSPs, computation-specific hardware accelerators): A pro-
cessing resource may not be able to support the execution of all applications
tasks. A processing resource can contain a single Processing Element (PE)
(core) for execution or several cores (e.g., multi-core CPU). Examples of real-
word architectures with this processing model are the Samsung Exynos and
Qualcomm Snapdragon ranges used in smartphone and tablet architectures.

2.1.3 Communication models

Communications of an application need to be mapped and scheduled on the target
communication architecture. A communication model describes how communica-
tions between different architecture components are captured during DSE. In existing
DSE works, several communication models are considered, ranging from assuming
instantaneous communications (i.e., communication overhead is assumed negligi-
ble), to deeply analyzing a communication structure in order to estimate communi-
cation times, e.g., assignment of bus time slots to communications. In the following
bullet points, we first overview communication models, where a communication archi-
tecture is analyzed in order to derive a mapping and scheduling of communications.

• Single shared bus: This model refers to a single shared bus connecting all
components. Here a unique mapping option is available: the shared bus. Since
only one component of the bus can have control at a given time, and accounting
for the potential parallelism in applications, contention on the shared bus inter-
connect should be handled during scheduling. Basically, an arbitration policy
(e.g., Time Division Multiple Access (TDMA) in [50]) is modeled to estimate
communication times on the shared bus.

• Full/Partial crossbar: This model corresponds to the crossbar (or bus matrix)
interconnect which operates as multiple buses connecting all components (full
crossbar), or a subset of components (partial crossbar). Mapping and schedul-
ing communications on a crossbar require to address some constraints such

34

as exploiting the parallelism of buses while respecting the capacity of commu-
nications between pairs of components.

• Multi-bus - Segmented bus: This communication model refers to the multi-
bus interconnect where multiple bus segments are connected to each other, in
a certain scheme (e.g., hierarchical, ring, ad-hoc), and components are con-
nected locally to each segment. It allows parallel transfers on different seg-
ments leading to less contentions than the single shared bus. However, map-
ping and scheduling are more complex because each segment can operate
at a different bandwidth, tasks and components can be distributed to bus seg-
ments in many different ways, many routes can be available, and inter-segment
communications have to be handled along with local communications.

• NoC: This model refers to the NoC which is a network structure composed
of switches (routers) and links and relying on data packetization: Before be-
ing transmitted through the interconnect, data is split into packets. A packet is
received by the router in an input buffer, then it is routed to the appropriate out-
put link. Data packets traverse progressively switches and links until reaching
the final destination. NoCs are known for being more scalable than bus-based
architectures but they are also more complex to design [16]. Therefore, the
NoC communication model has been extensively studied [4,52]. DSE for NoCs
addresses NoC problems like packetization and depacketization of data.

• Hybrid: This category groups works that consider any hybrid combination
of buses (shared and segmented), crossbars, and/or NoCs. Mapping and
scheduling here account for a meld of design issues from each communica-
tion model used.

During DSE, some abstractions can be considered on the analysis of communica-
tion mapping and scheduling, resulting in simplified communication models, which do
not analyze communications through the interconnect. These models, summarized
hereafter, can be applied for any type of communication architecture (e.g., shared
bus, NoC).

35

• Communication-oblivious: This model simply assumes that communications
between components are instantaneous. Here, the impact of communications
on the overall performance is assumed negligible.

• Fully connected - Constant latency: This model suggests that all compo-
nents communicate between each other through dedicated private channels.
The communication latency between each pair of components is constant (e.g.,
defined in a matrix) and is not affected by the co-existing load.

2.1.4 Design decisions

An application is built upon a set of tasks and communications between tasks. An
architecture is built upon processing, communication and storage resources. In this
thesis, we focus on tasks and communications mapping and scheduling on process-
ing and communication resources. We refer to system parameters that are explored
and decided during DSE by design decisions. A DSE approach can examine one
or several design decisions simultaneously. Basically, the complexity of a DSE prob-
lem increases with the number of decisions evaluated at once. However, regarding
design decisions in an integrated way allows a holistic view of the system param-
eters and their interdependencies. This holistic view is often necessary to ensure
finding optimal design solutions. In the following, we overview design decisions re-
lated to the mapping (application-to-architecture) and the scheduling (application-to-
time/order).

• Task Mapping refers to the assignment of a processing resource from the
architecture to each task from the application.

• Task Scheduling refers to determining a temporal organization of tasks. Ba-
sically, there are two ways to do this: 1) Determining an order of execution of
tasks, or 2) Determining the exact start times of each task. From the latter, the
former can be deduced.

• Communication mapping, or routing refers to the assignment of one or multi-
ple communication resources from the architecture to each data transfer needed
between a pair of tasks from the application.

36

• Communication scheduling refers to determining a temporal organization of
communications. As for task scheduling, two ways are possible: 1) Determining
an order of execution of communications, or 2) Determining the exact times
where communications occur on resources. The former can be deduced from
the latter as well.

2.1.5 Design objectives

A design objective is a goal on a cost or a performance metric (criteria) that a design
solution should achieve. A design objective can be of two types: 1) Satisfy, mean-
ing the metric should be below or over a given threshold, or 2) Minimize/Maximize,
meaning the optimal value should be reached for the metric. As an example, a
real-time system is typically not required to respond as fast as possible (e.g., Min-
imize latency) but fast enough so that the timing requirement is respected (e.g.,
latency ≤ thresholdlatency). However, one can be interested in maximizing the usage
of the hardware material deployed (e.g., Maximize usage). Higher exploration effort
is required to achieve a Minimize/Maximize design objective, as shown for example
in [26] for latency, and later in our experimental evaluations (Section 4.4, Chapter 4).

In the rest of this subsection, we overview a non-exhaustive list of the most re-
curring design objectives that we identified in related work. These design objectives
can be considered separately or simultaneously in a DSE problem.

Latency

Performance design objective on latency has received significant research attention,
especially in the real-time community. For a dataflow application graph (e.g., Di-
rected Acyclic Graph (DAG)), latency (or end-to-end latency) refers to the time that
separates the end of the last task from the start of the first task. Typically, two types
of design objectives are applicable to latency: 1) Satisfy, and 2) Minimize. While the
latter aims at providing the design solution which guarantees the lowest latency, the
former is content with respecting a certain threshold on latency. For example, while
some systems have to respond as fast as possible (e.g., in systems where process-
ing resources can only execute a task at once, without preemption, minimizing la-

37

tency allows to reduce the time during which processing resources are unavailable),
other systems only need to respect a certain time budget or a deadline constraint.

Throughput

For periodic applications, throughput is defined as the inverse of the period, i.e., the
time it takes to execute an entire iteration of the SDF application graph. Achieving
a certain goal for throughput is also a major design objective. As periodic dataflow
applications (e.g., streaming applications) run continuously, it is important to assess
their data processing rate. Similarly to latency, throughput can be either subject
to Satisfy constraints (e.g., guaranteeing a minimum throughput), or to Maximize
objective.

Power consumption

Power consumption is another important design concern [44]. Low power consump-
tion is a key enabler for portable embedded devices (e.g., smartphones), where var-
ious applications should execute while keeping a battery charged longer. Power
consumption is also a major concern in server infrastructures where the amount of
power consumed tend to be significant [44]. Moreover, power consumption of a Sys-
tem on a Chip (SoC) represents a limit to its integration capacity [31,70].

All components of a MPSoC (e.g., processing resources, communication re-
sources) participate to its total power consumption. In [64], it was predicted that
the communication architecture will contribute by a larger portion to the total circuit
power consumption. In [15], the authors report that this contribution can reach up
to 50% in current and future devices. The importance of early power-aware DSE for
communication architectures in MPSoC design was emphasized in [46].

Architecture cost

The monetary cost of the deployed architecture is also a quite recurring design ob-
jective. It can be either expressed in the problem model explicitly, such that each
component is associated with a monetary cost (e.g., [38,51]), or as parameters that
may influence (increase or decrease) the cost like the number of components used
in the architecture (e.g., [76]) or the memory usage (e.g., [39]).

38

2.1.6 Mapping and scheduling models

This Section first overviews different strategies to compute a mapping and schedul-
ing solution depending on when mapping and scheduling decisions have been taken
(referred to as scheduling strategies in the terminology in [61]), then, in later para-
graphs, we will discuss other properties to categorize scheduling solutions.

Static/dynamic scheduling strategies

Scheduling strategies can be classified by how many decisions have been taken
at design-time and at run time. We rely on the classification from [61] where six
scheduling strategies have been identified. Fully static (also referred to as design
time in this thesis) schedule means all decisions of scheduling task and communica-
tion, including the exact start times are taken at design-time. Ordered transaction
schedule only determines the order of execution of tasks and communications but
not their exact starting times. The self-timed schedule means only the order of exe-
cution of tasks is defined at design-time. Quasi-static scheduling provides multiple
input-dependent schedules. Input-dependent schedules are useful when application
execution depends on its input. For example, based on a statistic profiling of the
execution of an application under different inputs, different scheduling solutions can
be proposed. Static assignment scheduling only determines the mapping of tasks
to processing resources at design time. The remaining decisions are left to run time.
For fully dynamic schedules, all design decisions are made at run time for maximum
flexibility, but also at the cost of the highest run time overhead.

Task preemption and migration

Preemption refers to the possibility to start the execution of a given task on a given
resource, interrupt it before its completion, and resume it later on the same resource.
Migration allows to resume it on another resource. Preemption and migration are
useful in several scenarios. For instance, the preemption of a certain task t1 al-
lows another task t2, with a higher priority, to take control of the resource that was
allocated to task t1. By multiplying the scheduling and/or mapping possibilities, pre-
emption and migration may introduce significant overhead to DSE.

39

A

ACout

ABout

B
ABin BDout

C

CEoutACin

DBDin

CDin

(a) Example of a directed acyclic graph

CCA
B D

CDAB

PE1

PE2

Bus

Time

A
B D

CDAB

iteration n

(b) Non-pipelined

CA
B D

CDAB

PE1

PE2

Bus

Time

A
B

C
D

CDAB

iteration n+1

(c) Pipelined

Figure 2.1: Pipelined and non-pipelined scheduling models

Pipelining in scheduling periodic applications

Periodic applications run periodically such that tasks of the application graph exe-
cute, in an iterative fashion, on different data sets. An iteration refers to the exe-
cution of all tasks of the application graph. The scheduling is called pipelined or
non-pipelined depending on whether the iterations are allowed to overlap or not. In
a pipelined scheduling, there is an overlap between tasks of two different iterations
as illustrated in Figure 2.1c, for the application graph in Figure 2.1a. For a non-
pipelined scheduling, illustrated in Figure 2.1b, tasks of an iteration m + 1 are not
allowed to start before the completion of all tasks of iteration m.

2.2 Design Space Exploration Techniques

The search for a design solution with respect to one or several design objectives
generally considers two orthogonal components [27]: 1) the evaluation of a single
design point, and 2) the search strategy used to cover the design space during the
DSE process.

40

2.2.1 Evaluation methods

In order to find a design solution which satisfies the design constraints, evaluation
methods are required to evaluate a single design candidate. Evaluation methods
can be organized in three main categories as described in [47]: 1) measurements on
a prototype implementation, 2) simulation-based evaluations, and 3) estimations
based on analytical models. Each category provides a different trade-off between
exploration cost (e.g., run-time) and accuracy.

Measurement on a prototype provides the most accurate evaluation metrics, but
may require a high exploration cost and a high development cost prior to exploration.
Simulation techniques provide the a more balanced trade-off between accuracy and
exploration cost compared to prototyping. Simulations can be performed at different
levels of abstraction (e.g., Register Transfer Level (RTL), cycle-accurate, Transaction
Level Modeling) as explained in details in [47]. Analytical models-based methods
have lower accuracy than simulation-based methods, but are faster. Analytical es-
timations and simulation can be used in a complementary way, such that analytical
models operate on a large design space to identify promising solutions (or parame-
ters that lead to promising solutions), on which simulations are performed later for a
more accurate evaluation.

2.2.2 Search strategies

Searching a design space towards valid, near-optimal or optimal solutions with re-
spect to one or several design objectives, is a key component of DSE. Search strate-
gies can be roughly classified into two groups: 1) Exact search, and 2) Approximate
search [47]. Typically, a search strategy provides a certain trade-off between explo-
ration effort and optimality. While exact search methods are able to guarantee the
quality of the returned solution, approximate (also called sub-optimal) search meth-
ods trade optimality for a reduced exploration cost.

Approximate Search for DSE

Approximate search methods consist of heuristics and meta-heuristics that aim at
finding good quality solutions fast. These methods tend to consider only a subset
of design candidate solutions (i.e., incomplete search), thereby, are suited for large

41

design spaces, and for run time environments where the exact search is not reason-
ably feasible. However, there is no guarantee on the quality of solutions: there is no
guarantee to find a solution when one exists, or that the solution is close or not to the
exact optimum, and basically, a local optimum (i.e., a solution which is optimal within
a limited neighborhood of candidate solutions from the design space) is found rather
than the global optimum. Examples of known meta-heuristics include hill climbing,
tabu search, simulated annealing, ant colony and Evolutionary Algorithm (EA). Fur-
ther details on these methods can be found for example in [47].

Exact Search for DSE

Exact search basically relies on mathematical models (formulations) to describe a
decision problem. A mathematical formulation refers to a mathematical description
of a decision problem using a set of constraints over variables. Variables are de-
fined on a certain domain. Constraints define relationships between variables. One
or several objective functions defining the system metrics to minimize or maximize
can also be considered. The satisfy design objectives (e.g., satisfy a threshold con-
straint on latency or throughput as explained in subsection 2.1.5) are described us-
ing constraints (e.g., throughput ≤ thresholdthroughput). These formulations generally
constitute an input to a generic resolution engine called a solver. The latter exam-
ines the problem and returns solution(s) that satisfy the mathematical formulation.
Formally, we refer to the mathematical formulation as a Constraint Satisfaction Prob-
lem (CSP), Definition 2.2.1 [48]. The definition of a solution to a CSP is given in
Definition 2.2.2 [48].

Definition 2.2.1 (CSP). A CSP P is a triple P = ⟨X, D, C⟩, where X is an n-
tuple of variables X = ⟨x1, x2, . . . , xn⟩, D is a corresponding n-tuple of domains
D = ⟨D1, D2, . . . , Dn⟩ such that xi ∈ Di, and C is a t-tuple of constraints C =
⟨C1, C2, . . . , Ct⟩. A constraint Cj is a pair ⟨RSj

, Sj⟩ where RSj
is a relation on the

variables in Si = scope(Ci).

Definition 2.2.2 (CSP solution). A solution to the CSP P is an n-tuple A = ⟨a1, a2,

. . . , an⟩ where ai ∈ Di and each Cj is satisfied in that RSj
holds on the projection of

A onto the scope Sj.

42

CSPs can be classified according to the nature of the mathematical formulation
(e.g., linear/non-linear, logical) and the techniques deployed to solve them.

Mathematical Programming Mathematical programming models are typically clas-
sified according to the types of the decision variables, constraints, and the objective
function. Linear Programming (Linear Programming (LP)) is a mathematical pro-
gramming technique where the problem is modeled in terms of linear inequalities,
linear objective function, and where variables have continuous domains. To repre-
sent decisions of a discrete nature (e.g., yes, no, 0, 1, 2), Mixed Integer Linear Pro-
gramming (Mixed-Integer Linear Programming (MILP)) problems can include both
discrete and continuous variables. If all variables of the LP problem are integers, the
problem is called an Integer Linear Programming (Integer Linear Programming (ILP))
problem. Simplex, interior point, Branch-and-Bound and cutting plane techniques are
well-known algorithms used to solve mathematical programming problems [23].

Constraint Programming Constraint Programming (CP) defines a paradigm to
solve combinatorial problems with and without optimization criteria. The problem
to solve is first defined as a Constraint Satisfaction Problem (CSP). With respect
to mathematical programming models, a CSP offers more flexibility to model logi-
cal constraints and arithmetic expressions (e.g., modulo, integer division, minimum,
maximum). CP has no limitation on the arithmetic constraints that can be set on de-
cision variables and can use ad-hoc constraints (e.g., the ”all-different” constraint),
to accelerate the search of frequently used patterns [29]. CP has proven high effi-
ciency in solving scheduling problems [29]. A search engine which typically relies on
methods like backtracking and constraint propagation [48], is used to solve the CSP.

Boolean Satisfiability / Satisfiability Modulo Theories Satisfiability consists in
the problem of deciding if a certain formulation that expresses a constraint has a
solution. The basic satisfiability problem, denoted Boolean Satisfiability Problem
(SAT), is expressed using Boolean variables related by logical connectives (∧, ∨, ¬,
⇒, ⇐⇒) and forming a formulation in Boolean logic. A valid solution to a SAT
problem is an assignment of true/false values to all Boolean variables such that the
overall formula is true. However, a majority of real-world problems needs a more

43

expressive language to be described. First-order logic provides a very natural way
to express problems. It include logical connectives (∧, ∨, ¬, ⇒, ⇐⇒), variables,
quantifiers (∃, ∀), functions (e.g., f(x), x + y), predicate symbols (e.g., x < y) and
constant symbols (e.g., 0, π). Satisfiability Modulo Theories (SMT) relies on back-
ground theories to interpret a formulation in first-order logic. For instance, the theory
of arithmetic defines the semantic interpretation of symbols like +, ≤, >, 0 or 1. A
solution to a problem formulation in SMT is called a model. A model is an interpre-
tation of variables, functions and predicate symbols, with respect to used theories,
such that the overall formulation is true.

In view of the need to solve more and more complex combinatorial problems,
researchers working on SAT and SMT have put many efforts in recent years to inno-
vate in algorithms, data structures and heuristics [20]. Recent SAT solvers can check
formulas with hundreds of thousands variables and millions of relationships between
these variables [20]. SMT solvers are also following the same trend especially for
the more commonly used theories [20].

Discussion The different classes of CSP each have their own characteristics and
advantages, making them suitable for different kinds of decision problems. For in-
stance, some design constraints can be naturally expressed by a linear inequation.
Let us assume the following mapping problem model: xtpi

is a Boolean variable
that denotes the mapping of a task t to processor pi and xtpj

is a similar variable
that denotes the mapping of the same task t to another processor pj. A design
constraint is to make sure that task t is assigned to at most one processor. This
means that task t is either mapped to processor pi (i.e., xtpi

= 1), or to proces-
sor pj (i.e., xtpj

= 1). This constraint can be naturally expressed by the follow-
ing linear inequality: xtpi

+ xtpj
≤ 1. Now, let us consider a scheduling problem,

where a design constraint is to ensure that two different tasks ti and tj cannot over-
lap in time on a given processor p. This constraint requires a disjunction of con-
straints and cannot be expressed naturally by a linear inequality. In fact, mathe-
matical programming models support only linear constraints, linearized logical con-
straints, or quadratic convex constraints [29]. Instead, a first-order logic model al-
lows to capture such a disjunctive constraint naturally using logical operators (e.g.,
((xtip = 1) ∧ (xtjp = 1)) ⇒ ((startti

> endtj
) ∨ (starttj

> endti
)).

44

The main advantage of the methods discussed in this subsection is their com-
pleteness, meaning their ability to guarantee optimality of the returned solution, to
find a solution if one exists, or to prove unfeasibility. However, the search for optimal
solution can come at a high cost. Several techniques are commonly used to address
the complexity of exact search methods. These techniques can roughly be classi-
fied into two major groups of approaches: 1) decomposing the problem into smaller
sub-problems, and 2) navigating the search smartly during DSE. The first approach
deals with large problems by decomposing them into several smaller sub-problems,
and then merging sub-problems results. However, ignoring interdependecies be-
tween sub-problems may lead to sub-optimal solutions. The second approach uses
problem-specific knowledge to prune the design space (i.e., eliminating unsuitable
design candidates) and thereby, improves the efficiency of the search. For example,
Bonfietti et al. [9] explore this latter direction and result in one order of magnitude
improvement of DSE runtime. The major challenge for these techniques remains to
restrain the impact on completeness.

2.3 Targeted Systems

In this thesis, we target off-line Design Space Explorations (DSEs) that are per-
formed at design time. To capture applications and their execution semantics, we
rely on the SDF MoC for its expressiveness and high analyzability at design time.
Specifically, we use AHSDF [50] for the most parallel representation of one iteration
of the SDF graph. We consider multiple applications by means of separate indepen-
dent graphs. These applications can have possibly different latency objectives:
e.g., satisfy different real-time deadlines for each application, satisfy real-time dead-
lines for several applications and minimize latency for other applications. This allows
to study a workload of applications with different timing design objectives.

We consider an architecture model where a set of processing resources are inter-
connected according to a segmented bus (multi-bus) communication model. Each
bus segment can have a different bandwidth capacity and the topology of intercon-
nection is not constrained (e.g., tree, chain, ring). The processing model is not con-
strained as well: it can be homogeneous, weakly heterogeneous, or strongly
heterogeneous. However, we are mainly interested in heterogeneous architectures.

45

To ensure efficient use of architecture resources, design decisions of both task
and communication mapping and scheduling are regarded in an integrated way.
The expressiveness and high analizability of SDF allow for static scheduling. A fully
static scheduling solution is created. This scheduling solution can be used entirely,
or partially in the context of a more dynamic scheduling strategy, like ordered trans-
action, self timed and static assignment. In reality, there may be variations in defined
execution times, therefore, when implementing the scheduling solution, it is possi-
ble to preserve only the order of tasks and/or communications. This is a common
practice to generate schedules for dataflow graphs, see for example [61]. Moreover,
fully static schedules are still very useful to provide performance guarantees which
are crucial for real-time systems. For example, scheduling solutions which may vio-
late real-time deadlines are identified and eliminated at design time and so, dynamic
schedulers can focus only on viable design solutions. Preemption and migration of
tasks are not allowed. If an application is periodic, multiple successive iterations can
be modeled as independent applications, to allow for a pipelined scheduling or a
non-pipelined scheduling. Precedence relationships and data exchanges(if exist-
ing) between different iterations of the same application can be specified. This is of
course limited since it only allows to analyze a finite and fixed number of iterations
but can be useful.

In next Section, we discuss most relevant related work, with regard to our work,
and to the criteria presented in Sections 2.1 and 2.2.

2.4 Existing Design Space Exploration Work

In this Section, we summarize and discuss the work most closely related to ours:
Bonfietti et al. [9] were the first researchers to demonstrate that complete search

techniques are practically viable for the mapping and scheduling of SDF. In their early
work [10], the authors proposed a CP formulation for the joint mapping and schedul-
ing of SDF actors, onto a homogeneous multi-processor architecture, under minimal
throughput design objective. The proposed scheduling model is self-timed. Here the
communication-oblivious model of communication is adopted. The efficiency of the
proposed DSE approach was tested on HSDFs (up to 25 nodes) generated by the
SDF3 generator [63] and an architecture with 2, 4 and 8 processing resources using

46

ILOG Solver 6.3. Results showed that solver run-time grows exponentially with the
size of the instances. For graphs counting 10 to 20 nodes, a solution can be found
in less than 20 minutes, which is reasonable for a design time DSE.

The work in [9] extends the formulation proposed in [10] by a series of accelera-
tion techniques that aim at improving the search efficiency and reducing the solver
run-time. The authors introduce several reduction techniques that define tighter
bounds of the problem formulation by: 1) prioritizing the mapping of the most impact-
ing actors1, and 2) tending to map actors related by a data dependency on the same
processing resource. However, as opposed to the reductions that we will present
later in this manuscript, their reductions do not preserve optimality. [11] further ex-
tends prior work by proposing a novel formulation for the throughput constraints
in [9, 10]. This novel formulation is called "incremental" as it avoids the recompu-
tations of the throughput when partial solutions are found.

Experiments showed that the proposed reduction techniques in [9] reduced the
solver run-time by one order of magnitude, at the cost of 22% on average loss of op-
timality. The authors also attempted to reduce the solution run-time by constraining
the mapping of all the HSDF tasks corresponding to repetitions of the original SDF
actor to the same processing resource. This limitation of a degree of freedom in the
mapping led to around 30% optimality gap in throughput. In our work, we allow tasks
to be mapped freely on available and compatible processing resources. Also, we
account for communications on a bus-based communication architecture, while here
communications are considered instantaneous. Another difference with our work is
that, here, only a single application graph is considered rather than multiple inde-
pendent applications. Besides, only throughput is considered in [9, 10], while in our
work, we consider latency and power consumption.

Rosvall and Sander [50] propose a CP-based DSE framework for the mapping
and scheduling of dataflow applications—modeled as AHSDFs—on multiprocessor
architectures, with local memories. Similarly to our work, the output scheduling can
be fully static or self-timed. Also, multiple independent application graphs are con-
sidered simultaneously as well. The work in [50] accounts for mixed-criticality ap-
plications. Critical applications are first deployed to respect some hard constraints

1The impact of an actor here is measured based on its execution time and on the actors that
depend on its execution.

47

on performance (e.g., a threshold on throughput), while non-critical applications are
deployed to remaining resources to optimize throughput, with best-effort. This can
be achieved in our work as well.

Here, the single shared bus communication model is adopted such that a number
of TDMA bus time slots is allocated to processing resources that send data over the
shared bus. The developed framework derives performance analysis information in
terms of throughput, memory consumption, and processor utilization. The execution
of different iterations of an application is allowed to overlap in time (i.e., pipelined
scheduling model). As a search strategy, this work relies on a constraint solver to
meet satisfy design objectives and a complementary branch and bound algorithm to
find solutions optimized for throughput.

In [35], the contribution in [50] is enriched by addressing feedback control tasks
in addition to dataflow applications. Feedback control tasks are modeled using the
periodic task model. AHSDF actors are scheduled at design time similarly to [50].
Periodic tasks are scheduled at run time according to a fixed priority algorithm. The
main design objectives for the exploration are throughput for AHSDFs and deadlines
for periodic tasks.

For evaluation, the authors in [50] propose to run experiments on four real-world
streaming applications and a target platform consisting of 8 homogeneous process-
ing resources, connected via a shared bus. All possible combinations of the four
applications sharing the platform are analyzed (upto 32 tasks and 36 communica-
tions). The design objectives were set to optimize (maximize) throughput for one of
the four applications, while satisfying a threshold on throughput for each of the re-
maining applications. Experimental results showed that solutions for a satisfy design
objective were found in the order of seconds for all studied workloads. However, for
6 out of 15 workloads, the search for optimal solution could not be completed within
a time limit of 30 minutes.

The framework is further extended to study the trade-off between throughput and
processing-related power consumption in [51]. Techniques to improve scalability are
proposed as well. A two-step approach is introduced such that a heuristic function is
first applied to find good quality solutions fast and the complete CP search is used
as a second step to prove optimality of the first step solutions. The first step uses
additional constraints to attempt to reduce the search space around promising can-

48

didate designs. These constraints aim at: 1) forbidding the sharing of processors
between applications, and 2) forcing the number of available processors that an ap-
plication is allowed to use to the (estimated) least number of processors necessary
to match the required throughput. Here, problem-specific knowledge is exploited to
speed-up the DSE procedure, as we will propose as well later in Chapter 4. The
second step removes the constraints on the mapping, and the best solution found in
the first step is used to constrain throughput. The two-step approach demonstrated
better efficiency compared to the single-step approach [50] in terms of optimal so-
lutions search run-time. However, when introducing a hardware accelerator to the
architecture, the search run-time grows dramatically (6 hours were not sufficient to
reach throughput optimal solutions for 4 out of 15 workloads).

Contributions in [35, 50, 51] represent a practical evidence of some properties of
a CP-based approach, namely: 1) extensibility by adding new design decisions and
objectives [35,51], without changing the existing model, and 2) applicability to solve
holistically DSE problems. However, in either contributions, only a single shared bus
architecture is supported, and the power consumption analysis disregards power
consumed by the bus. Our work aims at addressing these limitations, by accounting
for various multi-bus topologies, and minimizing the interconnect power consump-
tion.

The work in [49] builds on the contributions in [50] and considers both the inter-
connect and the processors power consumption. However, it targets platforms with a
Temporally Disjoint NoC (TDN-NoC) with a mesh topology. In [49], the authors focus
on TDN-NoCs that use deflective routing: packets are never buffered in switches.
This makes the modeling of TDMA buses amenable to capture the traffic on links
in these TDN-NoCs. Similarly to TDN-NoCs, we do not consider buffering in inter-
segment bridges. In addition to the mapping and scheduling, the DSE problem that
the authors in [49] study includes finding a conflict-free allocation of communication
slots in the TDN-NoC. In this problem, the authors consider the routing strategy to be
fixed by the network, whereas in our work all possible routes are explored between
a producer and a consumer processing resources. This work has the advantage
of extending the considered communication architecture from a bus-based architec-
ture [35, 50, 51] to a NoC-based architecture [49]. It is again a demonstration of the
extensibility of the CP approach. Such an extension can represent a perspective to

49

our future work.

The work of Tendulkar et al. [66–68] targets homogeneous many-core processor
platforms (e.g., Kalray MPPA-256 [69]) where mapping and scheduling of dataflow
application graphs are studied, relying on a SMT approach and a complementary
binary search. The target communication model is a NoC, where processors are
grouped into clusters, and communicate with each other via Direct Memory Access
(DMA). Communication inside a cluster is performed by means of a shared memory
and is assumed negligible. In this work, an accurate modeling of a DMA mechnism is
provided in order to characterize the data transfers between different clusters. How-
ever, different routes are not explored during mapping. In terms of design objectives,
the contributions in [67] are focused on latency and buffer size, whereas we con-
sider interconnect power consumption along with latency. Similarly to our work, task
preemption is not allowed. The proposed scheduling is non-pipelined. The preci-
sion of the SMT modeling was evaluated against measurements of latency on a real
many-core hardware. The maximum observed error in terms of latency was 27%.
The authors explain that this error is mainly due to ignoring contentions on the inter-
connect. In our work, we address this limitation by accounting for contentions during
scheduling and communication latency estimations.

To reduce the run-time of the DSE process, the work in [67,68] exploits the sym-
metries present in the architecture and the application. Architecture-related symme-
try constraints aim at forcing one specific mapping when multiple alternatives exist
that only differ in terms of the permutations of pairs (task, processing resource).
Application-related symmetry constraints aim at simplifying DSE when, for instance,
task dependency graphs are symmetrical in terms of topology and of the character-
istics associated to tasks (e.g., in a HSDF, tasks corresponding to different firings of
the same SDF actor). In this case, a lexicographic scheduling order is forced instead
of exploring all identical permutations of all scheduling orders.

The symmetry breaking techniques were evaluated on a set of applications from
StreamIt benchmark [71] and a homogeneous architecture where 5 and 20 proces-
sors are deployed in turn. Results showed that for the 5-processor case, the size of
application graphs, for which optimal solutions were found within the time out of 20
minutes, is increased from 12 to 48 tasks. Results also showed that the processor
symmetry breaking benefits increase with the number of processors deployed, which

50

is expected as symmetries become more important. Unfortunately, in our work, the
use of symmetry breaking techniques is considerably limited by the heterogeneity of
the processing model (e.g., CPUs and specialized DSPs) and the irregular topology
and bandwidth capacities of the multi-bus communication model. However, we reuse
symmetry breaking for application tasks as in [67].

A run time manager complements the contribution in [67] to optimize resource-
utilization. It is in charge of taking decisions for dynamic task migration, at a pre-
dictable time and without affecting other applications running on the platform. Such
a run time manager can be also used in our work to improve the awareness of be-
haviors that are hardly predictable at design time.

Lin et al. [38] propose a series of search algorithms relying on ILP and EA to
solve the problem of mapping and scheduling of real-time SDFs on bus-based ar-
chitectures. Generated output consists either of a single solution or a Pareto front
for the optimization of throughput, latency and architecture cost. Studied architec-
tures are heterogeneous and can include multiple buses and both local and shared
memories. The proposed search strategies are 1) a global ILP model, 2) a two-
stage ILP (first ILP for mapping followed by a second ILP for scheduling), and 3) a
scalable mixed approach that integrates an EA with ILP. The output solutions map
the SDF graph to processing and communication resources, and propose fully static
schedules on processors and buses. Two possible routing policies are considered on
buses: direct communication between processors and two-step communication via
the shared memory. This work has the advantage of considering communications
through both shared and local memories. However, in either case, it is assumed that
a communication step involves only a single bus. In fact, despite the consideration of
multiple buses in the architecture, this work assumes a fully-connected communica-
tion model, such that the shared memory and all processors are accessible through
any bus. Processing resources are then allowed to communicate with each other
through dedicated channels. On the contrary, in our work, we support a multi-bus
communication model, where buses can be disposed in an ad-hoc topology between
processing resources and data transfers between processing resources can cross as
many buses as needed, we analyze the routing scheme, and account for possible
contentions on the interconnect.

The efficiency of the approach [38] was evaluated using a set of graphs (5 to

51

15 actors) randomly generated by SDF3 [63], and a 3-processor platform, assuming
a communication-oblivious model and a single bus model. For the first model, the
single step ILP approach showed run-time values increasing up to 20 minutes for the
15-actor graph, while the two-stage ILP and the mixed approach showed both lower
run-times: around 100 seconds for the 15-actor graph. Some experiments were
also conducted on a MP3 decoder to evaluate the efficiency of the mixed EA-ILP
approach in generating Pareto optimal solutions. The search lasted 23 hours when
communications are assumed negligible, and 41 hours when they are analyzed. In
this work, the applicability of the reduction technique we propose in Chapter 4 can
be investigated to improve run-time.

Voss et al. [75, 76] propose a joint mapping and scheduling of tasks and com-
munications to a multi-core architecture with a shared memory. The work of Voss
et al. [75] is similar to ours in multiple ways: solving the mapping and scheduling of
tasks and communications in an integrated way, using of a discrete time line (i.e.,
time slots) to determine start times of tasks and communications and producing a
static schedule, relying on SMT and complementary search techniques (e.g., binary
search), and integrating their work to a model-based tool for the development of em-
bedded systems. The design objectives here consist mainly on giving guarantees
on latency (i.e., satisfy and minimize as explained in Section 2.1.5). The usage of
resources is also optimized (e.g., minimize number of processors used). Power con-
sumption is not considered though. The proposed approach accounts for a safety
criteria: tasks and resources are assigned with different criticality levels, such that
higher-level tasks cannot be assigned to lower-level resources during mapping. This
can be achieved in our work as well by enabling the user to add ad-hoc constraints,
but it is not the focus of our work currently.

From the viewpoint of the communication architecture, it is not clear if their work
supports multi-bus architectures as all examples display a single shared bus. The
authors demonstrated that state-of-the-art SMT solvers can be used to efficiently
and jointly compute a mapping and a scheduling of tasks and communications.

This work is focused on the domain of automotive systems. The approach was
evaluated using randomly generated application graphs (in form of a DAGs) consist-
ing of 5 up to 70 tasks. Results showed that the solver run-time grows exponentially.
Up to 35 tasks, optimal latencies were reached in less than 30 minutes, while for the

52

graph with 70 tasks, exploration lasted around 29 hours. This work could investigate
the use of our reduction technique, presented in Chapter 4, to tighten the scope of
definition of time slots related to the scheduling of tasks and communications. This
may result in significant improvements of the DSE run-time.

A representative body of works on several design issues of a segmented bus ar-
chitecture called SegBus is that of Seceleanu et al. [54–58]. In the context of our
research, the work described in [55,56] is the most relevant: it describes a resource
allocation methodology for SegBus. Here, several design issues of a segmented bus
architecture are addressed. The aim is to find a mapping of components (i.e., master
and slave components) to bus segments and a linear organization of bus segments,
such that inter-segment traffic is minimized and parallel traffic on different segments
is maximized. With respect to our work, this contribution does not consider power
consumption of bus segments. Here, the topology synthesis is part of design deci-
sions. However, a topological restriction is that bus segments can be only linearly
connected: more complex topologies (e.g., ring, tree, ad-hoc) are not studied. As
such, no routing is needed since there is a unique linear route between each pair
of components. Moreover, the mapping of tasks to processing resources is left for
future work, while a predefined communication matrix defines communication traf-
fic between each pair of architecture components. This approach could be used
combined with our DSE to find a fully motivated decisions of topology, mapping and
scheduling of tasks and communications for linear multi-bus architectures.

As a search strategy, Seceleanu et al. [56] proposed heuristic methods and an
exact search algorithm to find the linear segmentation and component-to-segments
assignment. The authors report that exact search is a feasible solution since, in prac-
tice, the number of bus segments is rather modest. The proposed heuristic methods
are articulated in two algorithms, the first algorithm aims at finding the component-to-
segments allocation. It relies on an initial randomly selected component-to-segments
allocation, then performs a greedy local search to generate improved solutions. Once
optimized component-to-segments allocations are returned, the second algorithm
performs random swap/move operations for a given component-to-segment alloca-
tion. Seceleanu et al. show that the heuristics find solutions as good as the optimum
for problem instances where up to 4 bus segments are considered. However, for
larger problem sizes, the distance from the optimum is not provided.

53

Table 2.1: A summary of selected related work

Ref. TM2 TS3 CM4 CS5 Communication
model

Design
objectives6

Processing
Model

Search
Strategy

[10] ✓ ✓ × × communication-
oblivious

Thr homo. CP

[9] ✓ ✓ × × communication-
oblivious

Thr homo. CP + Opt

[50] ✓ ✓ ✓ ✓ shared-bus Thr heter. CP

[35] ✓ ✓ ✓ ✓ shared-bus Thr ∧ L heter. CP

[51] ✓ ✓ ✓ ✓ shared-bus Thr ∧ Pw CP + Opt

[49] ✓ ✓ × ✓ TDN-NoC Thr ∧ Pw CP

[66–68] ✓ ✓ × ✓ NoC L homo. SMT + Opt

[38] ✓ ✓ ✓ ✓ fully-connected L ∧ C ∧ Thr heter. ILP+ EA

[75,76] ✓ ✓ ✓ ✓ shared-bus L ∧ C7 heter. SMT

[55] × × × × multi-bus L – Exact +
Heuristics

Our
work

✓ ✓ ✓ ✓ multi-bus ∧
shared-bus

L∧ Pw heter. SMT + Opt

2.5 Summary and Conclusion

Design Space Exploration (DSE) is a wide research topic that encapsulates a large
spectrum of problems depending on design decisions, objectives, target architecture,
etc. We have identified and discussed the different components of a DSE approach.
These range from the specification of the DSE problem (Sections 2.1) to the tech-
niques (Sections 2.2) deployed to solve it and find sought design solutions. This
study, together with a review of existing works (Section 2.4), allowed us to notice a

2Task Mapping
3Task Scheduling
4Communication Mapping
5Communication Scheduling
6Thr: Throughput; L: Latency; Pw: Power consumption; C: cost.
7Cost here refers to the number of architecture resources used.

54

lack in DSE research work that target the multi-bus communication architecture. As
discussed in Section 1.1.4, the multi-bus communication architecture offers multiple
advantages and is widely used.

In this thesis we provide a DSE approach for the mapping and scheduling of
tasks and communications on a multi-bus architecture. We rely on a Constraint
Programming (CP) approach, specifically based on Satisfiability Modulo Theo-
ries (SMT), to tackle the DSE problem in a holistic way. In the last decade, in parallel
to a considerable improvement of solvers efficiency, CP gathered much interest in
the DSE research community where many works [9,11,35,49–51,67,75,76] demon-
strated its applicability to holistically solve mapping and scheduling problems. In fact,
while most approximate strategies decompose the DSE problem into a mapping step
followed by a scheduling step (see for example [8,22,43,62]), the CP allows to con-
struct a holistic view on design decisions, and thereby, prevents the inherent loss
of optimality due to decomposition. Furthermore, in the literature, there is no exact
solution for the problem we are studying (mapping and scheduling of tasks and com-
munications on a multi-bus architecture). Therefore, starting with a development of
an exact method is a natural choice since conceiving approximate methods requires
to dispose a priori of an exact method to evaluate the quality of solutions found by
the approximate search. Thus, the work of this thesis can be the basis to design and
calibrate faster approximate methods in the future. Moreover, in approximate strate-
gies, the problem definition and the search engine are tightly coupled. Therefore,
changing the problem definition, by adding new performance metrics, or extending
to new communication architecture models for example, may make the search al-
gorithm unviable. Hence, such changes would require adjustments of the heuristic
search algorithm or meta-heuristics parameters. On the contrary, the CP approach is
based on a separation between problem definition and the search engine. This sep-
aration of concerns results into a modular DSE, where there are more opportunities
to extend the problem definition module with new specifications without changing
the search module, and often without modifying the existing model (see for exam-
ple [35] with respect to [50]). Furthermore, the problem definition module can be
reused—partially or entirely—with a new search module, as new advancements are
continuously integrated within search engines. As an example, the modularity and
extensibility properties facilitate the extension of our work to support other communi-

55

cation architecture models (e.g., NoCs) by only adjusting constraints that govern the
scheduling of communications (e.g., to account for packetization and depacketization
in NoCs). Another advantage of the CP approach is that the search can guarantee
optimality for a range of problems, and provide a trade-off between the search cost
and the quality of solutions for larger scale problems.

We specifically rely on a SMT approach for the following reasons. First, based
on the first-order logic, the CSP specified in SMT benefits from a high level of ex-
pressiveness, which is appreciated in the DSE problem we study. For example,
scheduling on a resource-constrained architecture needs a disjunction of formulas
to be captured properly. In fact, scheduling tasks on a set of constrained process-
ing resources is a non-convex problem, which requires disjunctive constraints: To
express that a processing resource can only execute a task, at a given time, the
CSP should indicate that, if two tasks t1 and t2 are assigned to the same processing
resource, then, task t1 can start either after task t2 has completed or vice-versa.
Expressed using logical operators in SMT, this relation can be solved using search
techniques which are suitable for this kind of problems. However, LP, for example, is
adequate when the problem is specified in terms of a conjunction of linear constraints
and feasible solutions are in the space of a convex polyhedron.

To deal with the complexity of the holistic analysis and the complete search of the
CP-based approach, we further propose a pre-analysis to exploit problem-specific
knowledge (i.e., application graph and architecture resources). This analysis aims
at pruning the design space to improve the scalability of the exact search by
reducing its computational cost, without impacting completeness.

The contributions of this thesis differ from existing work presented in Section 2.4,
and summarized in Table 2.1, mainly by three points: First, none of the discussed
work treats the holistic mapping and scheduling on a multi-bus architecture and re-
lated design issues such as: where and when execute tasks and communications on
a distributed bus architecture? How to manage inter-segment and local communica-
tions on multiple bus segments? How to manage different bandwidth capacities of
bus segments? We will present our DSE proposal to address these issues in Chap-
ter 3. Second, the reduction technique presented in this thesis is novel and original.
Most significantly, it results in reducing the DSE run-time drastically—by few orders
of magnitude on some of the studied workloads—without impacting completeness

56

(i.e., optimality, guarantee to find a solution if one exists, guarantee to prove unfeasi-
bility), as we will showcase in Chapter 4. Third, none of the presented work allow to
study both latency and power consumption related to the interconnect, nor to capture
power consumption of a multi-bus interconnect at system-level. We will present this
latter contribution in Chapter 5.

57

Chapter 3

A Satisfiability Modulo
Theories Formulation for the
DSE of Multi-Bus architectures

3.1 Introduction

The communication architecture of a MPSoC strongly influences its overall perfor-
mance and power consumption [46].

As we argued in Chapter 2, there is a lack of Design Space Exploration (DSE) re-
search work that targets multi-bus architectures. These, though, represent a solution
to many SoC design issues such as performance, power consumption and Intellec-
tual Property (IP) utilization, as reflected in [6,13,28], and discussed in Section 1.1.4.

In this Chapter, we propose an approach to explore design alternatives for the
mapping and scheduling of tasks and communications on architectures with multiple
buses. This approach relies on Satisfiability Modulo Theories (SMT) and it is our
first contribution in this thesis. Our contribution is positioned at system-level of
abstraction and targets the mapping and scheduling of dataflow applications (e.g.,
signal, video and image processing).

To deal with the complexity of the problem of mapping and scheduling tasks and
communications, a common practice in related works consists in decomposing it into

59

sub-problems [8, 22, 43, 62]. This decomposition reduces the complexity of explo-
ration but disregards interdependencies between the sub-problems, which unfits in
particular the exploration of multi-bus architectures. In fact, unlike the shared bus
where all pairs of components communicate with each other at the same bandwidth,
in a multi-bus interconnect, buses can operate at different bandwidths, providing non-
uniform communication schemes between architecture components. Between pairs
of components, even if these components are identical, the cost of communication
depends on how each pair of components can communicate with each other. For
example, let’s assume a first pair of processors PA1 and PB1, and a second pair, PA2

and PB2, such that PA2 is identical to PA1, and PB2 is identical to PB1. PA1 and PB1 are
connected by a bus which bandwidth is equal to bw1, and, PA2 and PB2 are connected
by another bus which bandwidth is equal to bw2 = 2 × bw1. The cost of communica-
tion between each pair of processors is therefore different. In this case, the overall
latency (execution + communication) depends on task mapping, on communication
mapping, and on the scheduling of tasks and communications. To capture how task
and communication mapping and scheduling impact each other, we suggest to tackle
this problem in an integrated way.

The remainder of this Chapter is organized as follows: Section 3.2 defines the
problem addressed in this Chapter. Sections 3.3 and 3.4 present respectively the
properties of the application model and the target architecture that are considered as
an input to our DSE. Section 3.5 describes the deployment solution that represents
the output of the exploration and the related assumptions. Section 3.6 provides
the details of our SMT formulation and explains all the variables and constraints.
In Section 3.7, we present the implementation of our approach and its integration
into a model-based design tool. A set of experiments are presented in Section 3.8
to illustrate a case study where our approach is used to guide the design of new
architectures. This can be achieved by comparing the found optimal solutions for
various architectures candidates, and selecting the architecture that best meets the
design objectives for given workloads. Finally, Section 3.9 summarizes this Chapter,
discusses limitations of the proposed approach and gives a glimpse into the second
contribution of this thesis which will be presented in the following Chapter.

60

3.2 Problem definition

In this Section, we define the problem to solve in this Chapter, as follows.

• Given

– A workload containing one or several dataflow applications;

– A set of processing resources interconnected in a predefined topology
with a multi-bus interconnect;

– A set of latency design objectives. A latency design objective can be
specified, for each application from the workload, among the two following
alternatives1.

* Real-time design objective: end-to-end latency is subject to a deadline
constraint. The solution must ensure that latency of a given applica-
tion meets a deadline constraint. A deadline is defined as a temporal
threshold on the execution of a given application.

* Lowest-latency design objective: The exploration procedure must se-
lect the solution which provides the lowest end-to-end latency among
all candidates of the design space, with or without a deadline con-
straint;

• Find:

– A mapping of tasks and communications to processing and communica-
tion resources;

– A scheduling of tasks and communications on processing and communi-
cation resources.

3.3 Workload Model

We focus on dataflow applications that are typical of signal, image and video pro-
cessing systems. A dataflow application consists of several units of work (tasks) that
represent the computations necessary to process data streams. Tasks are related to

1Applications within a given workload can have different latency design objective.

61

each other’s by data dependencies (communications). A data dependency defines a
relation between two tasks such that the execution of the destination task depends
on data produced by the source task. The task which produces data is referred to as
a producer and the task which consumes it as a consumer.

We denote an application by means of a Directed Acyclic Graph (DAG). This
graph can correspond to a AHSDF obtained from the transformation of an original
SDF graph, as explained in Section 2.1.1. As we consider multiple applications
running in parallel and sharing architecture resources, we denote the set of all ap-
plications a workload. Each application A, from the workload, is captured by an
independent DAG denoted as GA = ⟨T A, CA⟩ (Figure 3.1). The definition of GA is
given in Definition 3.3.1.

Definition 3.3.1 (DAG). A DAG GA of an application A is a tuple ⟨T A, CA⟩ where
T A is a finite set of vertexes denoting application tasks and CA is a finite set of
directed edges denoting data dependencies (or communications) connecting tasks
in T A. Each data dependency ctm,tn in CA is directed from one task tm (producer) to
another task tn (consumer), such that there is no path that starts at a vertex t in T A,
traverses a directed sequence of edges and loops back to t.

We denote the union of all workload tasks as T = ⋃
A∈W T A and the union of all

workload communications as C = ⋃
A∈W CA.

A producer is also called a predecessor of the consumer and the consumer is
called a successor of the producer. A task with no predecessors is called a source
(t1 in Figure 3.1a), while a task with no successors is called a sink (t4 in Figure 3.1a).

Each data dependency ctm,tn ∈ C is annotated with a positive integer denoting
the amount of data dtm,tn that needs to be transferred from the producer task tm to
the consumer task tn. Each task t is annotated with the operation type opt (e.g.,
Fast Fourier Transform (FFT)) used to map the task to Processing Elements (PEs)
capable of executing it. We denote F (t) the set of PEs capable of executing task t.
Tasks are also annotated with the set of their execution times on compatible PEs,
ETt = {ett,c, c ∈ F (t)}. The sink is annotated with a positive integer denoting the
application’s deadline deadlineA. Examples of DAGs are shown on Figure 3.1 in
which the opt, ETt and deadlineA annotations are omitted.

62

t
3

t
1

t
2

t
4

10

5 7

20

(a) Example of an application A1 DAG.

t
5 t

6 t
7

8 6

(b) Example of an application A2 DAG.

Figure 3.1: Examples of applications’ DAGs. Vertexes represent tasks, edges repre-
sent data dependencies annotated with the amount of exchanged data.

Without loss of generality, in our models, the application graphs have each a
unique source and a unique sink. If the modeled application has more than one
source and/or sink, virtual source and/or sink vertexes are added. These virtual
vertexes have zero execution times and produce (consume) data with a null commu-
nication cost.

Periodic applications are currently not supported. The only workaround consists
in modeling successive iterations as one single application. This approach only al-
lows to analyze a finite and fixed number of iterations, which is a strong limitation
regarding periodic applications. Concerning dependencies between iterations of the
same application, if data are exchanged between iterations, these exchanges can of
course be modeled with regular edges. If there are no data passed from one itera-
tion to the next, but we want to impose an order of execution among iterations, this
can also be modeled with regular edges with zero amount of exchanged data. This
approach is of course limited but it allows to explore portions of a periodic scheme,
which can be useful.

3.4 Architecture Model

The architecture model is captured by an undirected graph Garch. The definition of
the undirected graph is given in Definition 3.4.1.

Definition 3.4.1 (Architecture graph). The architecture graph Garch is a tuple ⟨U, L⟩
where U is a finite set of vertexes that represent processing units (resources) or com-
munication units (i.e., a bus or a bridge) and L is a finite set of edges that represent

63

links between them. Edges are only allowed to link bus units to units of other types
(i.e., processing units, bridges).

A Processing Unit (PU) is modeled as a composition of one or several Process-
ing Element (PE). Every PU p is annotated with its operation set Op, and the size of
memory memp ∈ N available to the unit. The operation set enumerates the list of op-
eration types that can be performed by the unit. For a generic processor (e.g.,CPU),
the list is empty to indicate that the unit is capable to execute any type of operation.
When a PU is composed of multiple PEs, the operation set is equivalent for all PEs
and is that inherited by the global PU. We don’t model memories as separate units.
The available memory to a PU is divided equally between its PEs. Each PE has
access to a predefined memory region, spatially separated from other regions.

Vertexes that model bus units are annotated with the bandwidth bwb ∈ N. It
measures the amount of data that can be transferred through the bus per time unit.

The definition of a route in the architecture is given in Definition 3.4.2.

Definition 3.4.2 (Route). We call a route between a PU i and a PU j in the archi-
tecture graph, the set of communication units joined to each other by a sequence of
edges, and to i on one end and j on the other end. A route contains n buses and
n − 1 bridges. It can be composed of a single (n = 1) bus segment and zero bridges,
or multiple bus segments (n > 1), interfaced by bridges.

The following assumptions are considered for the target architecture model:

• Assumption 1: A PE executes only one task at a time.

• Assumption 2: In our modeling, each PU disposes of a local memory, shared
between local PEs: PEs inside a PU communicate with each other via this
memory. Tasks allocated to a PE, inside the PU, read (or write) data in this
local memory. All communications inside a PU have a negligible overhead.
This assumption is commonly used in similar work, see for example [49, 50,
67]. However, we will discuss later in this Section how this assumption can be
relaxed to capture communications via an external shared memory.

• Assumption 3: Data transfers and task executions can run in parallel if they
are not related (that is, if the transferred data is not produced or consumed by

64

t1 t2

(a) a data dependency

PEMem DMA

(2)
(1)

t1

t2

(b) Same PE

PE1Mem DMA

(2)

t1

(1)
PEn
t2

.. .

(c) Different PEs, same PU

PE1Mem1 DMA1 PE2Mem2 DMA2

(1)

(2) (3)

(4)t1 t2

(d) Different PEs, different PUs

Figure 3.2: Communication mapping scenarios.

the running task). For example, a DMA engine can be used to perform data
transfers in parallel to processing.

• Assumption 4: There are no deadlocks, livelocks or data losses on buses dur-
ing a transfer.

3.5 Deployment Solution

The deployment solution provides a mapping of tasks to PUs (and to PEs), a map-
ping of communications to routes and a time-based schedule of tasks and communi-
cations on mapped resources. A communication can traverse a single bus segment
or as many bus segments and bridges as needed to reach the intended destination.
We consider the following assumptions for the mapping and scheduling.

• Assumption 5: Considered communication mapping scenarios are illustrated
in Figure 3.2. The latter illustrates three possible communication scenarios for
two tasks t1 and t2, related by a data dependency (Figure 3.2a).

65

In the first scenario (Figure 3.2b), the producer and the consumer of the data
dependency are mapped to the same PE and thereby, as stated by Assumption
2, produce (arrow marked with (1)) and consume (arrow marked with (2)) data
to/from the same memory. The communication time in this scenario is negligi-
ble according to Assumption 2.
In the second scenario (Figure 3.2c), the producer and the consumer are
mapped to distinct PEs, but inside the same PU. The communication scenario
here is similar to the one in the first scenario. All communications are done
within the same PU, therefore, communication time is negligible according to
Assumption 2 as well.

The third scenario (Figure 3.2d) involves two distinct PEs from two distinct PUs
for the producer and the consumer. Therefore, data need to be transferred
from the producer’s PU local memory to the consumer’s PU local memory ac-
cording to the following steps, marked with respectively numbered arrows in
Figure 3.2d:

– Step (1): The producer writes data in its PUs local memory

– Step (2): The DMA of the producer’s PU reads data written in Step (1)

– Step (3): Same DMA writes data to the consumer’s PU local memory

– Step (4): The consumer reads data written in Step (3)

Step (1), Step (2) and Step (4) are accomplished in negligible time according to
Assumption 2.

Step (3) requires an inter-PU exchange of data. We call this exchange a data
transfer. A data transfer is mapped to a route of n buses and n − 1 bridges.

Remark. In the case where two PEs need to communicate via an external shared
memory, the communication via the shared memory can be captured, using our mod-
eling, as follows: a virtual task can be introduced between the two communicating
tasks, such that this task has an execution time which is equal to zero. This task is
allocated to the shared memory and is in charge of 1) receiving data from the PE
hosting the producer task, and 2) sending it to the PE hosting the consumer task.
Thus, the two data transfers to/from the shared memory can be mapped as in Step
(3).

66

0

DF
1

DF
2 DF

3
DF

4Bus
A

Bus
B

DF
5

Bus
C

1 2 3 4 5 6 7

DF
1

DF
2 DF

3
DF

4 DF
5

DF
1

DF
2 DF

3
DF

4 DF
5

8 9 10 11 12 13 14 15

(a) A non-pipelined data transfer. 15 time slots are needed to complete the data transfer.

0

Bus
A

Bus
B

Bus
C

1 2 3 4 5 6 7

DF
1

DF
2 DF

3
DF

4 DF
5

DF
1

DF
2

DF
3

DF
4 DF

5

DF
1

DF
2 DF

3
DF

4 DF
5

(b) A pipelined data transfer. Only 7 time slots are needed to complete the data transfer.

Figure 3.3: A data transfer where 5 data fragments (DFk, k ∈ {1 . . . 5}) are trans-
ferred on a route of 3 buses, BusA, BusB and BusC in order.

• Assumption 6: The preemption of tasks is not allowed, neither their migration
at run-time.

• Assumption 7: We consider time to be divided in atomic time slots that are
used as a common time-line to determine the scheduling. As our work is po-
sitioned at a high level of abstraction, we simplify the problem by considering
that there exists a common time base (governed by means of a global clock)
that allows the definition of a slot common to all clock domains, in case multiple
clock domains are present. If the clocks frequencies are very different, the ap-
proach will be limited to only allow a coarse grain analysis, especially for high
frequency domains. Assuming a unified global clock is commonly considered
in similar work, see for example [75]. In the rest of this manuscript, all reference
to time units by “cycle” or “clock cycle” refer to a cycle of the common global
clock.

• Assumption 8: For a data transfer on a route with n > 1 buses, data is trans-

67

ferred from a bus to another in a pipelined fashion. Pipelining aims at sending
data through multiple bus segments, in parallel, on a given route. Data is di-
vided into a series of data fragments, and each bus sends a data fragment,
as soon as it receives it. As shown in Figure 3.3, pipelining data transfers
on buses reduces the data transfer time compared to a non-pipelined transfer.
This pipelined transfer mode also assumes that the time to cross a bridge unit,
interposed between two buses, is negligible, as data fragments are forwarded
directly without buffering.

• Assumption 9: A data transfer on a route with n bus segments, such that n > 1,
does not need to allocate at once all buses all along the route and during all the
transfer, but only the ones necessary at each slot. Hence, bus segments can
be kept idle when not used and thereby, power consumption can be reduced.

• Assumption 10: For a given bus, a time slot can be shared by several data
transfers, as long as the total amount of data transferred does not exceed the
bandwidth of the bus during the time slot.

• Assumption 11: For a data transfer on a route with n bus segments, such that
n > 1, we consider that all bus segments operate at the bandwidth of the
slowest bus. The residual bandwidth can be used for other data transfers.

Figure 3.4 gives a concrete example of communications mapping and schedul-
ing, as defined by the assumptions discussed above. Here, we assume that tasks A,
B and C are mapped respectively to mono-PE PUs PA, PB, and PC, and that com-
munication from A to B requires a data transfer between PA and PB, which is routed
to {PA, BusA, bridge, BusB, PB}. We also assume that communication from A to C
requires a data transfer, which is routed to {PA, BusA, PC}. The grey rectangle in
Figure 3.4b represents a bridge.

The deployment solution is illustrated in Figure 3.4c using a Gantt chart: Data
fragments transferred from A to B at slots 3, 4, 5 and 6 through BusA are transferred,
in a pipelined fashion, respectively at slots 4, 5, 6 and 7 through BusB (Assumption
8). Data fragments transferred from A to C cross a single bus route. During slot 7,
BusA is free. Unless it is used by other applications, it can be kept idle (Assumption
9). Bus segment BusA is shared between the two data transfer (A to B and A to

68

C

A

B
30

10

(a) An application excerpt

P
A

Bus
A
(bw = 16 du/slot)

Bus
B
(bw = 8 du/slot)

P
B

P
C

(b) A candidate architecture

0 5

A A

AC,8AB,8 AC,2AB,8

AB,8 AB,8 AB,6AB,8

AB,8 AB,6

C C C C

B

P
A

Bus
A

Bus
B

P
B

P
C

1 2 3 4 6 7

B

8 9

Data forwarding from bus segment Bus
A
 to bus segment Bus

B

(c) The Gantt chart showing a possible mapping and scheduling of the application excerpt
(a) to candidate architecture (b).

Figure 3.4: An example showing communications scheduling on a route. A commu-
nication on a bus between two tasks X and Y during a slot is denoted XY,N where N
is the size of the data fragment in arbitrary data units (du).

C) during time slots 3 and 4. Its total bandwidth per slot (bw = 16 du/slot) is not
exceeded, as mentioned in Assumption 10. The data transfer from PA to PB, is
performed at the bandwidth of BusB, the slowest bus, as indicated by Assumption
11. At slots 3 and 4, residual bandwidth on BusA is used for communication AC.

3.6 The SMT formulation

As mentioned in the previous Section, our solution is based on splitting time into
atomic time slots that are used as a time-line to determine the scheduling. The

69

length of a single slot, denoted lslot, defines the granularity at which the scheduling
is analyzed. For example, with lslot = 1 cycle, the system can be analyzed at the
precision of a clock cycle. This granularity impacts the precision but also the com-
putational cost of the DSE process. The shorter is lslot, the higher is the precision,
but the more expensive is the DSE process. The value of lslot should be selected to
determine a desired compromise between the precision and the execution run-time
of DSE. The values of variables that are related to timing aspects, in the formulation
below, are integer multiples of lslot. The notations for our formulation are described
in Table 3.1.

3.6.1 Decision variables

Variable xt,p denotes the mapping decision of task t to a PU p. It is a Boolean variable
that takes the value 1 when the task is mapped to the unit and 0 otherwise. Note
that, for a given task t, variable xt,p is only defined for the set of compatible PUs,
returned by function F ′(t). This avoids the creation of variables for mapping options,
a priori known unfeasible.

∀t ∈ T , ∀p ∈ F ′(t), xt,p =

1 if task t is mapped to PU p

0 otherwise
(3.1)

Boolean variable zt,c denotes the mapping of a task t to a particular PE from the
mapped PU. Figure 3.5 illustrates the difference between variables xt,p and zt,c. Sim-
ilarly to xt,p, for a given task t, zt,c is only defined for the set of compatible PEs,
returned by function F (t).

∀t ∈ T , ∀c ∈ F (t), zt,c =

1 if task t is mapped to PE c

0 otherwise
(3.2)

Variable ytm,tn
i,j,ρi,j

is a boolean variable which indicates the mapping (routing) of a
communication ctm,tn to a route ρi,j from the architecture. The set of routes between
all pairs of PUs on the architecture are pre-computed. The complexity of generating
all routes on the architecture graph is the one of common graph traversal algorithms
(e.g., Depth First Search (DFS)). To reduce the cost of exploration, only routes be-
tween PUs able to execute producer and consumer tasks are explored. It allows to

70

Table 3.1: Notations for the SMT formulation

Notation Definition

W Set of DAGs of all applications of workload
A DAG of an application A from workload
T Set of tasks of all applications of workload
C Set of communications of all applications of workload
T A Set of tasks of applications A
CA Set of communications of application A
deadlineA ∈ N Deadline of application A ∈ W in time slots
t ∈ T Task
ctm,tn ∈ C Communication between tasks tm and tn

bint ∈ N Total amount of input data consumed by one execution of task t in
arbitrary data units (du)

boutt ∈ N Total amount of output data produced by one execution of task t in
arbitrary data units (du)

dtm,tn ∈ N Amount of data to transfer on ctm,tn in arbitrary data units (du)

P ⊂ U Set of PUs in target architecture
C ⊂ U Set of PEs in target architecture
B ⊂ U Set of buses in target architecture
c ∈ C PE in target architecture
p ∈ P PU in target architecture
b ∈ B Bus in target architecture
memc ∈ N Amount of available space in local memory of c in arbitrary data

units(du)
R Set of routes in target architecture between all couples of PUs
ρi,j ∈ R Any route in architecture between PUs i and j
Rb1,b2 ⊂ R Set of routes including the bus-to-bridge-to-bus {b1, b2} sequence
bwb ∈ N Bus b bandwidth per atomic time slot

et(t, c) : T × C → N Function returning execution time of task t on PE c in time slots
F (t) : T → C Function returning the set of PEs c where task t can execute
F ′(t) : T → P Function returning the set of PUs p where task t can execute
deadlineW ∈ N Upper bound of number of time slots allocated to any unit in target

architecture, for any application A ∈ W, defined as deadlineW =
max{deadlineA, A ∈ W}

s ∈ {0, . . . , deadlineW} Time slot index
lslot ∈ N Length of a single time slot in clock cycles

71

PE DMAMem

PE

t
x
t,p

z
t,c

Processing unit p

Task t
PE

Figure 3.5: The mapping of a task t to a PU p and in particular to a PE c ∈ p, denoted
by decision variables xt,p and zt,c respectively.

explore multiple routes between a pair of PUs i and j where tasks tm and tn can be
mapped.

∀ctm,tn ∈ C, ∀i, j ∈ F ′(tm)×F ′(tn), ∀ρi,j ∈ R, ytm,tn
i,j,ρi,j

=

1 if ctm,tn is routed to routeρi,j

between PUs i and j

0 otherwise
(3.3)

startt is the starting time slot of task t. If a deadline is defined for the application,
it can be used as an upper bound on startt (Equation (3.4)). Otherwise, startt is
defined on N.

∀t ∈ T A, startt ∈ {0, . . . , deadlineA} (3.4)

Variable etm,tn

b,s is a positive integer which denotes the amount of data transferred
through bus b, at time slot s, for communication from task tm to task tn. The do-
main on which slots are defined can be upper bounded by deadlineW . Otherwise, it
corresponds to N. etm,tn

b,s cannot exceed the bandwidth of the bus bwb per time slot.

∀ctm,tn ∈ C, ∀b ∈ B, ∀s ∈ {0, . . . , deadlineW}, etm,tn

b,s ∈ {0, . . . , bwb} (3.5)

72

3.6.2 Constraints

Task mapping constraints

Constraints (3.6), (3.7) and (3.8) ensure a valid spatial mapping of a task t. In (3.6),
a unique and feasible task-to-PE mapping is granted. Constraint (3.7) indicates that
task t is assigned to the PU p including PE c. Constraint (3.8) states that a task can
be mapped on a PE only if the latter provides enough memory to accommodate its
input and output data.

∀t ∈ T ,
∑

c∈F (t)
zt,c = 1 (3.6)

∀t ∈ T , ∀p ∈ P, xt,p =

1 if

∑
c∈p

zt,c ≥ 1

0 otherwise
(3.7)

∀t ∈ T , ∀c ∈ F (t), (bint + boutt) × zt,c ≤ memc (3.8)

Communication mapping constraints

Between a pair of PUs i and j, one or several routes are available. Constraint (3.9)
ensures a unique and valid route is selected for communication ctm,tn when tasks tm

and tn are mapped respectively to PUs i and j.

∀ctm,tn ∈ C, ∀i, j ∈ F ′(tm) × F ′(tn), i ̸= j,

∑
ρij∈R

ytm,tn
i,jρij

=

1 if xtm,i = 1 ∧ xtn,j = 1

0 otherwise

(3.9)

We highlight that functions F (t) and F ′(t) return respectively the sets of PEs or PUs
where a task t can be mapped. This differentiation allows our formulation to reduce
the number of variables that are allocated to study communications to/from t. In
fact, a PE models either a stand-alone single-core unit (e.g., a single-core CPU, a
hardware accelerator) or a unit within a multi-core unit (e.g., one core in a multi-core
CPU or a DSP). In this second case, variables for communications must be allocated
to consider the reception and dispatch of data at the level of abstraction of the entire
multi-core unit rather than for each core. We recall that we assume negligible intra-
PU communications overhead, Assumption 2, Section 3.4.1.

73

PE capacity constraints

Constraint (3.10) ensures that a PE executes a single task at a time (Assumption 1,
Section 3.4.1). Therefore, on a given PE, the execution intervals of any two different
tasks cannot overlap.

∀t, t′ ∈ T , t ̸= t′, ∀c ∈ F (t) ∩ F (t′),
¬((zt,c = 1) ∧ (zt′c = 1)) ∨ ((startt′ > endt) ∨ (startt > endt′))

(3.10)

The time slot index endt denotes the end of execution of task t. It is calculated using
expression (3.11).

∀t ∈ T , endt = startt +
∑

c∈F (t)
et(t, c) × zt,c − 1 (3.11)

Precedence constraints

Constraint (3.12) guarantees that the scheduling respects the precedence relations
defined by the application graph. A consumer cannot start executing before the
producer has entirely completed.

∀ctm,tn ∈ C, starttn > endtm (3.12)

Another precedence constraint must also be enforced between tasks and com-
munications, to respect data dependencies: 1) a communication cannot start be-
fore the producer task has completed execution, and 2) a consumer task can start
as soon as the communication is completed. Given a communication ctm,tn, con-
straints (3.13) allocate no bus bandwidth in time slots that precede the end of pro-
ducer task tm or follow the start of consumer task tn.

∀ctm,tn ∈ C, ∀b ∈ B, ∀s ∈ {0, . . . , deadlineW},

((s > endtm) ∨ (etm,tn

b,s = 0)) ∧ ((s < starttn) ∨ (etm,tn

b,s = 0))
(3.13)

Scheduling on buses constraints

The remaining constraints describe the time slots allocation on buses. When a bus b

is selected to explore the possibility of being allocated for a data transfer, the band-
width per time slot of b, bwb, can be allocated entirely to a data transfer or shared

74

between different data transfers. Because the buses that form a route ρi,j can have
different bandwidths, our modeling assumptions impose that all buses on a route
operate at the bandwidth of the slowest bus. This avoids buffer overflows in bridges
and is consistent with our assumption that data are not lost in the interconnect. The
difference between the bandwidth of the bus and the bandwidth of the slowest bus
on the route can be allocated to other transfers, Assumption 11, Section 3.5.

Constraints (3.14) ensure for a bus to respect its bandwidth, on each time slot:

∀b ∈ B, ∀s ∈ {0, . . . , deadlineW},
∑

ctm,tn ∈C
etm,tn

b,s ≤ bwb (3.14)

Constraint (3.15) ensures for a given communication ctm,tn that each bus b which
is part of the route ρi,j where the communication ctm,tn is mapped, is assigned the
exact amount of data dtm,tn of communication ctm,tn. For a given communication, this
constraint works together with Constraint (3.9), which enforces that the communica-
tion is mapped to at most one route. Thus, all buses of the possibly mapped route,
transfer all data of the communication.

∀b ∈ B, ∀ctm,tn ∈ C,∑
s∈{0,...,deadlineW }

etm,tn

b,s = dtm,tn ×
∑

i,j∈F ′(tm)×F ′(tn)
ρi,j∈R,b∈ρi,j

ytm,tn
i,j,ρi,j

(3.15)

Constraint (3.16) corresponds to the pipelining of data between two bus segments
as described in Assumption 8, Section 3.5. Data transferred on bus b1 at time slot s

are transferred on next bus b2 at time slot s+1. Note that we use the subset of routes
Rb1,b2 defined in Table 3.1.

∀ctm,tn ∈ C, ∀s ∈ {0, . . . , deadlineW}, ∀b1, b2 ∈ B∑
ρi,j∈Rb1,b2

ytm,tn
i,j,ρi,j

= 1 =⇒ etm,tn

b2,s+1 = etm,tn

b1,s
(3.16)

3.6.3 Latency design objectives

For a workload with one or multiple applications, latency of an application A, de-
noted latencyA, is defined as the time that elapses between the start of execution
of the workload and the end of execution of application A. For each application of
the studied workload, A ∈ W, a design objective on latency can be considered to

75

guarantee that a deadline is respected (Constraint (3.17)), or to find the minimum
latency (Objective function (3.18)).

latencyA ≤ deadlineA (3.17)

Minimize latencyA (3.18)

When a workload is composed of multiple applications, to satisfy deadline design
objectives of multiple applications, Constraint (3.17) can be simply applied to one,
several, or all application(s) of the workload. This is expressed by Constraints (3.19),
such that WD ⊂ W is the subset of applications from W for which deadlines should
be respected.

∀ A ∈ WD, latencyA ≤ deadlineA (3.19)

To minimize latency of multiple applications from the same workload, the formu-
lation can be used in different ways to achieve different design requirements. We
propose the two following options.

• Minimize latency of the overall workload, that is minimize the time that elapses
between the start of execution of the workload, i.e., all applications, and its end
of execution. This can be achieved by introducing a new variable latencyW that
denotes latency of the overall workload, and applying Constraint (3.20) and
Objective function (3.21).

∀ A ∈ W , latencyW ≥ latencyA (3.20)

Minimize latencyW (3.21)

• If rather than the latency of the overall workload, the latency of each single ap-
plication is of interest, the sum of latencies can be aggregated in a weighted
objective function such that different (or equal) priorities are given to applica-
tions. This is captured in Objective function (3.22), such that each application
A ∈ W is associated with a weight wA denoting its priority. The latter can
be equal to zero for a given application Ak to indicate that no minimization of
latency is required for application Ak.

76

Minimize
∑

A∈W
wA × latencyA (3.22)

Remark. For the same workload, different design objectives on latencies of each
single application can be combined. For example, one can be interested in satisfying
deadlines for all applications of the workload but one for which latency is minimized.

3.7 Implementation

In order to assess the applicability and usability of the proposed DSE approach, we
integrated it to an existing Model-Driven Engineering (MDE) tool for the design of
embedded systems. This Section first details how input models (applications and
architectures) can be captured inside a MDE tool, and second, explains how the
SMT formulation proposed in previous Section can be generated and solved using a
state-of-the-art solver.

3.7.1 Overview of the implemented solution

TTool [2, 3] is a free and open-source UML/SysML tool that includes several UML
profiles, including the DIPLODOCUS environment that targets hardware/software
partitioning. TTool/DIPLODOCUS supports several design stages from capturing
application and architecture models using UML/SysML diagrams to code generation.

We selected TTool/DIPLODOCUS to integrate our DSE approach, as it is free,
open-source and targets the system-level design of embedded systems, taking into
account both hardware and software aspects of these systems. An overview of the
implemented DSE workflow is illustrated in Figure 3.6. Application and architecture
models are first created by means of TTool/DIPLODOCUS diagrams. In Figure 3.6,
UML/SysML diagrams are parsed and analyzed in order to automatically generate a
SMT formulation. The latter is given as input to the state-of-art SMT solver Z3 [19]
which returns a solution if the formulas are satisfiable. The output model is converted
back to UML/SysML: the initial diagrams are annotated with the mapping solution.
Gantt charts are created to illustrate the mapping and scheduling of tasks and com-
munications. TTool/DIPLODOCUS and our DSE extension are written in Java.

77

(3) SMT solver

Solution

UML/SysML
diagrams

(2) UML/SyML-to-SMT
model transformation

SMT
formulas

(1) Model
based design

TTool/DIPLODOCUS

(4) SMT solution-to-
UML/SysML

(for solution
display)

IR Generator
Z3

IR = Intermediate Representation

Parser

Pre-analysis

SMT Generator

Figure 3.6: Overview of the design space exploration workflow. The explanation of
the pre-analysis sub-module will be given in Chapter 4.

3.7.2 Model-based design

Workload model

In TTool/DIPLODOCUS, each application model from the studied workload is cap-
tured with SysML Block Diagrams and UML Activity Diagrams. An application model
can be described as a set of blocks interconnected by data dependencies. Blocks
refer to tasks in the scope of this work. Figure 3.7 shows an example block diagram
of an application model in in TTool/DIPLODOCUS.

A shown in Figure 3.8, the block diagram captures for each task the operation
type and, specifically for the sink task, the application deadline, as explained in Sec-
tion 3.3. Activity diagrams describe for each block (task) its behavior as the steps
required for its execution, i.e., processing steps, memory access steps:

• A data processing step is described in TTool/DIPLODOCUS by its algorithmic
complexity. The algorithmic complexity (denoted EXECI) is an abstract com-
plexity measure that denotes the number of processing operations that are

78

A

ACout

ABout

B
ABin BDout

C

CEoutACin

D

......

BDin

CDin

Figure 3.7: A SysML Block Diagram of an application model in TTool/DIPLODOCUS.
Blocks represent tasks while links between blocks represent data dependencies.

Figure 3.8: Parameters of task D from Figure 3.7.

required to complete a task (e.g., number of integer operations). A user can
either rely on this representation or directly provide execution times of tasks on
PEs.

• A memory access step defines the number of data packets to read/write by
the task. The amount of data dtm,tn of a data dependency, defined in Sec-
tion 3.3, corresponds in TTool/DIPLODOCUS to the product of the number of
data packets and the size of a single data packet in data units (du).

As an example, activity diagram in Figure 3.9 describes the steps required for the
execution of task B from Figure 3.7. It shows that task B first reads 10 data packets

79

chl
ABin(10)

25

chl
BDout(20)

Figure 3.9: UML activity diagram of task B from Figure 3.7.

sent by task A, then performs a processing step which EXECI is equal to 25, and
finally produces 20 data packets in destination to task D.

Architecture model

An architecture is captured with a UML Deployment diagram where nodes are used
to model architecture resources while links between nodes identify the physical links
between the architecture resources. A resource can be a PU, a bus or a bridge.
Since we assume that memories are integrated into PUs, as explained in Section 3.4,
we don’t model physical memories separately. Figure 3.10 shows an example of a
UML deployment diagram for an architecture with 4 PUs, 2 buses and 1 bridge.

Buses are characterized by their bandwidth. Each PU block captures the set of
supported operations, the performance metric, the number of PEs encapsulated in
the unit and the amount of available memory. The performance metric denotes the
number of clock cycles taken by the unit to execute a single processing operation
(e.g., an operation on integer values). If not provided directly, the execution time of
a task on a PE is computed from the algorithmic complexity (EXECI) expressed in
the UML Activity diagram of a task (e.g., the 25 parameter in Figure 3.9) and the
performance metric.

80

<<CPURR>>
HwA1

<<CPURR>>
HwA2

<<CPURR>>
DSP

<<CPURR>>
CPU

<<BUS-RR>>
Bus2

<<BUS-RR>>
Bus1

<<BRIDGE>>
Bridge

Figure 3.10: A UML Deployment diagram of an architecture model in
TTool/DIPLODOCUS.

3.7.3 UML/SysML-to-SMT transformation

The solver operates on a formulation in the form of variables and constraints ex-
pressed in first-order logic. Therefore, input models and design constraints need to
be translated to a first-order logic formulation. We implemented algorithms needed
to analyze input models, perform this transformation and feed the solver with the
formulation. The following modules, illustrated in Figure 3.6, are implemented.

• Parser: It parses the software objects representing the input UML/SysML dia-
grams that define the workload and the target architecture models.

• IR Generator: This sub-module represents a key part of our DSE engine. Re-
lying on the model-based diagrams, it creates the intermediate representation
(graphs) of input models as defined in Sections 3.3 and 3.4. It performs analy-
sis in order to generate an input instance which contains all information needed
for the creation of the SMT model. For example, it identifies for each task the
set of compatible PUs, calculates execution times on these units, generates the
paths (routes) that are available in the architecture graph between each pair of
PUs, etc.

81

• SMT Generator This sub-module is responsible for the conversion of input
models and design constraints to SMT variables and constraints which will be
provided as input to the SMT solver. We integrated the Z3 SMT solver tightly
with the DSE engine and TTool/DIPLODOCUS.

3.7.4 Model-based deployment solution

We also implemented algorithms that retrieve the solver’s output and transform it
back to models that describe the deployment solution. In TTool/DIPLODOCUS, UML
Deployment diagrams of architecture models are annotated with task mapping de-
cisions: each PU is annotated with the tasks mapped to it. Moreover, Gantt charts
are created to illustrate the mapping and scheduling of tasks and communications
on processing and communication resources.

3.8 Evaluation

In this Section we evaluate our contribution for the DSE of segmented bus architec-
tures. We consider a set of four real applications taken from [50]: a Sobel filter, a
SUSAN filter, a RASTA-PLP application, and a JPEG encoder, Figure 3.11.

We will first present a simple case study in sub-section 3.8.1, where we show
how the proposed approach can be used to guide the design of a new architecture,
by comparing the found optimal solutions for various architectures and selecting the
architecture that best meets the latency design objective of a given workload. For this
case study, the workload is composed of 4 instances of SUSAN running in parallel.
Next, in sub-section 3.8.2, we will use all applications of Figure 3.11 to assess the
scalability of our approach.

3.8.1 Experiment 1: Best interconnect selection

In this experiment, we will show how the proposed approach can compare optimal
solutions, in terms of latency, of different architectures for a given workload. Here,
the latency design objective is to minimize latency for each single application, relying
on Objective function (3.22), sub-section 3.6.3, such that equal weights of 1 are given
to each SUSAN instance.

82

getPixel
320

gx
77

 6

gy
77

 6

abs
123

 1 1

getimage
20

usan
1177

 1

direction
833

 2

thin
32

 3

putimage
15

 2

frontEnd
141

rasta
31

 2

compjah
107

 1

backEnd
133

 1

powspec
235

 2

audspec
108

 2

 2

rastaFilter
194

 1

 3

 1

read
413

CC
1110

 1

DCT1
252

 1

DCT2
252

 1

DCT3
252

 1

DCT4
252

 1

DCT5
252

 1

DCT6
252

 1

Huff1
340

 1

Huff2
340

 1

Huff3
340

 1

Huff4
340

 1

Huff5
340

 1

Huff6
340

 1

CS
2524

 1 1 1 1 1 1

write
132

 1

Sobel SUSAN RASTA-PLP JPEG encoder

Figure 3.11: The dependency graphs of our testbench. Edges are labeled with the
number of exchanged data packets. Tasks are labeled with their execution times.

In all tests, time units for latency and execution times are expressed in time slots
and data units (du) are used to express communication volumes. In Figure 3.11,
tasks are directly annotated with execution times reported in [50] in cycles. In this
experiment, the length of a single time slot is set to 1 clock cycle. To account for
architectures with heterogeneous processing resources, we assume that execution
times are applicable only to generic processing resources. When tasks are allocated
to DSPs or hardware accelerators, their execution times correspond respectively to
1/5 and 1/50 of the times reported.

The aim of this experiment is summarized as follows: Find the best intercon-
nect, among a set of candidates, for a given workload and a given set of processing
resources, such that latencies of workload applications are minimized.

The studied workload consists of 4 instances of application SUSAN from Fig-

83

DSP1

Mem.

D
M
A

Quad-core
CPU

USAN
1

Mem.

D
M
A Mem.

D
M
A

DSP2

Mem.

D
M
A Mem.

D
M
A Mem.

D
M
A

DSP4

Mem.

D
M
A Mem.

D
M
A Mem.

D
M
A

DSP3

Mem.

D
M
A Mem.

D
M
A Mem.

D
M
A

Mem. DMA

Bus 1 Bus 2

Bus 4Bus 3

B
u
s

5

USAN
3

Dir1

Dir3

USAN
2

USAN
4

Dir2

Dir4

Figure 3.12: Common block diagram of Architecture 2 and Architecture 3.

ure 3.11 where the amount of data dtm,tn on each data dependency is equal to the
product of the number of data packets (annotated in the Figure) and the size of a
single data packet in data units, set to 32 du. A set of 13 processing units has been
selected beforehand for the target architecture. It consists of: a quad-core CPU and
4 clusters of PUs. Each cluster contains 1 DSP (for task thin) and 2 hardware ac-
celerators (for task usan and task direction). Except for the CPU which contains 4
PEs operating in parallel, all other PUs have each a single PE, capable of executing
a single task at once.

We consider 3 interconnect candidates: a first interconnect candidate in an ar-
chitecture denoted Architecture 1, such that all 13 PUs are connected to a shared
bus, which bandwidth is equal to 16 du/slot. The second interconnect candidate
(Architecture 2), Figure 3.12, is a segmented bus where only the quad-core CPU is
connected to a central shared bus that interfaces to 4 segments, each with a cluster
of 1 DSP and 2 hardware accelerators. The shared bus and all bus segments in Ar-
chitecture 2 have a bandwidth equal to 16 du/slot. The third interconnect candidate
(Architecture 3) has exactly the same topology of the second interconnect, but the
central shared has a bandwidth equal to 64 du/slot.

We look for the optimal solution that minimizes latency for all applications of the
workload, for each architecture candidate.

Gantt charts showing mapping and scheduling solutions for each architecture are
illustrated in Figures 3.13, 3.14 and 3.15. Different colors are used to distinguish

84

CPU_CORE1

CPU_CORE2

CPU_CORE3

CPU_CORE4

DSP1

DSP2

DSP3

DSP4

USAN1

USAN2

USAN3

USAN4

DIR1

DIR2

DIR3

DIR4

Bus5 get I m ageI 4_usanI 4 get I m ageI 4_usanI 4 get I m age_USAN get I m ageI 3_usanI 3 get I m ageI 3_usanI 3 get I m age_USAN get I m ageI 2_usanI 2 get I m ageI 2_usanI 2 usanI 4_dir I 4 usanI 4_dir I 4 usanI 4_dir I 4 usanI 4_dir I 4 usanI 3_dir I 3 usanI 3_dir I 3 usanI 2_dir I 2 usanI 3_dir I 3 usanI 3_dir I 3 dirI2 USAN_dir USAN_dir USAN_dir usanI 2_dir I 2 USAN_dir usanI 2_dir I 2 dir I 4_t hinI 4 dir I 4_t hinI 4 dir I 4_t hinI 4 dir I 4_t hinI 4 dir I 4_t hinI 4 dir I 4_t hinI 4 dir I 3_t hinI 3 dir I 3_t hinI 3 dir I 3_t hinI 3 dir I 3_t hinI 3 dir I 3_t hinI 3 dir I 3_t hinI 3 t hinI 4_put I m ageI 4 t hinI 4_put I m ageI 4 t hinI 4_put I m ageI 4 t hinI 4_put I m ageI 4 dir I 2_t hinI 2 dir I 2_t hinI 2 t hinI 3_put I m ageI 3 t hinI 3_put I m ageI 3 t hinI 3_put I m ageI 3 t hinI 3_put I m ageI 3 dir I 2_t hinI 2 dir I 2_t hinI 2 dir I 2_t hinI 2 dir I 2_t hinI 2 d i r_ th in t hinI 2_put I m ageI 2 t hinI 2_put I m ageI 2 t hinI 2_put I m ageI 2 t hinI 2_put I m ageI 2 t hin_put I m age t hin_put I m age t hin_put I m age t hin_put I m age

dirI4

usanI3

usanI2

dirI1

dirI3

dirI2

thinI3

thinI2

thinI1

usanI4

usanI1

thinI4

getImageI1

getImageI2

putImageI1

getImageI3

getImageI4

putImageI2

putImageI3

putImageI4

get I m ageI 4usanI 4 16 get I m ageI 4usanI 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 usanI 4dir I 4 15 usanI 4dir I 4 15 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16

10 20 30 40 50 60 70 80 90 100 110 120

Figure 3.13: Gantt chart for the solution found for Architecture 1 (1 cell = 1 slot).

tasks and data transfers associated to different SUSAN instances. In Figure 3.13,
results are given for the shared bus architecture, i.e., Architecture 1. First it can
be seen that, although all SUSAN instances start execution at the same time slot,
they finish executing respectively at time slots 96, 102, 116 and 122. If we analyze
thoroughly the scheduling, we can see that instances which are delayed (colored in
blue, green, and red in Figure 3.13) had to wait at some points of the scheduling for
the shared bus to be released by faster instances. For example, the data transfer
occurring between dirI2 and thinI2 (green) was interrupted as soon as task thinI3
(blue) has finished, and had to wait for the data transfer between thinI3 and putIm-
ageI3 (blue) to take place before resuming. As a result to these contentions on the
shared bus, parallel processing resources are not used efficiently in Arcihtecture 1.
We can see that cumulative delay led to a completely sequential execution of tasks
thin of each SUSAN instance despite the allocation of parallel processing resources.
Note that there are more than one solution optimizing latency. For instance, here,
tasks thin could have been mapped to the same DSP without changing the values of
latencies.

For Architecture 2, in Figure 3.14, we first can notice smaller gaps between opti-
mal latencies with respect to Arcihtecture 1 (98, 102, 106 and 110 slots). This was
enabled by distributing processing resources over multiple bus segments, thus en-
abling more parallel data transfers. Here, only data transfers relating tasks getImage

85

CPU_CORE_1

CPU_CORE_2

CPU_CORE_3

CPU_CORE_4

DSP1

DSP2

DSP3

DSP4

USAN1

USAN2

USAN3

USAN4

DIR1

DIR2

DIR3

DIR4

Bus5 get I m ageI 3usanI 3 16 get I m ageI 3usanI 3 16 get I m ageI 4usanI 4 16 get I m ageI 4usanI 4 16 get I m ageUSAN 16 get I m ageI 2usanI 2 16 get I m ageUSAN 16 get I m ageI 2usanI 2 14 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 Thinput I m age 16 Thinput I m age 16 Thinput I m age 16 Thinput I m age 16

Bus1 get I m ageI 3usanI 3 16 get I m ageI 3usanI 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16 Dir Thin 16 Thinput I m age 16 Thinput I m age 16 Thinput I m age 16 Thinput I m age 16

Bus2 get I m ageUSAN 16 get I m ageUSAN 16 USANDir 16 USANDir 16 USANDir 16 USANDir 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16

Bus3 get I m ageI 2usanI 2 16 get I m ageI 2usanI 2 14 usanI 2dir I 2 16 usanI 2dir I 2 16 usanI 2dir I 2 16 usanI 2dir I 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16

Bus4 get I m ageI 4usanI 4 16 get I m ageI 4usanI 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 usanI 4dir I 4 15 usanI 4dir I 4 15 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16

getImageI2

getImageI3

getImageI1

getImageI4

putImageI2

putImageI3

putImageI1

putImageI4

thinI3 thinI1

thinI2

thinI4

usanI1

usanI3

usanI2

usanI4

dirI3

dirI1

dirI2

dirI4

10 20 30 40 50 60 70 80 90 100 110

Figure 3.14: Gantt chart for the solution found for Architecture 2 (1 cell = 1 slot).

to tasks usan, and tasks thin to tasks putImage compete over the shared bus seg-
ment (Bus 5). Other data transfers can take place in parallel on local bus segments.
However, contentions still exist and prevent from an efficient usage of parallel pro-
cessing resources. For example, data transfer between thinI4 and putImageI4 (yel-
low) had to wait for Bus 5 to finish the transfer between thinI3 and putImageI3 (blue).
As a result, task dirI4 was delayed by 2 slots while it could have started earlier. Sim-
ilar results are observed for transfers between thinI2 and putImageI2 (green), and
thinI1 and putImageI1 (red).

The pipelining on bus segments can be seen in this scheduling at many points.
For instance, on data transfer between getImageI3 and usanI3, we can see that data
is first sent on Bus 5 (slots 21 and 22), then on Bus 1 (slots 22 and 23), where the
PU hosting task usanI3 is connected (hardware accelerator USAN1). Here, two time
slots are allocated on each bus because the capacity of each bus is equal to 16
du/slot, and 32 du2 should be sent between getImageI3 and usanI3.

Since in the second interconnect candidate, contentions still occur on the central
shared bus resulting into an underutilization of potential parallelism of computations,

2We remind that edges in Figure 3.11 are annotated with the number of exchanged data packets
and that the size of a single data packet is equal to 32 du.

86

CPU_CORE_1

CPU_CORE_2

CPU_CORE_3

CPU_CORE_4

DSP1

DSP2

DSP3

DSP4

USAN1

USAN2

USAN3

USAN4

DIR1

DIR2

DIR3

DIR4

Bus5 get I m ageI 2usanI 2 16get I m ageI 3usanI 3 16get I m ageUSAN 16get I m ageI 4usanI 4 16get I m ageI 2usanI 2 16get I m ageI 3usanI 3 16get I m ageUSAN 16get I m ageI 4usanI 4 16 t hinI 2put I m ageI 2 16t hinI 3put I m ageI 3 16Thinput I m age 16t hinI 4put I m ageI 4 16t hinI 2put I m ageI 2 16t hinI 3put I m ageI 3 16Thinput I m age 16t hinI 4put I m ageI 4 16t hinI 2put I m ageI 2 16t hinI 3put I m ageI 3 16Thinput I m age 16t hinI 4put I m ageI 4 16t hinI 2put I m ageI 2 16t hinI 3put I m ageI 3 16Thinput I m age 16t hinI 4put I m ageI 4 16

Bus1 get I m ageI 3usanI 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 usanI 3dir I 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 dir I 3t hinI 3 16 t hinI 3put I m ageI 3 16

Bus2 get I m ageI 2usanI 2 16 usanI 2dir I 2 16 usanI 2dir I 2 16 usanI 2dir I 2 16 usanI 2dir I 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 dir I 2t hinI 2 16 t hinI 2put I m ageI 2 16

Bus3 get I m ageUSAN 16 USANDir 16 USANDir 16 USANDir 16 USANDir 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Dir Thin 16 Thinput I m age 16

Bus4 get I m ageI 4usanI 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 t hinI 4put I m ageI 4 16

dirI4

dirI1

dirI2

dirI3

usanI4

usanI1

getImageI1

getImageI2

getImageI3

getImageI4

usanI2

usanI3

putImageI3

putImageI2

thinI4

thinI1

thinI2

thinI3

putImageI4

putImageI1

get I m ageI 3usanI 3 16

get I m ageI 2usanI 2 16

get I m ageUSAN 16

get I m ageI 4usanI 4 16

t hinI 3put I m ageI 3 16

Thinput I m age 16 Thinput I m age 16 Thinput I m age 16

t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16

t hinI 3put I m ageI 3 16 t hinI 3put I m ageI 3 16

t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16 t hinI 2put I m ageI 2 16

get I m ageI 4usanI 4 16 get I m ageI 4usanI 4 16 usanI 4dir I 4 16 usanI 4dir I 4 16 usanI 4dir I 4 15 usanI 4dir I 4 15 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 dir I 4t hinI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16 t hinI 4put I m ageI 4 16

10 20 30 40 50 60 70 80 90 120

Figure 3.15: Gantt chart for the solution found for Architecture 3 (1 cell = 1 slot).

we increase the bandwidth of the central shared bus to 64 du/slot in Architecture 3.
The resulting scheduling solution is given in Figure 3.15, where we can see that all
SUSAN instances start and finish executing at the same time slots. We can also
see that computations and data transfers are perfectly parallelized on processing
resources and bus segments. For example, as soon as task getImage of a each
SUSAN instance completes executing on a core of the CPU, 16 du are transferred
on Bus 5 (slot 21) to the respective task usan. At the slot level, all SUSAN instances
perform this transfer in parallel (even if physically the bus performs the transfers
sequentially), and the operation repeats on the following slot (slot 22) to transfer the
remaining 16 du needed for the transfer. Data units which are sent on slots 21 and
22 on Bus 5 are forwarded to buses connecting destination PUs in slots 22 and 23.
This parallelism is enabled by the high bandwidth in Bus 5 allowing to transfer 64
du/slot. Similar transfer schema can be observed in data transfers between tasks
thin and tasks putImage.

From these results, we can see that the proposed DSE allows to analyze mapping
and scheduling on different bus-based architectures for latency optimization. We

87

showed that the approach allows to analyze contentions on the interconnect due to
the presence of multiple applications. In this case study, our DSE framework shows
that a segmented interconnect, where segments have a bandwidth of 16 du/slot and
the shared bus a bandwidth of 64 du/slot is the best architecture candidate to the
studied workload.

3.8.2 Experiment 2: Scalability evaluation

In this sub-section, we study the scalability of our DSE engine by evaluating the
solver run-time evolution as a function of increasing problem sizes. As a first ex-
periment, we evaluate the solver run-time to find a deadline-aware solution (real-
time design objective on latency), as defined in Section 3.2. Deadlines were set
to 490 cycles (Sobel), 1170 cycles (SUSAN), 575 cycles (RASTA-PLP) and 1830
cycles (JPEG). These values correspond to the time requirement to complete one
execution for the applications in Figure 3.11. Data dependencies are annotated
with the number of produced/consumed data packets (similarly to the graphs de-
fined in [50]). In all experiments of this Section, we assume a data packet has a
size of 8 data units, as in [50]. For instance, in application Sobel, task getPixel
sends 48 data units to task gy. All Experiments were conducted on a Linux work-
station with 64 logical CPUs, clocked at 3.5 GHz and with 64 GB of memory run-
ning release 4.8.7 of Z3 SMT solver (default configuration). We consider a set of
workloads for all combinations of the applications in Figure 3.11. The target archi-
tecture in all experiments of this sub-section is called Architecture A, Figure 3.16.
It is a MPSoC including 1 quad-core CPU, 9 DSPs and 1 hardware accelerator.
The communication architecture is a segmented bus with 3 bus segments. Special-
ized DSPs and the hardware accelerator are associated with the following operation
sets: ODSP 1 = {Huff, DCT}, ODSP 2 = {pows, comp, filter}, ODSP 3 = {gx, gy},
ODSP 4 = {USAN} and OHwA = {CS}. We set a timeout of 1800 seconds after
which we stop the exploration if no solution was found. Since we apply our tech-
nique at a high abstraction level, e.g. the abstraction level of TTool / DIPLODOCUS,
we expect to perform fast iterations over different architectures: the selected timeout
corresponds to a reasonable iteration time for a designer. Moreover, similar timeouts
are used for exploration at the same abstraction level [50, 67]. For these reasons,

88

DSP2

Mem.

D
M
A

Quad-core
CPU

DSP4

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP3

Mem.

D
M
A

Mem. DMA

Bus 1 Bus 2

B
u
s

3

DSP1

Mem.

D
M
A

HwA

Mem.

D
M
A

Figure 3.16: Block diagram of Architecture A. Specialized DSPs and the hardware
accelerator are associated with the following operation sets: ODSP 1 = {Huff, DCT},
ODSP 2 = {pows, comp, filter}, ODSP 3 = {gx, gy}, ODSP 4 = {USAN} and OHwA =
{CS}. Bus 3 has a bandwidth of 64 du/slot and Bus 1 and Bus 2 have each a
bandwidth of 32 du/slot.

the same timeout is considered in all evaluations of this thesis.

Figure 3.17 shows the run-time evolution with a logarithmic scale, as a function
of different workloads. A workload, on the horizontal axis refers either to a single
application (e.g., sobel for the Sobel filter, jpeg for the JPEG encoder), or to a com-
bination of multiple applications (e.g., sosurajp for the combination of all four appli-
cations). The length of a single slot in this experiment is set to 1 slot = 1 cycle. From
the Figure, we can see that the resolution of 7 out of 15 workloads completes within
the timeout of 1800 seconds, while the DSE was not able to return a solution for the
8 remaining workloads. For the solved workloads, the run-time to find a deadline-
aware solution varies between 3.154 seconds for sobel and 1077.377 seconds for
sosura.

With a granularity of 1 slot = 1 cycle, it is impossible to study 8 out of 15 workloads
of our testbench within the timeout. The following experiment aims at studying the
impact of granularity and identifying the finest granularity that can be achieved, within
the timeout, when solving the heaviest workload (sosurajp).

Figure 3.18 shows the solver run-time for workload sosurajp, as a function of lslot

which varies from 10 cycles down to 1 cycle. It can be seen that, for a granularity
ranging from 10 cycles/slot down to 3 cycles/slot, the solver completes within the

89

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.01
2

5

0.1
2

5

1
2

5

10
2

5

100
2

5

1000
2

Workload

So
lv

er
 r

un
tim

e
in

 s
ec

on
ds

 (l
og

ar
ith

m
ic

 s
ca

le
)

Figure 3.17: Solver run-time to produce a deadline-aware solution, as a function of
different workloads, such that granularity is set to 1 slot = 1 cycle.

timeout, while at a finer granularity, the timeout is exceeded. In fact, finer granularity
translates to a larger number of time slots, meaning a larger problem, while a coarser
granularity reduces the number of time slots and thereby, the size of the problem
under study. Thus, larger problems that cannot be explored at a fine grain slot in
the allocated time budget, like workload sosurajp, can be explored at a coarser grain
slot. However, a coarser grain slot may degrade the accuracy due to the abstraction
of timing information that take place below the chosen time slot.

3.9 Summary and limitations

This Chapter has presented our SMT formulation to solve the problem of mapping
and scheduling both tasks and communications onto architectures with a multi-bus

90

10 9 8 7 6 5 4 3 2 1
Granularity (#cycles/slot)

250

500

750

1000

1250

1500

1750

2000
So

lv
er

 ru
nt

im
e

in
 se

co
nd

s (
lin

ea
r s

ca
le

) timeout = 1800s

118 123 121
232 269

334

605

1178

Figure 3.18: Solver run-time to produce a deadline-aware solution, as a function of
exploration granularity for workload sosurajp.

communication architecture. The proposed modeling accounts for a latency design
objective that either minimizes latencies or guarantees real-time deadlines for each
application of a studied workload. An experimental analysis using real-world stream-
ing applications demonstrated how our approach can assist a designer to evaluate
different communication architecture configurations and to select the configuration
that best satisfies the latency design objective.

However, our scalability evaluation (sub-section 3.8.2) showed that, in practice,
the proposed approach can only solve small problems within a specified time budget
of 30 minutes. In this time budget, only solutions that guarantee real-time deadlines
can be practically found, and not for all studied workloads. In fact, the modeling
based on time slotted variables allows to analyze contentions and schedule concur-
rent access to shared resources. However, as shown in the experiment that studied
the granularity, Figure 3.18, increasing the number of time slots under study by us-
ing a finer grain slot, results into longer exploration run-times and may lead to the
impossibility to complete DSE within the specified time budget. In next Chapter, we
address this limitation by proposing a technique to reduce the number of time slots
under study, thereby, reducing the resolution time and improving scalability.

91

Chapter 4

A Reduction Method to Prune
the Design Space for the
Problem of Scheduling Tasks
and Communications

4.1 Introduction

In Chapter 3, we presented the first contribution of this thesis which is a SMT formu-
lation for the mapping and scheduling of tasks and communications on architectures
with a multi-bus interconnect. The experiments presented in Section 3.8 showed
that the time needed for solving the formulation exceeds the allocated time bud-
get (30 minutes) for many workloads of the studied benchmark. Several techniques
exist to deal with this complexity such as breaking symmetries that are present in
the problem (e.g., symmetric processing resources as in [67]). Unfortunately, in our
work, the use of symmetry breaking techniques on the architecture is limited by the
heterogeneity of the processing model (e.g., DSPs, CPUs, hardware accelerators)
and the irregular topology on the interconnect (i.e., possibly different communication
schemes between processing resources). As shown in Figure 3.18, reducing the

93

number of time slots on which the scheduling is created by using a coarser grain slot
improves DSE run-time. Thus, in this Chapter we will investigate how to reduce the
number of time slots to speed-up DSE.

In this Chapter, we present our second contribution: a new method to prune
the design space, prior to problem solving, and accelerate the overall DSE process.
The method consists in a pre-analysis (step 2 in Figure 4.1) that leverages the prob-
lem knowledge in order to identify a subset of non-valid candidates from the design
space and eliminate them before the generation of the SMT formulation. Therefore,
it doesn’t impact the quality, i.e., completeness, of the approach since only non-valid
solutions are pruned. The method is not restricted to the scheduling on architec-
tures with a bus-based interconnect but it can intervene for other architectures with
different communication architectures as soon as there is a need to analyze different
communications scheduling on shared communication resources.

The remainder of this Chapter is organized as follows: For the sake of genericity,
Section 4.2 provides a mathematical formulation model in SMT for the problem of
scheduling tasks and communications regardless of the communication architecture
constraints. It is an excerpt of the formulation proposed in Chapter 3, such that we
only keep the variables and constraints which are essential to apply the reduction
method. Section 4.3 describes the reduction method and details the algorithms that
are used to identify non-valid solutions and prune the design space. Finally, in Sec-
tion 4.4, we present a set of experiments to evaluate the efficiency of the reduction
method (applied on formulation of Chapter 3) to reduce the size of the design space
and improve the scalability of the DSE. We also demonstrate how the optimized
formulation enabled to find optimal solutions (i.e., lowest-latency design objective)
within a timeout for which the initial formulation fails to reach deadline-aware solu-
tions.

4.2 A SMT Model for the Problem of Scheduling

Tasks and Communications

The mathematical formalization of a problem first requires modeling decisions into
variables. Then, relationships between these variables and other input parameters

94

2. Static analysis to prune temporal domains
 associated to the joint scheduling

 of tasks and communications

No valid solutions
could be found

Refine

3. Generation of an optimized SMT formulation
 for the mapping and scheduling of tasks

 and communications on multi-bus
architectures

1. Applications and architecture modeling,
and design objectives specification

5. Output of mapping and scheduling solution

4. SMT-based solving

Figure 4.1: An optimized DSE approach for the mapping and scheduling of tasks
and communications.

are identified and expressed as constraints. In this Section, we present a generic
pattern of variables and constraints for scheduling tasks and communications to
which our reduction method can be applied. It is an excerpt of the formulation from
Chapter 3, where we exclude architecture-specific constraints (e.g., mapping and
scheduling on a segmented bus constraints) to emphasize the versatility of the re-
duction method. This model can in fact be reused with additional decision variables
and constraints that are specific to any other target architecture. For example, con-
straints on how data is transmitted on communication resources like NoCs can be
added to investigate the benefit that the reduction method can bring when studying
scheduling on NoC architectures.

95

4.2.1 Assumptions

In order to apply the method, the scheduling problem has to be compliant with the
following assumptions:

• Each application from the studied workload is modeled with a separate depen-
dency graph (e.g., DAG) with a unique source and a unique sink (see Sec-
tion 3.3 of Chapter 3 for a compliant example).

• For each application A ∈ W, earliest start time and latest finish time, respec-
tively denoted ESA and LFA, are known a priori. The latest finish time can typ-
ically correspond to the deadline of the application, or a maximum time budget
allocated to the execution of the application. The earliest start time typically
corresponds to zero, except for some cases where the application execution
has some dependencies to satisfy. For example, to capture dependencies be-
tween the execution of different iterations of the same periodic application, the
earliest start time of an iteration m + 1 can be set such that the iteration can
only start once some tasks or all tasks of iteration m have completed.

• Execution times on compatible processing resources are known for all tasks.

4.2.2 The SMT Model

The model relies on splitting time into a discrete range of time slots such that each
resource from the architecture is allocated, during certain time slots, to tasks and
communications. Here, tasks are assumed to execute without preemption. The
model reuses the same notations from Table 3.1 in Chapter 3.

The task start time variable The start time variable defines the time slot at
which the task starts executing. It is an integer variable defined on the interval
{ESA, . . . , LFA}.

∀A ∈ W , ∀t ∈ T A, startt ∈ {ESA, . . . , LFA} (4.1)

The slot allocation variable The slot allocation variable defines the amount of
data that is transferred on a communication resource b, for a communication ctm,tn, on
a time slot s. The variable is an integer that is comprised between 0 (i.e., data is not

96

transferred through the communication resource at the time slot) and the maximum
amount of data bwb that the resource can transfer during a single time slot.

∀A ∈ W , ∀ctm,tn ∈ CA, ∀b ∈ B, ∀s ∈ {ESA, . . . , LFA}, etm,tn

b,s ∈ {0, . . . , bwb} (4.2)

The precedence constraint For dataflow applications, a precedence constraint
(same as Constraint (3.12)) should be enforced between tasks that are related by a
data dependency: the start time of the receiver task is greater than the end time of
the sender task.

∀A ∈ W , ∀ctm,tn ∈ CA, starttn > endtm (4.3)

The data dependency constraint This constraint (same as Constraint (3.13)) al-
lows to schedule on the same time-line tasks and communications by enforcing the
order of execution that should be respected in a valid scheduling: first, the sender
task completes execution, then, the data transfer is performed, and finally the re-
ceiver task starts execution.

∀A ∈ W , ∀ctm,tn ∈ CA, ∀b ∈ B, ∀s ∈ {ESA, . . . , LFA},(
(etm,tn

b,s = 0) ∨ (s > endtm)
)

∧
(
(etm,tn

b,s = 0) ∨ (s < starttn)
) (4.4)

4.3 Description of the Design Space Reduction

Method

4.3.1 Overview

In this Section, we present our method to reduce the design space for the problem
of scheduling tasks and communications. It applies the problem model introduced in
Section 4.2, alone or with additional variables and constraints. The proposed method
is structured in two steps that result into two reductions (Figure 4.2). The first step
is based on the principle of constraint propagation. Constraint propagation includes
any reasoning that consists in removing values or combination of values for some
variables of a problem because some constraints cannot be satisfied otherwise [48]

97

Reduction of definition domains
of variables for start times of tasks

Reduction of variables for
time slot allocation of

communications on buses

S
te

p
1

S
te

p
2

<ES
t
,EF

t
>, <LS

t
,LF

t
>,

∀t T∈ T A, A ∀ ∈ T W

Forward pass and
 backward pass analysis

Figure 4.2: An overview of the reduction method.

(see Example 4.3.1). These values are said inconsistent with the given constraints.
The second step completely removes a subset of time slot variables created for the
scheduling of communications.

Example 4.3.1. Let P = ⟨X, D, C⟩ be a CSP involving a set of three variables X =
{x1, x2, x3}, their domains D = {D1, D2, D3} such that D1 = D2 = D3 = {1, 2, 3}, and
constraints C = {c1, c2}, such that c1 ≡ x1 = x2 and c2 ≡ x2 < x3. By analyzing
constraint c2, we notice that value {1} for variable x3 can be removed because there
is no value smaller than {1} in D2: value {1} for variable x3 is inconsistent with
constraint c2. Similarly, we can remove value {3} from D2. Removing {3} from D2 in
turn leads to inconsistency of value {3} in D1 with respect to constraint c1. Hence, it
can also be removed.

Using the same logic presented in Example 4.3.1, we detect and remove val-
ues from the definition domains of temporal variables created for the scheduling of
tasks (variable startt in Equation (4.1)) that are inconsistent with precedence con-
straints (constraint (4.3)). The second step narrows the scope of time slots on which
variables are created for the scheduling of communications (variable etm,tn

b,s in Equa-
tion (4.2)). It removes the variables that correspond to time slots where the data
transfer cannot occur because of data dependency constraints (constraint (4.4)).

98

4.3.2 The pre-analysis

The two steps rely on a pre-analysis to determine temporal boundaries of tasks.
These boundaries will allow to eliminate the time intervals during which: 1) a task
cannot execute, and 2) a communication cannot take place. The analysis is based on
the dependencies between tasks, the characteristics of processing resource where
a task can be potentially mapped and the application latest finish (deadline) require-
ment.

We implemented this pre-analysis based on the Critical-Path Method (CPM) [33].
The latter is an algorithm developed in the 1950s by the US Navy and later widely
used for scheduling project activities in many domains (e.g., construction, software
development, research projects, engineering). CPM operates on any project with
interdependent activities and allows to compute:

• The earliest and latest times for each activity to start and finish without exceed-
ing the project due date;

• The critical path, that is, the longest stretch of dependent activities from start
to finish.

In the proposed method, we content ourselves with the first output of the critical
path method: the earliest and latest times for each activity to start and finish. An
activity corresponds to a task in our case. Thus, these boundaries are, for a task t,
the earliest start time (ESt), the earliest finish time (EFt), the latest start time (LSt)
and the latest finish time (LFt) (Figure 4.3).

To determine the earliest and latest start and finish times for each task, we reuse
two algorithms from CPM: the forward pass and the backward pass, that we slightly
adapt to our problem as follows.

Forward Pass The forward pass algorithm calculates for each task t ∈ T A, of a
given application A, the tuple ⟨ESt, EFt⟩. ESt is computed based on input depen-
dencies: a task t cannot start before all its predecessors have finished. Let t be a
task and {t1, . . . tk} the set of predecessors of task t. ESt is calculated as follows:

ESt = max
i∈{1,...,k}

{EFti
} + 1 (4.5)

99

t

A task t

<ES
t
, EF

t
>

<LS
t
, LF

t
>

Figure 4.3: A task from the DAG annotated with temporal boundaries.

The forward pass starts exploring an application graph GA at the source task, so
that ESsource is assumed to be equal to ESA. Then, the algorithm browses GA for-
ward: once ESt is computed for task t, EFt is calculated using the following formula
where et(t, c) is the execution time of t on a PE c. Note that if a task starts at a given
time slot s, this slot is used by the task. Hence, we subtract 1 from the execution
time of the task.

EFt = ESt + min
c∈F (t)

{et(t, c)} − 1 (4.6)

We select the PE c where the execution of t is the fastest. In fact, the forward
pass looks for the earliest start and finish times and these are obtained when the
fastest PEs are used.

Remark. ESt for a task t corresponds to the case where task t starts executing as
early as possible. This case corresponds to a situation where the time to transfer
input data to t is equal to zero, i.e., task t and the predecessor(s) having the maxi-
mum earliest finish time are mapped to the same PU. Otherwise, feasible solutions
could be eliminated. Therefore, Equation (4.6) is simplified by accounting only for
execution times.

Backward Pass The backward pass algorithm calculates for each task t ∈ T A, of
a given application A, the tuple ⟨LSt, LFt⟩. LFt is first computed based on output
dependencies. A task t must complete before the soonest LS of all its successors,
so that the application’s latest finish time (LFA) is not missed. Let t be a task and
{t1, . . . tu} the set of successors of task t. LFt is calculated as follows:

100

LFt = min
i∈{1,...,u}

{LSti
} − 1 (4.7)

The backward pass starts exploring an application graph GA at the sink task, so
that LFsink corresponds to LFA. Then it browses GA backward until the source. Once
LFt is computed for task t, LSt is calculated using the following formula:

LSt = LFt − min
c∈F (t)

{et(t, c)} + 1 (4.8)

Here as well, we select the PE c where the execution of t is the fastest, as it
provides the latest start and finish times. Similarly to the forward pass presented
before, the latest finish time LFt of a task t corresponds as in the forward pass to the
case where communication time between task t and its successors is equal to zero.
Thus, Equation (4.8) is also simplified by only capturing execution times.

4.3.3 The reductions

First Step Reduction The scheduling solution selects a start time startt for each
task t ∈ T A, for each application A in workload W being studied. This start time
is selected from the respective definition domain, initially {ESA, . . . , LFA} in Equa-
tion (4.1). The first step reduces the number of values that variables startt can take
using the temporal boundaries calculated for tasks to:

∀A ∈ W , ∀t ∈ T A, startt ∈ {ESt, . . . , LSt} (4.9)

Second Step Reduction Each data transfer is scheduled on communication re-
sources using variables etm,tn

b,s , Equation (4.2). The variables allocate communication
resources to data transfers during time slots. This reduction narrows the scope of
time slots interval on which variables etm,tn

b,s are defined to the interval on which the
data transfer can actually take place: namely, on time slots which follow the earliest
finish of the producer and precede the latest start of the consumer. Outside of this
interval, time slot allocation variables are not created.

∀A ∈ W , ∀ctm,tn ∈ CA, ∀b ∈ B, ∀s ∈ {EFtm + 1, . . . , LStn − 1},

etm,tn

b,s ∈ {0, . . . , bwb}
(4.10)

101

This optimization reduces as well the number of all constraints which apply on
variables etm,tn

b,s (e.g., Constraint (4.4)).

4.3.4 Example

<0, 29>
<239, 268>

t
2

<30, 229>
<269, 468>

t
3

<230, 374>
<469, 613>

<375, 1149>
<614, 1388>

<1277, 1316>
<1516, 1555>

<1150, 1276>
<1389, 1515>

t
7

<1317, 1381>
<1556, 1620>

t
1

t
4

t
5

t
6

Figure 4.4: An example of an application A where each task t ∈ T A is annotated with
the tuples ⟨ESt, EFt⟩ (top annotation) and ⟨LSt, LFt⟩ (bottom annotation).

Figure 4.4 shows an example of an application that we call A, where tasks are
annotated with the temporal boundaries produced by the pre-analysis. Here, we
assume that the deadline of the application is equal to 1620 slots and that the appli-
cation can start running at time slot 0 (i.e., LFA = LFt7 = 1620 and ESA = ESt1 = 0).
We assume that a set of three PEs PX, PY and PZ are available candidates to run
the application tasks. Table 4.1 summarizes execution times of tasks on PEs where
they can be mapped.

As explained above, the execution time on the fastest unit is selected when the
task can be mapped on more than one PE. For example, for tasks t1, t4 and t7 we
use respectively the values of 30, 775 and 65 to calculate EFt1, LSt1, EFt4, LSt4,
EFt7 and LSt7.

From the temporal boundaries calculated and displayed on Figure 4.4, we give
few examples of the reductions in Table 4.2.

102

Table 4.1: Execution times of application A tasks on 3 PEs.

Task Execution times (slots)

PX PY PZ

t1 150 30 —
t2 200 — —
t3 — 145 —
t4 2040 — 775
t5 127 — —
t6 — 40 —
t7 213 — 65

Table 4.2: Examples of the reductions applied on application A from Figure 4.4.

Variable
Before Reduction After Reduction

Scope Domain Scope Domain

startt5 t5 {0, . . . , 1620} t5 {1150, . . . , 1389}

et1,t2
b,s ct1,t2 , ∀s ∈

{0, . . . , 1620}
{0, . . . , bwb} ct1,t2 , ∀s ∈

{30, . . . , 268}
{0, . . . , bwb}

∀b ∈ B ∀b ∈ B

4.4 Evaluation

In this Section, we evaluate the efficiency of the reduction method applied to the
DSE formulation of Chapter 3. We use the same set of four real dataflow application
used for evaluations in Chapter 3 from [50] (Figure 3.11). Similarly to Chapter 3 and
to [50], in all experiments of this Section, we assume a data packet has a size of 8
data units. We also set a timeout of 1800 seconds after which we stop the exploration
if no solution was found. We also assume that execution times given in Figure 3.11
are applicable only to generic processing resources. As in Chapter 3, when tasks
are allocated to DSPs or hardware accelerators, their execution times correspond
respectively to 1/5 and 1/50 of the times reported.

We conduct four sets of experiments. Experiment 1 and Experiment 2 consider
the real-time design objective (deadline-aware solution) on latency while Experiment

103

3 and Experiment 4 consider the lowest-latency design objective (optimal solution).
When multiple applications are considered in parallel in a workload, the optimal so-
lution in this Section refers to a solution for which the sum of latencies is minimal,
as expressed in Objective function (3.22), such that the weights for each application
are equal to 1. Note that this is an example of how latencies can be minimized using
our formulation and that it is of course possible to minimize the latency of the overall
workload, or of a subset of applications as explained in subsection 3.6.3.

The four experiments are summarized as follows.

• Experiment 1 first evaluates the solver run-time before and after applying the
reduction method. It considers a set of workloads for all combinations of the ap-
plications as in Chapter 3. The experiment also evaluates the run-time needed
to perform the pre-analysis. We also evaluate the influence of the reduction
method on the problem size. The aim is to evaluate the extent of the reductions
on the size of the SMT problem model.

• Experiment 2 studies the impact of the reduction method on the finest achiev-
able granularity of the exploration. It considers the heaviest workload of our
testbench (the four applications running in parallel).

• Experiment 3 evaluates the run-time to find the lowest-latency (optimal latency)
solutions relying on a complementary Binary Search (BS) algorithm for the
same set of workloads considered in Experiment 1.

• Experiment 4 evaluates the run-time on different architectures at two levels of
slot granularity and shows how granularity can be adjusted to allow solving
larger problems sizes. It also provides the optimality gap, in terms of latency,
between solutions found at a coarser grain slot and solutions found at the finest
granularity.

The target architecture in Experiment 1-Experiment 3 is Architecture A, used in
Chapter 3, Figure 3.16.

104

4.4.1 Experiment 1: Influence on exploration run-time

In this experiment, we consider a set of workloads for all combinations of the applica-
tions from Figure 3.11. We perform DSE to find a solution that respects the deadline
design objective on latency of each application from the workload. First, we evalu-
ate the speed-up, brought by the reduction technique, by comparing solver run-time
when reductions are applied, to previous results found in Chapter 3.

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.01
2

5

0.1
2

5

1
2

5

10
2

5

100
2

5

1000
2

Before reduction
After reduction

Workload

So
lv

er
 r

un
tim

e
in

 s
ec

on
ds

 (l
og

ar
ith

m
ic

 s
ca

le
)

Figure 4.5: Solver run-time to produce a deadline-aware solution, as a function of
different workloads using initial formulation and optimized formulation, 1 slot = 1
cycle.

Figure 4.5 shows run-time evolution with a logarithmic scale. It can be seen
that the reduction decreases the run-time by orders of magnitude. The pink bars
indicating run-time before applying reductions show that the solver starts to violate
the timeout with workload JPEG. This violation results in the impossibility to study 8
out of 15 workloads within the fixed timeout. In contrast, the green bars show the

105

benefits of our reduction method. The solver run-time tends to increase as well with
the increase of workloads complexity but it remains far below the timeout. The run-
time values vary in the range [10−2, 10] seconds. This demonstrates the effectiveness
of our reduction techniques to reduce the solver run-time and improve the scalability
of the exploration process.

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.001

2

5

0.01

2

5

0.1

2

5

1

2

5

10 Solver run-time
Pre-analysis run-time

Workload

D
SE

 r
un

tim
e

in
 s

ec
on

ds
 (l

og
ar

ith
m

ic
 s

ca
le

)

Figure 4.6: Pre-analysis run-time against the solver run-time to produce a deadline-
aware solution, as a function of different workloads using optimized formulation.

In this experiment, we also evaluate the practical complexity of performing the
pre-analysis (forward pass and backward pass in Section 4.3) that allowed to calcu-
late the temporal boundaries for the reductions. Figure 4.6 shows, for all workloads,
the time needed to perform the pre-analysis and generate the tuples ⟨ESt, EFt⟩,
⟨LSt, LFt⟩ for each task t, and the solver run-time. Here, a logarithmic scale is used
too because the values for the pre-analysis cannot be visualized together with the

106

sobel
susan

rasta
jpeg

sosu
sora

sojp
sura

sujp
rajp sosura

sosujp
sorajp

surajp
sosurajp

2

5

1000

2

5

10k

2

5

100k

2
#variables (before)
#constraints (before)
#variables (after)
#constraints (after)

Workload

#S
M

T
el

em
en

ts
 (l

og
ar

ith
m

ic
 s

ca
le

)

Figure 4.7: Comparison of the size of the SMT model, as the number of created vari-
ables and constraints, before and after applying the reduction method, as a function
of different workloads.

solver values otherwise. The results show that the pre-analysis run-time is relatively
negligible compared to the solver run-time.

In this experiment, we also evaluate the influence of the reduction method on the
size of the SMT model (number of variables and constraints). In fact, most optimiza-
tion software algorithms have a practical upper limit on the size of models they can
handle, due to either memory requirements or numerical stability [65]. The aim of
this evaluation is first to measure the extent of the reduction on the size of the prob-
lem and second, to explain the improvement on run-time values given in Figure 4.5.
The size of the combinatorial problem has in fact a direct impact on the effort needed

107

for its resolution.
Figure 4.7 shows the variation of the number of SMT elements for all 15 work-

loads before and after applying the reduction method. We can see from the figure
that the reduction method significantly decreases the size of the SMT model. Focus-
ing only on workload sosurajp, we noticed that the size of the problem was reduced
drastically: the number of variables decreased from about 130K to 3K and the num-
ber of constraints decreased from about 230K to 17K.

4.4.2 Experiment 2: Influence on granularity

As we explained in Section 3.6 of Chapter 3, the length of a slot, lslot, determines
the granularity of the analysis, thereby, impacts the precision and the computational
effort of the exploration. Reducing the length of the slot leads to a more accurate
analysis of the mapping and scheduling problem. However, it involves creating more
slot-related variables, which translates to a bigger size of the problem and a longer
time needed to solve it.

10 9 8 7 6 5 4 3 2 1
Granularity (#cycles/slot)

100

101

102

103

So
lv

er
 ru

nt
im

e
in

 se
co

nd
s (

lo
g)

timeout = 1800s

118 123 121
232 269

334
605

1178

0.9 1.0 1.0 1.1 1.0 1.1 1.3
2.0

4.0
8.2

Before reduction
After reduction

Figure 4.8: Solver run-time to produce a deadline-aware solution, as a function of ex-
ploration granularity using initial formulation and optimized formulation for workload
sosurajp.

Figure 4.8 shows the solver run-time for a fixed workload, sosurajp, as a function
of lslot that varies from 10 cycles down to 1 cycle. This curve represents the impact

108

of the DSE granularity on the solver run-time and allows to appreciate the influence
that our reductions have on that.

By considering the same timeout of 1800 seconds, the curve plotting run-time
evolution without our reduction method shows that it is not possible to explore the
design space with a granularity smaller than 3 cycles/slot. On the contrary, the curve
plotting results of the optimized formulation shows that the latter allows to study the
workload up to the maximum precision (lslot = 1 cycle) within only 8.2 seconds.

This experiment demonstrates that the reduction method, by improving the scala-
bility of the DSE approach, also allows a more accurate analysis of the system under
study. This helps reducing the gap between the estimations of the SMT model and
the actual behavior of the system leading to more realistic exploration results.

4.4.3 Experiment 3: Optimal solution search

In this experiment, we investigate if the reductions will enable to find the lowest-
latency solution. As the solver is mostly efficient in finding satisfiable solutions, we
rely on a complementary Binary Search (BS) algorithm to find optimal solutions.

The BS is an algorithm commonly used to find the position of a given element in
a sorted range of elements (list). It looks at the middle element of the list, compares
it with the sought element, and continues the search in the relevant half of the list
until the sought element is found. Assuming a list of size n, in the worst case, the BS
algorithm visits at most log(n) elements of the list before finding the sought element:
it has a worst-case running time of O(log n).

We apply the BS on the range of time slots that are comprised between the
application earliest finish time and its latest finish time, which are determined by the
pre-analysis of Section 4.3.2. The minimum latency minlat is the sought element
and it is identified by these two conditions:

1. The problem is satisfied for: latency ≤ minlat

2. The problem is unsatisfied for: latency ≤ minlat − 1

Here, when multiple applications are considered simultaneously in a workload,
latency refers to the sum of latencies of all applications with all weights equal to 1.

109

Figure 4.9 shows run-time values to find the optimal solution using a BS and the
optimized formulation, against run-time values to find a first deadline-aware solution
using the initial formulation. Note that we do not compare against run-time values
to find optimal solutions using the initial formulation since the considered timeout is
exceeded even to find a first feasible solution for the initial formulation.

From Figure 4.9, we can see that while the initial formulation fails to find a first
deadline-aware solution for 8 workloads, the reductions allowed to find optimal so-
lutions for all workloads within the time limit. From the figure, it can be seen that
the time to find the optimal solution using a BS and the optimized formulation varies
between 1.08 seconds (susan) and 89.98 seconds (sosurajp).

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

1

2

5

10

2

5

100

2

5

1000

2

Deadline-aware (before)
Lowest-latency (after)

Workload

Se
ar

ch
 r

un
tim

e
in

 s
ec

on
ds

 (l
og

ar
ith

m
ic

 s
ca

le
)

Figure 4.9: Search run-time to produce an optimal solution using the optimized for-
mulation and a complementary BS, against run-time values to find a first deadline-
aware solution using the initial formulation, as a function of different workloads.

Thus, in this experiment, we have showed that the reductions, beyond reducing
significantly the run-time values to find deadline-aware solutions, have enabled to

110

reach optimal solutions within the time limit for all workloads, whereas the initial
formulation fails to find a first deadline-aware solution for 8 workloads.

4.4.4 Experiment 4: Adjusting granularity to solve larger scale
problems

DSP2

Mem.

D
M
A

Quad-core
CPU

DSP4

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP3

Mem.

D
M
A

Mem. DMA

Bus 1 Bus 2
B

u
s

3

DSP1

Mem.

D
M
A

Hw

Mem.

D
M
A

Bus 4

Figure 4.10: Block diagram of Architecture B used in Experiment 4.

As shown in Experiment 2, adjusting the slot granularity impacts the search run-
time: For the initial formulation, a coarser grain slot allowed to solve a problem that
was not solvable, within the timeout, at a finer grain slot. For the optimized formula-
tion, all workloads are solvable even at the finest granularity (1 slot = 1 cycle), but a
coarser grain slot reduces the run-time.

In this experiment, we leverage this property of our modeling to investigate, for
the optimized formulation: 1) How granularity can be adjusted to allow solving larger
problems sizes, and 2) The optimality gap, in terms of latency, with respect to the
solution found at the finest granularity.

We consider 4 different architectures illustrated in Figures 4.10, 4.11, 4.12 and 4.13.
Architecture C differs from Architecture B by the deployment of an additional quad-
core CPU (4 additional PEs). Architecture B, Architecture C and Architecture E have
the same set of PUs, but with a different interconnect.

111

DSP2

Mem.

D
M
A

Quad-core
CPU

DSP4

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP3

Mem.

D
M
A

Mem. DMA

Bus 1 Bus 2

B
u
s

3

DSP1

Mem.

D
M
A

Hw

Mem.

D
M
A

Bus 4

Quad-core
CPU

Mem. DMA

Figure 4.11: Block diagram of Architecture C used in Experiment 4.

DSP2

Mem.

D
M
A

Quad-core
CPU

DSP4

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP3

Mem.

D
M
AMem. DMA

B
u
s

1

Bus 2

Bus 3

DSP1

Mem.

D
M
A

Hw

Mem.

D
M
A

Figure 4.12: Block diagram of Architecture D used in Experiment 4.

112

DSP2

Mem.

D
M
A

Quad-core
CPU

DSP4

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP1

Mem.

D
M
A

DSP3

Mem.

D
M
AMem. DMA

Bus 1

Bus 2

Bus 3

DSP1

Mem.

D
M
A

Hw

Mem.

D
M
A

Bus 4

Figure 4.13: Block diagram of Architecture E used in Experiment 4.

Figures 4.14, 4.15, 4.16 and 4.17 show, for the 4 architectures, the evolution of
run-time to find lowest-latency solutions, for the set of all workloads from previous
experiments, when the granularity is set to: 1) granularity = 1, i.e., 1 slot = 1 cycle

and 2) granularity = 3, i.e., 1 slot = 3 cycles.

From the figures, it can be seen that the coarser granularity (i.e., 1 slot = 3 cycles)
allows to reduce run-time for all workloads, on all architectures. In Figure 4.15,
the run-time reduction due to a coarser granularity is particularly appreciated as it
allowed to solve 7 workloads that were not solvable within the timeout, at a finer
granularity.

Table 4.3 shows the optimality gap and the speed-up factor of solutions found
at granularity = 3, compared to solutions found at granularity = 1, for the set of
all workloads, on the 4 different architectures. Note that for solutions that we were
not able to solve within the timeout, at granularity = 1, we exceptionally exceed the
timeout to be able to evaluate the optimality gap and the speed-up factor. The aim
here is to evaluate the solutions that we could find within the timeout, at a coarser
grain slot.

It shows that, on average, (for all workloads, on all architectures) the 3 times
coarser granularity brings a 4.83 times speed-up. From the Table, we can also cal-

113

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

2

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 4.14: Run-time to search the minimal latency solution on Architecture B using
two levels of granularity (1 and 3), as a function of different workloads.

culate an average optimality gap equal to only 0.25%. The speed-up is calculated
using the following formula: runtime(granularity=1)

runtime(granularity=3).
This experiment shows that, on our benchmark, reducing the precision by vary-

ing the granularity from 1 to 3 allows to: 1) find near-optimal solutions faster for all
studied problems, and 2) find near-optimal solutions for larger problems that we were
not able to solve within the timeout, at granularity = 1. Varying the granularity can
mitigate the practical limitation of the proposed approach. However, the precision
of estimations, and thereby, the optimality gap depends on the quantity and signifi-
cance of information being missed within the chosen smallest observable time slot.
In fact, when the mapping and scheduling of tasks and transfers is more likely to
span over long durations, more time slots are necessary, so the solver takes longer
to find a suitable or an optimal solution. Obviously, bigger time slots help handling
this issue. However, larger time slots can prevent the analysis of delays below the

114

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

5

1

2

5

10

2

5

100

2

5

1000

2

5

10k

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 4.15: Run-time to search the minimal latency solution on Architecture C using
two levels of granularity (1 and 3), as a function of different workloads.

length of the time slot. This loss of precision can be particularly significant in prob-
lems where timing information (e.g., duration of tasks) is disparate (e.g., different
orders of magnitude)

4.5 Conclusion

In this Chapter we presented a technique to prune the design space of tasks and
communications scheduling problem and reduce considerably the overall DSE run-
time. A set of experiments showcased the benefits of our reduction method: First,
we showed the important speed-up of the SMT solver run-time to solve the optimized
formulation. For our testbench, the speed-up varies from 20 up to 589. Then, we
showed that the reductions enabled to analyze larger problems more accurately by

115

Table 4.3: Optimality gap (%) and speed-up factor of solutions found at granularity =
3, compared to solutions found at granularity = 1, for a set of workloads.

gap (%) speed-up
workload

sobel 0.21 2.99
susan 0.09 2.11
rasta 1.30 7.73
sora 0.59 4.15
sosu 0.12 2.08
sura 0.36 1.41
sosura 0.23 3.79
jpeg 0.05 1.06
sojp 0.09 1.95
sujp 0.07 1.62
sosujp 0.09 2.92
sorajp 0.18 2.12
rajp 0.25 2.62
surajp 0.14 4.38
sosurajp 0.10 4.29

(a) Architecture B.

gap (%) speed-up
workload

sobel 0.63 5.15
susan 0.88 4.84
rasta 0.19 6.94
sora 0.20 10.67
sosu 0.12 3.52
sura 0.12 10.04
sosura 0.05 5.80
jpeg 0.05 1.84
sojp 0.09 7.95
sujp 0.07 6.39
sosujp 0.03 9.42
sorajp 0.04 11.49
rajp 0.08 7.81
surajp 0.09 15.16
sosurajp 0.00 18.82

(b) Architecture C.

gap (%) speed-up
workload

sobel 0.21 2.50
susan 0.09 2.94
rasta 1.30 8.05
sora 0.59 6.35
sosu 0.12 3.16
sura 0.36 2.10
sosura 0.23 4.61
jpeg 0.05 1.59
sojp 0.09 1.80
sujp 0.07 1.45
sosujp 0.09 2.64
sorajp 0.18 2.40
rajp 0.25 4.74
surajp 0.14 9.72
sosurajp 0.10 7.18

(c) Architecture D.

gap (%) speed-up
workload

sobel 0.21 2.69
susan 0.26 1.68
rasta 1.30 11.14
sora 0.59 4.31
sosu 0.12 3.55
sura 0.60 6.83
sosura 0.42 3.81
jpeg 0.05 1.36
sojp 0.09 2.60
sujp 0.07 2.71
sosujp 0.03 1.11
sorajp 0.18 4.09
rajp 0.25 3.81
surajp 0.26 4.14
sosurajp 0.20 3.42

(d) Architecture E.

116

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

2

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 4.16: Run-time to search the minimal latency solution on Architecture D using
two levels of granularity (1 and 3), as a function of different workloads.

allowing their exploration at finer granularity levels. Moreover, we showed that the
reductions allowed to reach optimal solutions for all workloads, while, before the
reductions, the solver fails even to find deadline-aware solutions for more than half
the workloads. Finally, we showed that the practical limitation of our approach can be
mitigated thanks to the adjustable granularity of time slots with an average optimality
gap as small as 0.25% for granularity equal to 3.

The method proposed in this Chapter broadens the applicability of SMT-like ap-
proaches (e.g., CP, ILP), to solve the scheduling of tasks and communications in a
holistic manner, for larger problem sizes.

In the next Chapter, we study the extension of the optimized SMT formulation,
with a new module describing power consumption of the interconnect. This is facil-
itated by the adoption of a CP-based approach, characterized with modularity and
extensibility. Moreover, the analysis of power consumed by the interconnect could

117

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 4.17: Run-time to search the minimal latency solution on Architecture E using
two levels of granularity (1 and 3), as a function of different workloads.

benefit from the reductions presented in this Chapter, as these allow to identify the
time domains on which the interconnect is actually used to perform communications,
and ignore time domains where communications cannot be performed. As such,
the power consumption analysis can be focused only on time domains eligible to
communications.

118

Chapter 5

Extending the Latency SMT
Model with a Power
Consumption Model for
Multi-Bus Interconnects

5.1 Introduction

In previous Chapters, we provided a Design Space Exploration (DSE) approach
for multi-bus architectures with a latency design objective. The latter consists either
in minimizing latency or satisfying a given threshold. However, in real systems, it
is often required to consider multiple, and often conflicting design objectives which
cannot be completely and/or simultaneously achieved: Optimizing one criterion de-
grades the other criterion and vice versa. In this Chapter, we address this limi-
tation by studying the extension of our Constraint Programming (CP)-based DSE
approach, with a second design objective. The purpose of this Chapter is to study
the capabilities and limitations of the proposed DSE to address a problem with more
than one conflicting design objective.

As discussed in Chapter 2, one of the main advantages of the CP approach is

119

the ability to extend it easily. This is enabled by two properties of the CP approach:
separation of concerns and modularity. By separating the problem definition part
from the resolution engine, different problem models can be solved without changing
the resolution engine. Moreover, to extend an existing CP model, new modules (i.e.,
decision variable, constraints, design objectives) defining additional properties of the
solution to be found (e.g., the proposed solution should be power-efficient) can be
plugged into the initial model without significant modification of existing modules, nor
the resolution engine.

Since in this thesis we have focused on multi-bus architectures, we will consider
the power consumption of multi-bus interconnects as a second design objective in
this study. The interconnect power module proposed in this chapter can be extended
with other modules to account for the power consumption of processing components.
Several models from the literature allow to analyze power consumption of processing
resources, see for example [51].

In this chapter, we study the bi-criteria problem for the optimization of latency
and power consumption1. In fact, latency and power consumption are two conflicting
design criteria: We cannot obtain a single solution that optimizes both of them simul-
taneously and completely. For instance, in order to reduce power consumption, we
need to reduce the supply voltage and the operating frequency, which increases the
latency. Thus, there might be multiple solutions that satisfy different levels of satisfac-
tion for each criterion, and these solutions can be produced using different methods.
A detailed survey on methods for multi-criteria (objective) optimization problems can
be found for example in [40]. These methods are often classified according to the
implication of the decision maker in the solution process [42]. The decision maker
is a person who is able to express preference information about conflicting criteria.
In our case, it refers to a designer. In a priori methods, the designer first manifests
his/her preference, subsequently, a solution which satisfies his/her requirement is
searched. In a posteriori methods, a set of Pareto optimal solutions are generated
first, then the designer selects the most preferred design. Here, the designer does
not have to express his/her preference before the solution process. While the second
class may involve a more computationally expensive search process, the first class

1For the sake of simplicity, in the rest of this manuscript, we will sometimes refer to the power
consumption of the interconnect simply by power consumption.

120

requires the designer to have a fair understanding of the problem possibilities and
limitations in advance, which is not always true.

Examples of a priori methods are lexicographic ordering [24] where defining a
priority order between the two criteria allows to address the problem in a hierarchi-
cal manner: higher priority criterion is optimized first, at the expense of the other
criterion. Thus the problem is transformed into two single-objective problems which
are solved sequentially in accordance with their importance. This priority structure
requires that the designer has a priori specified a preference order between the
studied criteria. The solution of lexicographic ordering can be proven to be Pareto
optimal [42]. Another example is the bounded objective function method which con-
sists in transforming one criterion into a constraint defining a satisfactory threshold
(or a limiting budget), and to minimize the second one under this constraint. For ex-
ample, we can minimize latency under a certain available power budget, or minimize
power consumption under a given satisfactory latency threshold. This method also
assumes that the designer has a priori defined an acceptable threshold for one of its
criteria.

For a posteriori methods, different methods can be used to generate the set of
Pareto optimal solutions like the weighted sum method, the Normal-Boundary Inter-
section (NBI) method [18], the ε-constraint method [80], or Evolutionary Algorithms
(EAs).

In this Chapter, we will provide two a priori approaches and one a posteriori
approach to address the latency-power consumption bi-criteria problem: In the first
approach, it is assumed that a priority order has been established and that latency is
the most important criteria. A second approach minimizes power consumption under
a given threshold on latency. A third approach aims at identifying the set of Pareto
optimal solutions.

The rest of this Chapter is organized as follows: Section 5.2 introduces the SMT
model proposed to estimate power consumption and bandwidth requirements of bus
segments. Section 5.3 presents the three approaches proposed to optimize both
latency and power consumption. Section 5.4 proposes a series of evaluations of the
proposed approaches. Finally, Section 5.5 concludes this Chapter.

121

5.2 Power Consumption Modeling for the Multi-Bus

Interconnect

5.2.1 Scope and assumptions

In a multi-bus architecture, the bandwidth requiremernts on each bus segment can
be significantly different [32,73,77]. It is therefore needed to identify at which band-
width each bus should operate. The goal of the model we propose is twofold: First,
it allows to capture and minimize the power consumed by the interconnect. Second,
it allows to identify, for each bus segment, the best operating bandwidth to achieve
latency and power consumption design objectives.

We assume that each bus segment b can be used in a set of operating modes
Mb. A mode M ∈ Mb determines the parameters of performance and power con-
sumption of the bus. It is denoted as a tuple < bwM , powerM > where bwM is the
maximum achievable bandwidth when a bus segment is configured to mode M , and
powerM is the power consumed by the segment corresponding to mode M . The
values of bwM and powerM are expressed per time unit that corresponds to a single
time slot. The definition of a time slot is the same as in Chapters 3 and 4. Different
modes can lead to different performance and power consumption figures. The aim
of the modeling is twofold: 1) Minimize power consumed by the interconnect, and 2)
allocate an operating mode to each bus such that latency and power consumption
design objectives are met. The modeling is based on the following assumptions:

• The power consumed by a bus, on a time slot, is proportional to the activity
(i.e., number of transferred data units) that takes place within the slot duration.
For example, for a slot on which only 30% of bwM is used, a bus consumes
only 30% of powerM .

• A single operating mode is determined for each bus, over the full period under
analysis—We assume that operating mode changes are costly and that they
take place only between the periods on which we conduct our analysis. It
is determined by the highest bandwidth reached over the entire scheduling
period (i.e., on all time slots). For example, if a bus has two operating modes:
M1 =< bwM1, powerM1 > and M2 =< bwM2, powerM2 > such that bwM2 >

122

bwM1. Considering two time slots si and sj where the bus operates respectively
at bwi and bwj such that bwi ≤ bwM1 and bwM1 < bwj ≤ bwM2. The operating
mode of the bus here is assumed to be M2.

• The amount of power powerM consumed by a bus on a single time slot, includes
the power consumption of all the interconnect circuit and logic (e.g., wires,
arbiter logic).

5.2.2 The SMT model

In this modeling, we reuse the pre-analysis presented in Chapter 4 to reduce the
domain of time slots, on which power consumption and bandwidth requirements of
buses are analyzed, to the set of time slots where communications can actually oc-
cur. Therefore, the same assumptions from Chapter 4 apply. We consider the set of
eligible slots SC defined, in Equation (5.1), as the union of Sctm,tn

, for all communica-
tions ctm,tn in C. We remind that C is the union of all workload communications, as
explained in Section 3.3. For a given data dependency ctm,tn ∈ C, Sctm,tn

is the set of
time slots that lie between the earliest finish time of producer task tm and the latest
start time of consumer task tn as defined in Equation (5.2).

SC = {Sctm,tn
| ctm,tn ∈ C} (5.1)

∀ctm,tn ∈ C, Sctm,tn
= {s | s ∈ {EFtm + 1 . . . LStn − 1}} (5.2)

The power consumed by a single bus segment, Powerb, is calculated as the product
of its utilization Ub, and the power consumption PowerSC

b corresponding to its full
usage on eligible time slots SC.

∀b ∈ B, Powerb = Ub × PowerSC
b (5.3)

As the value of power consumption corresponding to a mode M , is given per time
slot, PowerSC

b is calculated as the product of the power consumption corresponding
to the mode M being analyzed, and the cardinal of SC.

∀b ∈ B, PowerSC
b = |SC| × powerM (5.4)

123

The bandwidth utilization Ub of a bus b is defined as the proportion of the maxi-
mum available bandwidth of a given mode M , being actually used to transfer data,
on the set of eligible slots SC . It is captured by the following Equation.

∀b ∈ B, Ub = 1
|SC| × bwM

×
∑

s∈SC

∑
ctm,tn ∈C

etm,tn

b,s (5.5)

Therefore, the expression of power consumption of a single bus segment can be
calculated as follows.

∀b ∈ B, Powerb = powerM

bwM

×
∑

s∈SC

∑
ctm,tn ∈C

etm,tn

b,s (5.6)

The bandwidth utilized on a bus does not exceed the bandwidth of the operating
mode being analyzed.

∀b ∈ B, ∀s ∈ SC ,
∑

ctm,tn ∈C

etm,tn

b,s ≤ bwM (5.7)

The power consumed by the entire interconnect is captured by the sum of power
consumed by each single bus, as follows.

Powerinterconnect =
∑
b∈B

Powerb (5.8)

In this model, we aim at identifying for each bus, an operating mode that will be
used during the execution of all the studied workload. This mode, for a given bus,
should be the mode that is able to grant the minimum power consumption of the
overall interconnect while satisfying design objectives on latency. However, we do
not encode bus operating modes parameters (i.e. bwM and powerM) as decision
variables in the SMT formulation, but instead as input constant parameters. As such,
each time the solver is invoked to solve this model, a unique operating mode can be
actually analyzed for each bus.

It is therefore suggested, to solve the formulation for all possible combinations
of the pair (bus, operating mode) that are available: Assuming that each bus b is
associated with a set of operating modes Mb, the number of combinations to analyze
is given by ncombinations.

ncombinations =
∏
b∈B

|Mb| (5.9)

124

For example, for an architecture with 2 buses, each having 3 operating modes, 9
combinations need to be solved in total. After that, the results of each combination
are compared and the combination that provides the minimum power consumption is
retained as the optimal power consumption solution. In fact, decomposing the prob-
lem by considering the operating mode of each bus segment as a constant input
parameter simplifies greatly the SMT problem for two reasons: First, it reduces the
number of decisions to be solved, therefore, the memory allocated in the system to
solve the model, and second, it avoids forming a complex, hard-to-solve formulation
between operating mode variables, and variables etm,tn

b,s (see Equation 5.6 for exam-
ple). The limitation of this approach will mainly come from the number of combina-
tions to analyze: the more combinations of (bus, operating mode) can be formed, the
longer will be the exploration run-time, since the solver will be invoked more times.

5.3 DSE for Latency and Power Optimization

The power consumption modeling proposed in Section 5.2 can be used with the
formulation presented in Chapter 3, and optimized in Chapter 4, in different ways. In
regards to signal processing applications, in order to work properly, these typically
have to fulfill some design objectives on latency, that are, an application must be
completed within some fixed time budget, or as fast as possible. In this Section, we
first present two approaches to answer this requirement. In both approaches, we
suggest to minimize power consumption under a certain design objective on latency.
The latter is either to satisfy a deadline (threshold) constraint or to minimize latency.
Power consumption optimization is performed under the condition that the latency
design objectives are fulfilled. Subsequently, we propose a third approach which
aims at producing a set of Pareto optimal solutions that a designer can analyze to
choose the most preferred design.

5.3.1 Approach 1: Minimize power under minimal latency

In this approach, we suggest to optimize latency and power consumption such that
the uppermost priority of the design is to guarantee the lowest latency. Hence, the
approach considers latency and power optimization in a hierarchical manner, and

125

in two phases: The first phase aims at finding minimal latencies for each applica-
tion. For this, the same SMT modeling and solving of previous Chapters are used.
Once, an optimal latency solution is found, a second phase, where the modeling of
the initial phase is complemented with the power model, solves the overall problem
such that power consumption is minimized under the minimal latency constraints.
During this second phase, the only restrictions set are on the value of latency of
each application. This means that all different design candidates (e.g., task map-
ping, communication mapping, slot allocation) with the same optimal latency per
application are explored. In case the calculation of minimal latencies is based on
the minimization of the global latency (i.e., sum of latencies of different applications),
several solutions can be found where the global latency is minimal (thus identical),
but latencies per application are different. In such a case, we continue to the second
phase of power minimization relying on a single solution of latency per application.
Other latency solutions could lead to lower power consumption but we assume that
the first phase is in charge of fixing the satisfactory latencies, and that the second
phase finds minimum power consumption under these latency constraints.

5.3.2 Approach 2: Minimize power under deadline constraints

For this approach, we propose to minimize power consumption while satisfying dead-
line constraints for applications. A single phase is performed here where the overall
SMT modeling (Chapters 3 and 4 + power model, Section 5.2) is used. A satisfy
design objective (constraint) is considered for latency, while a minimize design ob-
jective is considered for power consumption. All different design candidates (e.g.,
task mapping, communication mapping, slot allocation) that meet the deadlines are
explored.

Remark. Note that for the same system under study, it is also possible to combine
the two approaches, i.e., minimize power consumption under: deadline constraints
for some applications and minimal latency for other applications. Yet, it is also pos-
sible to minimize latency under some power budget allocated to the interconnect. In
general, from a modeling point of view, any combination of satisfy and/or minimize
design objectives on latency and power consumption can be encoded.

126

5.3.3 Approach 3: Pareto optimality for latency and power
consumption

In this subsection, we will first remind the concept of Pareto optimality: In a multi-
criteria optimization problem, there are more than one design objective optimizing
competing criteria. Therefore, there does not exist a single solution able to opti-
mize all criteria simultaneously and/or completely. The solution to such problems is
thereby a set of solutions that define the best trade-offs between conflicting objec-
tives. Here, the goodness of a solution is evaluated according to the Pareto optimality
concept. There are two levels of Pareto optimal solutions [42]: weak Pareto optimum
and strong Pareto optimum2, defined as follows.

Definition 5.3.1 (Weak Pareto optimum). A solution S is called weakly Pareto opti-
mal if there does not exist another solution S ′ such that: S ′ is strictly better than S in
all objectives.

Definition 5.3.2 (Strong Pareto optimum). A solution S is called strongly Pareto op-
timal if there does not exist another solution S ′ such that: S ′ is no worse than S in all
objectives and S ′ is strictly better than S in at least one objective.

The set of strongly Pareto optimal solutions is a subset of the set of weakly Pareto
optimal solutions. Several methods can be used to produce the entire set of (weakly
and/or strongly) Pareto optimal solutions, or a predefined number of them. One
widely used method is the ε-constraint method [80], proposed by Haimes et al. in
1971. This method can be used to produce solutions which can be proven to always
be weakly Pareto optimal [42]. The ε-constraint method operates in an iterative way.
At each iteration, one of the criteria is optimized and other criteria are constrained
with specified values. This procedure can be repeated until finding the entire set
of solutions–in case it is a finite set, or until finding a predefined number of solu-
tions. There are several methods in the litertature for systematically modifying the
constraints values, see for example [12,14].

As Approach 2 minimizes power consumption under a constrained latency (dead-
lines can be replaced by any threshold value), we propose a third approach, denoted

2Note that in the literature, strongly Pareto optimal solutions are often simply referred to by Pareto
optimal solutions, see for example [42].

127

Approach 3, relying on a variant of the ε-constraint method [80] and Approach 2 to
generate weak and strong Pareto optimal solutions.

5.4 Evaluation

5.4.1 Experiment 1: Evaluation of Approach 1 and Approach 2

In this Experiment, we first evaluate the run-time of Approach 1 and Approach 2 pre-
sented in Section 5.3. In Approach 1, where two phases of DSE (latency optimization
followed by power optimization) are performed, the timeout of 1800 seconds applies
to the power optimization phase. As Approach 2 is performed in a single phase, the
timeout applies to the entire DSE flow. We consider the same set of workloads from
Chapters 3 and 4, Figure 3.11, and Architecture A used for evaluations in Chapter 3
and Chapter 4, Figure 3.16.A set of 5 operating modes is available for the bus con-
necting the CPU (8, 16, 24, 32, and 64 du/time slot), and for the two other buses,
4 operating modes are available (8, 16, 24, and 32 du/time slot). The bus to which
the fifth mode (64 du/ time slot) is associated is the bus most in demand because
it connects the generic CPU, which communicates with the PUs connected to the
other buses. In the rest of this Section, we will refer to Approach 1 by minlat-minpow
and to Approach 2 by dea-minpow, for more expressive notations.

Results are given in Figure 5.1. We can see that Approach 2 (dea-minpow)
requires longer run-times to be solved compared to Approach 1 (minlat-minpow),
which is expected. There are several reasons that can explain this: In fact, since min-
imal latencies (minlat-minpow) are shorter than deadlines (dea-minpow), the time in-
terval over which power consumption of buses is evaluated is smaller, and so is the
number of time slots. Moreover, the search space guaranteeing minimum latencies
is smaller compared to the case where only deadlines are respected, as minimizing
latencies limits the mapping and scheduling choices to those that can guarantee the
minimum latencies (unless deadlines are equal to minimum latencies). The solver
wasn’t able to finish the exploration within the timeout for 2 out of 15 workloads for
minlat-minpow, and 8 out of 15 workloads for dea-minpow.

The latency optimization phase which results are given in Chapter 4 for Architec-
ture A (Figure 4.9), completed in less than 100 seconds for all workloads. In fact, the

128

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

5

1

2

5

10

2

5

100

2

5

1000

2

minlat-minpow
dea-minpow

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 5.1: Run-time to search the minimal power consumption: 1) under deadlines
constraints (dea-minpow), 2) under minimum latencies (minlat-minpow), on Archi-
tecture A, as a function of different workloads.

power optimization phase is more difficult since the power consumption should be
evaluated for each possible amount of data that each bus can transfer (ranging from
0 to the maximum capacity of the operating mode), on each slot, with respect to all
available operating modes.

In terms of power consumption minimization, from Table 5.1, it can be seen that
minlat-minpow reduces power consumption of the interconnect by 23.02% on aver-
age, for our testbench, compared to the solution obtained after the latency optimiza-
tion phase. For dea-minpow, the average reduction of power consumption on our
testbench is measured to 40.12%. The gap between the percentage of power re-
duction in dea-minpow solutions (40.12% on average) and minlat-minpow solutions
(23.02% on average) shows that solutions which only have to meet deadlines offer

129

Table 5.1: Interconnect power reduction percentage and approximate overall power
reduction for all workloads, on Architecture A, for dea-minpow and minlat-minpow.

Workload
Reduction(%) dea-minpow Reduction(%) minlat-minpow

Interconnect
power (%)

Overall
power(%)

Interconnect
power (%)

Overall
power(%)

sobel 57.75% 1.43% 28.64% 0.71%
susan 21.05% 0.07% 0.00% 0.00%
rasta 21.05% 0.47% 0.00% 0.00%
sora 53.52% 1.25% 25.34% 0.58%
sosu 55.94% 0.48% 27.23% 0.23%
sura 21.05% 0.20% 25.00% 0.24%

sosura 52.67% 0.68% 24.68% 0.32%
jpeg 33.68% 0.27% 28.64% 0.11%
sojp 46.48% 0.30% 28.64% 0.18%
sujp 44.94% 0.17% 26.69% 0.10%

sosujp 36.09% 0.28% 27.75% 0.15%
sorajp 35.97% 0.43% 28.71% 0.23%
rajp 34.98% 0.37% 24.43% 0.17%

surajp 42.54% 0.29% 23.72% 0.14%
sosurajp 44.16% 0.33% 25.83% 0.17%

Average 40.12% 0.47% 23.02% 0.22%

greater room for improvement on power than solutions that have to minimize latency.
On the same table, we calculate an approximation of the percentage of power re-
duction of each approach with respect to the overall power consumption (processing
and communication). Calculated values show that the reduced power consump-
tion represents only 0.47% (dea-minpow) and 0.22% (minlat-minpow) of the overall
power consumption. Although these values are very low for the studied testbench,
we want to emphasize that the focus of this chapter lies in the modeling of power
consumption of the multi-bus interconnect, and the study of the capability of the DSE
to account for more than one design objective. As part of our future work, we plan to
extend the power module of this chapter with a power module for Processing Units
(PUs) to study the overall power consumption and explore whether more significant
reductions could be obtained.

130

5.4.2 Experiment 2: Generating Pareto optimal solutions using
Approach 3

In this experiment, we study the generation of Pareto optimal solutions to produce
solutions with diverse trade-offs in terms of latency and power consumption. For
this, we consider application RASTA-PLP (workload rasta) running on Architecture
A (Figure 3.16).

500 600 700 800 900 1000 1100
latency (time slot)

0

50

100

150

200

250

300

350

Po
we

r (
a.

u)

A(539,342)

B(1011,0) C(1039,0)

Approximate Pareto front
Pareto front

Figure 5.2: (Blue dashed staircase) Approximate Pareto front and (solid red stair-
case) actual Pareto front found using Approach 3.

We perform a first experiment that aims at generating a set of Pareto optimal so-
lutions. For this, we start the search with the solution obtained using minlat-minpow.
By construction, this first solution (marked by point A in Figure 5.2) is a strong Pareto
optimum, and more precisely it is the Pareto optimum having the smallest possible
latency. From this point, we use the so-called regular grid method [1] to compute a
subset of the Pareto front. We retrieve the latency of the solution obtained by minlat-
minpow and increase it by an arbitrary amount of 100 time slots, and we use the
resulting value to constrain dea-minpow. For instance, in Figure 5.2 the latency of
the first solution is 539 time slots, thus yielding a new constraint of 639 time slots.

131

With this constrain, dea-minpow gives a new solution, which is also by construction
a Pareto optimum, and the latency of which is at most 639 time slots. We proceed
to find a third Pareto Optimum, and so on and so forth, until some chosen maximal
latency value. Several remarks are in order:

• The chosen value for the latency increment defines the granularity of the Pareto
front obtained by our method. The smaller this value, the finer the granularity,
i.e., the more points we have in the obtained Pareto front.

• Except the first point, obtained with minlat-minpow, none of the subsequent
points are guaranteed to be strong Pareto optima. But they are guaranteed to
be weak Pareto optima thanks to our usage of an SMT solver.

• Because of the granularity imposed by the latency increment, the Pareto front
that we obtain is a subset of the exact Pareto front. In Figure 5.2, the ex-
act Pareto front is depicted by the solid red staircase, while the Pareto front
obtained with the grid method is depicted by the dashed blue staircase. The
granularity is also a reason why the points are not guaranteed to be strong
Pareto optima (except the first one).

• Finally, the chosen value for the maximal latency value is also a reason why we
produce a subset of the exact Pareto front.

The search can be stopped after a number of predefined solutions are found, or
when a timeout is reached. Here, we stopped the search when we reached zero
power consumption (point C), which corresponds to solutions where the intercon-
nect is not used because all tasks are mapped to the same processing unit. From
the dashed blue staircase, we can see that the trade-off between power consump-
tion and latency is correctly captured: power consumption increases when latency
decreases and vice versa. We can also see that the 6 solutions found provide di-
verse trade-offs between latency and power consumption. Points that tend to be at
the right end of the blue dashed staircase reduce power at the expense of a higher
latency while points at the left end reduce latency at the expense of a higher power
cost. Points in the middle of the staircase provide a more balanced trade-off in terms
of latency and power consumption. The decision is left to the designer to select the

132

most appropriate design from his/her perspective. The approximate Pareto front can
be found within the timeout of 30 minutes (precisely in 9 minutes and 37 seconds for
the studied case). The largest part of the total search time is dedicated to finding
solutions under larger threshold values. From right to left, finding a Pareto optimal
solution on the blue dashed staircase took respectively 64.49% (point C), 28.93%,
4.61%, 1.46%, 0.48% and 0.03% (point A) of the total search time. This unbalance
is caused by the variability of the extent of freedom degrees allowed (e.g. mapping
choices) below each different threshold on latency.

The solid red staircase in Figure 5.2 depicts the actual Pareto front. It can be
obtained by covering all values that the threshold on latency can take (here all integer
values ranging from 539 to 1039 as going beyond 1039 will only produce solutions
with higher latency without any gain on power). However, the cost of the exhaustive
search is significantly higher than the cost of finding the approximate Pareto front.
It took 15 hours and 43 minutes to search for all Pareto optimal solutions which is
much higher than the timeout we fixed.

From Figure 5.2, we can see that there are both weakly and strongly Pareto
optimal solutions. For example, point C is as good as point B in terms of power
consumption but point B offers a reduced latency compared to point C. Point C is a
weakly Pareto optimal solution, and point B is a strongly Pareto optimal solution. The
same trend can be seen all over the solid red staircase, where horizontal segments
represent sets of solutions with the same power consumption but different latencies.
From a design point of view, on each horizontal segment of the solid red staircase,
unless there are other criteria to consider, the solution at the left end (strong Pareto
optimum) is the best since it is as good as all other solutions on the same segment
(weakly Pareto optimal solutions) in terms of power consumption but has the lowest
latency.

As an alternative to searching exhaustively Pareto optimal solutions, some opti-
mizations of the search process can be proposed to guide the generation of good
quality solutions. For instance, we can search in the neighborhood of each of the
weakly Pareto optimal solutions initially found (blue points), if there are other solu-
tions that are strictly better in latency and no worse in power consumption. For this,
for each of the solutions depicted in blue points (except point A which is already
strongly Pareto optimal), we can minimize latency under the constraint of power con-

133

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 5.3: Run-time to search the minimal power consumption under minimum la-
tencies on Architecture B, using two levels of granularity (1 and 3), as a function of
different workloads.

sumption initially found. Thus, strongly Pareto optimal solutions can be generated.

5.4.3 Experiment 3: Evaluating granularity effect

This Experiment is similar to Experiment 4, Chapter 4: we evaluate the effect of
the slot granularity on the run-time of the power optimization phase and investigate
whether granularity allows to reduce run-time and solve larger scale problems within
a fixed timeout. For this experiment, we will focus on Approach 1.

We use the same set of architectures from Experiment 4, Chapter 4, Figures 4.10,
4.11, 4.12 and 4.13, and the set of all workloads previously used. A set of 4 operat-
ing modes is available for all buses, in all architectures, where bandwidth capacity in
each mode is equal to 8, 16, 24, and 32 du/ time slot. The granularity was set to: 1)

134

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 5.4: Run-time to search the minimal power consumption under minimum la-
tencies on Architecture C, using two levels of granularity (1 and 3), as a function of
different workloads.

granularity = 1, i.e., 1slot = 1 cycle and 2) granularity = 3, i.e., 1slot = 3 cycle.

Results are collected in Figures 5.3, 5.4, 5.5 and 5.6 and in Table 5.2. Fig-
ures 5.3- 5.6 show the evolution of run-time of the power minimization phase of
Approach 1, for all workloads, on different architectures. It can be seen that in most
cases (44 out of 60), a coarser granularity reduces run-time. The speed-up and
slow-down factors are given in Table 5.2, where positive values represent the speed-
up achieved with a granularity = 3 compared to a granularity = 1, and negative
values represent the slow-down observed for some instances with a granularity = 3
compared to a granularity = 1. On average, a positive speed-up of 23.05 can be
calculated from the table. For 5 out of the total 60 tested instances, the coarser gran-
ularity unexpectedly slows-down the resolution (e.g., sosujp, Table 5.2a). We were
not able to identify the precise reason for this result but it can be seen that the coarser

135

Table 5.2: Quality gap (%) and speed-up (positive values) or slow-down (negative
values) factor of solutions found at granularity = 3, compared to solutions found at
granularity = 1, for a set of workloads.

gap (%) speed-up /
workload slow-down

sobel 1.41 2.01
susan 17.62 1.07
rasta 17.62 2.29
sora 2.91 2.48
sosu 0.82 1.14
sura 17.62 2.02
sosura 3.48 2.07
jpeg 1.41 2.24
sojp 1.41 1.77
sujp 0.36 ≤-1,82
sosujp 0.29 -3.85
sorajp 1.23 ≥11.98
rajp 2.29 ≥5.73
surajp 2.87 timeout
sosurajp 1.76 timeout

(a) Architecture B.

gap speed-up /
workload slow-down

sobel 1.41 2.07
susan 17.62 1.04
rasta 17.62 1.83
sora 2.29 6.52
sosu 1.41 1.42
sura 17.62 2.15
sosura 1.74 3.50
jpeg 1.41 1.07
sojp 1.41 3.80
sujp 0.36 1.50
sosujp 1.41 2.07
sorajp 0.98 timeout
rajp 3.58 ≥3.63
surajp 4.12 timeout
sosurajp 0.74 timeout

(b) Architecture C.

gap (%) speed-up /
workload slow-down

sobel 1.41 2.20
susan 17.62 -1,19
rasta 17.62 51.85
sora 2.91 -2,04
sosu 0.82 1.78
sura 17.62 13.55
sosura 3.48 14.94
jpeg 1.41 2.37
sojp 1.41 1.84
sujp 0.36 ≤-1,33
sosujp 0.29 ≥2.41
sorajp 1.23 ≥1.13
rajp 2.29 ≥1.22
surajp 2.87 timeout
sosurajp 1.76 ≥2.27

(c) Architecture D.

gap (%) speed-up /
workload slow-down

sobel 1.41 2.24
susan 17.62 -1,01
rasta 17.62 100.92
sora 2.91 85.50
sosu 1.85 8.09
sura 16.97 3.29
sosura 3.93 2.58
jpeg 1.41 3.90
sojp 1.41 2.51
sujp 1.82 timeout
sosujp 2.23 ≥5.22
sorajp 1.23 timeout
rajp 2.29 ≥1.48
surajp 2.72 timeout
sosurajp 2.40 timeout

(d) Architecture E.

136

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 5.5: Run-time to search the minimal power consumption under minimum la-
tencies on Architecture D, using two levels of granularity (1 and 3), as a function of
different workloads.

granularity can make the problem harder to solve in some situations. For 10 out of
60 instances, the effect of the coarser granularity could not be evaluated as the ex-
ploration was not able to complete within the timeout with both granularity levels. For
sosurajp, Table 5.2c, the speed-up is at least equal to 2.27 because the exploration
at granularity = 1 didn’t complete within the timeout, thereby, the exact speed-up
could not be calculated but it is at least equal to 2.27. The same explanation ap-
plies to other instances with a “≥” sign. For instances with a “≤” sign, the slow-down
factor is lower than the value given, since the exploration at granularity = 3 didn’t
complete within the timeout, while it did at granularity = 1. For example, sujp in
Table 5.2c is slowed-down at least by a factor of 1.33.

Overall, at granularity = 3, 48 out of the 60 instances studied were solved within
the fixed timeout, while at granularity = 1, only 41 out of 60 instances were solved.

137

Timeout = 1800 s

sobel
susan

rasta
sora

sosu
sura

sosura
jpeg

sojp
sujp

sosujp
sorajp

rajp surajp
sosurajp

0.1

2

5

1

2

5

10

2

5

100

2

5

1000

2

Granularity = 1
Granularity = 3

Workload

Ru
n-

tim
e

in
 s

ec
on

ds
 (l

og
 s

ca
le

)

Figure 5.6: Run-time to search the minimal power consumption under minimum la-
tencies on Architecture E, using two levels of granularity (1 and 3), as a function of
different workloads.

The quality gap in terms of power consumption between the solutions—optimal or
best solution found within the timeout—found at granularity = 3 and granularity = 1
is given in Table 5.2c. The average gap can be calculated to 4.95%.

Finally, regardless of the granularity level, we can see that Architecture E, Fig-
ure 5.6 has higher run-times than Architecture B, Figure 5.3, while the same number
of buses and processing resources are considered. This indicates that more routing
options, present in the ring topology of Architecture E, increase the DSE run-time.

5.5 Conclusion

In this Chapter, we first presented a SMT formulation for the power consumption of
a multi-bus communication architecture. This formulation captures power consumed

138

by each bus segment under different operating modes. Second, we studied how
it can extend the latency model of previous Chapters to address the latency-power
consumption bi-criteria problem.

We have shown that by using the same SMT modeling, different bi-criteria op-
timization approaches can be encoded such that satisfaction levels among the two
conflicting objectives are either articulated before the exploration, or after a set of
solutions have been produced.

Three approaches were proposed: 1) minimize power consumption under mini-
mal latencies, 2) minimize power consumption under deadlines constraints on laten-
cies, and 3) generate a set of Pareto optimal solutions. Results showed that either a
single or multiple (weak and/or strong) Pareto optimal solutions could be generated
using the proposed approaches. As a matter of fact, different trade-offs between la-
tency and power consumption can be studied. A common limitation to the proposed
approaches is their high run-time. Therefore, we studied the effect of variable slot
granularity on the power optimization phase of Approach 1. Results showed a mixed
pattern: for 44 out of the 60 studied workloads, a coarser granularity brings a pos-
itive speed-up. However, the resolutions of 5 out of the 60 studied workloads were
slowed-down compared to the finer grain slot. For 10 workloads, we were not able
to assess the impact of granularity as the timeout is exceeded either way. The av-
erage optimality gap is measured to 4.95%. Optimality gaps reported also showed
an irregular pattern varying from 0.29% upto 17.62%, which may represent a real
limitation to the coarser granularity in power consumption-related estimations.

As part of future work, mainly two limitations of this work could be addressed.
First, techniques to reduce run-time for the power optimization phase should be in-
vestigated. Once the scalability limitation is relaxed, the power formulation can be
extended with additional modules to capture power consumption related to Process-
ing Units (PUs) and to leakage current.

139

Chapter 6

Conclusion and Future Work

6.1 Summary of the contributions

In this thesis, we proposed a SMT formulation for the DSE of tasks and communi-
cations on architectures with a multi-bus interconnect (first contribution). To mitigate
the computational costs of the exact search, we proposed a pre-analysis technique
(second contribution) that reduces the number of variables, the extent of definition
domains, and the number of constraints created by the formulation, without impacting
the completeness of the approach. We extended our formulation with a power model
to evaluate the interconnect power consumption and study the capabilities and limi-
tations of the proposed DSE to address a bi-criteria problem (third contribution). We
integrated these contributions in a design environment based on UML/SysML that
we used to perform evaluations on a testbench of real-world streaming applications
from [49,50].

6.1.1 Summary of the first contribution

Chapter 3 presented our first contribution, a mathematical SMT formulation to map
and schedule both tasks and communications to architectures with a multi-bus inter-
connect. The formulation tackles multi-bus interconnects without any constraint on
their topology (e.g., hierarchical bus, ring bus, ad-hoc topology). The resulting DSE
approach can be used to map and schedule tasks and communication on a fixed

141

architecture. It can also be used to guide the design of new architectures (e.g., num-
ber of buses, interconnect topology), by comparing the resulting solutions for various
architectures and selecting the architecture that best meets the design objectives.
We proposed a case study (Section 3.8.1) to illustrate how the DSE efficiently as-
sists a designer to select best architecture for a given workload with respect to the
design objective of minimizing latencies. We also provided an evaluation of the DSE
run-time for a set of workloads and a MPSoC target architecture, Section 3.8.2. This
experiment showed that for 8 out of 15 workloads, the solver was not able to return
even solutions that satisfy deadlines constraints on latency, within the specified time-
out of 30 minutes. This scalability issue is the motivation of our second contribution.

6.1.2 Summary of the second contribution

To cope with the practical limitation of the DSE approach presented in Chapter 3,
we proposed a second contribution, in Chapter 4, to speed-up the DSE run-time.
We proposed to perform a pre-analysis of applications and architecture graphs, as a
first step of the DSE prior to the synthesis of the SMT formulation. This pre-analysis
aims at identifying temporal boundaries for the execution of tasks and communica-
tions, which are used to reduce the size of the design space, and hence, better focus
the exploration only on relevant design solutions. The proposed reduction technique
preserves the completeness of DSE, as it only removes non-valid design solutions
with respect to the temporal boundaries. We evaluated the efficiency of this con-
tribution to improve the scalability of our initial formulation in Section 4.4: First, we
evaluated the speed-up of the SMT solver to find deadline-aware solutions, which
for our testbench ranged from 20 up to 589 times. Second, we measured the im-
pact of the reductions on the SMT problem size (i.e., variables and constraints) and
found out that it allows reducing the problem up to 95% for the testbench under
study. Third, we demonstrated that the reductions enabled to analyze the problem
more accurately by allowing DSE to be performed at lower granularity levels, for
which it was impossible to complete DSE using the initial formulation of Chapter 3.
Then, we demonstrated that the reductions allowed to reach optimal solutions for all
workloads, while, before the reductions, the solver fails even to find deadline-aware
solutions for more than half the workloads. Finally, we provided experiments to study

142

the scalability of the proposed DSE on different target architectures and showed how
the practical limitation of our DSE approach is flexible: larger scale problems can be
studied by adjusting the slot granularity while an optimality gap as low as 0.25% on
average is observed between a granularity level corresponding to 1 slot = 3 cycles

and 1 slot = 1 cycle.

6.1.3 Summary of the third contribution

As in real-world systems, there are often more than one conflicting criteria, in Chap-
ter 5, we studied the capabilities of the proposed DSE to address a bi-criteria opti-
mization problem. To achieve this, we first extended our formulation with a module
to capture power consumption of a multi-bus communication architecture under dif-
ferent operating modes.

We have demonstrated the flexibility of the proposed DSE to adopt different ap-
proaches depending on the involvement of the designer in the process of solutions
search, and according to his/her preference with respect to the two conflicting ob-
jectives. We showed that using the same SMT models and solver, different ap-
proaches can be used in practice to answer different requirements, e.g., generate a
solution which minimizes power consumption but grants the minimum achievable la-
tency, generate multiple solutions with different trade-offs between latency and power
consumption so that preferences are not necessarily articulated a priori. A major lim-
itation concerns the computational effort of the solutions search process, though.

6.1.4 Summary of the integration to a MDE design environment

We integrated the three contributions summarized above into an existing MDE design
environment for embedded systems. We selected TTool/DIPLODOCUS [2, 3] as
it is free, open-source and targets system-level design of embedded systems. We
tightly integrated the Z3 SMT solver [19] within TTool/DIPLODOCUS so as to support
the following process: UML/SysML-to-SMT transformation, resolution of the SMT
problem, and backtracking of results from Z3 to TTool/DIPLODOCUS. Finally, our
contribution is now part of a method starting with the capture of application and
architecture models with UML/SysML diagrams, continuing with a DSE, and ending
with the generation of code for rapid prototyping on the selected target platform.

143

6.2 Conclusions

This thesis is focused on DSE for the mapping and scheduling of dataflow appli-
cations on a multi-bus architecture. We have shown that contributions dealing with
communication-aware DSE do not provide methods and tools able to fully tackle
multi-bus DSE problems (e.g., routing, joint mapping and scheduling of tasks and
communications), at an early stage of the design flow. The work presented in this
thesis contributes to filling this gap by proposing a holistic approach to study commu-
nications mapping and scheduling along with the mapping and scheduling of tasks
on a multi-bus architecture. Thus, it is possible to perform a holistic DSE on various
bus-based architectures ranging from a single shared bus to diverse topologies (e.g.,
tree, ring, chain). Moreover, the reduction technique proposed in this thesis enabled
to improve scalability significantly, thus pushing further the practical limits of a joint
scheduling of tasks and communications. Since the reduction technique we define
is task-based, it is not specific to multi-bus architectures. Thus, its benefits could
also be investigated to any other communication architecture. The proposed DSE
is subject to several design assumptions. Even if recognized in similar work, some
assumptions are still a bit strong, but can surely be relaxed as we will discuss in the
following sections.

6.3 Limitations and Improvements

The assumptions made in this thesis limit the applicability of our contributions to
systems that are compliant with these assumptions, or systems for which the im-
pact of these assumptions is acceptable at a high level of abstraction. However, as
discussed in Chapter 3, these assumptions (e.g., local memory, negligible intra-PU
communication overhead) are recognized in similar work. We discussed in Chap-
ter 3 few workarounds to overcome some of these limitations, namely to account
for communications through a shared memory. Of course, another way to enlarge
the scope of our work is to directly change the formulation. This is facilitated by
the extensibility of the CP-based approach. Another assumption was taken on the
presence of architecture components always available to perform data transfers in
parallel to processing. The formulation can be changed to map each data transfer to

144

a dedicated resource (e.g., DMA, PE) from the target architecture during the transfer
time.

The proposed DSE is performed at design time to produce a static mapping and
scheduling solution. This restricts the applicability of our approach to workloads
which are known a priori. Even though static task mapping and scheduling cannot
be adapted to dynamic workloads, this is a commonly recognized assumption in DSE
literature. A possible way to account for different execution scenarios is to analyze
at design time multiple execution scenarios, as in [74]. For example, based on a
statistic profiling of the execution of an application under different inputs, multiple
execution scenarios could be analyzed leading to different mapping and scheduling
solutions.

6.4 Future work

The contributions of this thesis pave the path to many possible future research per-
spectives. We discuss a few of them in this Section. Mainly, we will discuss two
categories of perspectives. The first category, indicated by (spec), concerns extend-
ing the formulation with new specifications, i.e., model new aspects of applications,
architectures, design constraints and objectives. The second category, indicated by
(scale), concerns improving the scalability of the DSE approach.

6.4.1 Extending the approach with new specification

Typically, any new specification that describes new details of application, architec-
ture, or design constraints and objectives can be encoded using the CP model-
ing. The main challenge to that is the resulting complexity and the applicability to
real-world problem sizes. The CP approach, by separating the modeling from the
solving of the problem, allows to extend its scope with further specifications, or sim-
plify it to focus on a specific sub-problem (e.g., routing of communications). The
contribution of a power module in Chapter 5 is a practical example for this. Other
examples are to extend the SMT formulation to account for shared memories as dis-
cussed earlier, or to consider reconfigurable blocks (i.e., Field Programmable Gate
Array (FPGA)) along with reprogrammable processing resources in order to solve

145

the problem of hardware/software partitioning of tasks. To do this, the formulation
can capture FPGA as processing resources that can host as many tasks in parallel
as their capacity allows. New input parameters are needed for tasks to denote their
requirements in terms of FPGA resource, and for each FPGA to denote its maximum
capacity. Mainly, new constraints are required to control that tasks allocated to the
same FPGA do not exceed the maximum capacity of this FPGA, i.e. either they shall
not run all in parallel, or they shall not be mapped to the same FPGA resource.

Another interesting perspective is to extend the formulation to other types of archi-
tectures like NoCs. Here, a promising direction is to investigate the applicability and
the benefits of the reduction technique, once NoC-specific behaviors are integrated
into the formulation.

6.4.2 Refining the pre-analysis with task mapping information

The pre-analysis for the reduction technique presented in Chapter 4 can be en-
hanced in order to calculate tighter temporal boundaries, by including more refined
task mapping information. More in details, when we calculate the earliest start and
finish times of a task, we account for the performance of PEs but not for their avail-
ability to execute a given task at a give time. This is illustrated in Figure 6.1a where
task A has 5 identical successors Bi, i ∈ {1 . . . 5}. This is a typical example of a
HSDF obtained from a SDF-to-HSDF graphs transformation, such as in [50]. Here,
tasks Bi, i ∈ {1 . . . 5}, are identical repetitions of the same SDF actor B accord-
ing to the SDF theory. This is the case for JPEG application, Figure 3.11, where
DCTi, i ∈ {1 . . . 6} and Huffi, i ∈ {1 . . . 6} are respectively identical repetitions of
SDF actors DCT and Huff .

In the example of Figure 6.1a, we assume a target architecture where two PEs
are available to execute tasks Bi, i ∈ {1 . . . 5}. Hence, the tuples of earliest start and
finish times calculated here (⟨11, 17⟩), are actually only valid for two tasks (e.g., B1
and B2). Figure 6.1b shows an example of new tuples of earliest start and finish
times that could be calculated by the pre-analysis, once the availability of processing
resources is taken into account. Here, we can see that, after the completion of task
A, two tasks (B1 and B2) can start executing on the two available PEs. We call it
Round 1, such that a Round is a time stretch on which all available compatible PEs

146

B1

B2

B3

B4

B5

<11,17>

<11,17>

<11,17>

<11,17>

<11,17>

<0,10>

A

(a) Current pre-analysis.

B1

B2

B3

B4

B5

<11,17>

<11,17>

<18,24>

<18,24>

<25,31>

<0,10>

Round 1

Round 2

Round 3

A

(b) Enhanced mapping-aware pre-analysis.

Figure 6.1: Excerpt of an application graph where each task t is annotated with the
tuple of earliest start and finish times ⟨ESt, EFt⟩. Task A has a duration of 11 time
slots. Tasks Bi, i ∈ {1 . . . 5} have each a duration of 7 time slots.

are allocated to the tasks. Hence, for remaining tasks, the earliest start and finish
times are delayed to subsequent rounds. Three rounds are therefore necessary in
our example. In Section 4.4, Chapter 4, we have demonstrated the efficiency of our
reductions in reducing the problem size and speeding-up the exploration process.
Therefore, such a refinement of temporal boundaries may lead to further significant
improvements. This improvement can reduce the impact of the known problem ex-
plosion due to SDF-to-HSDF graphs transformation.

6.4.3 Symmetry breaking in time slots allocation

Symmetry breaking are techniques that aim at identifying the symmetries in the
problem—for instance, those present in the architecture graph, and propose proper
ways to prevent the search algorithm from analyzing and comparing solutions with
identical quality. Since in the context of this work, we mainly focus on heterogeneous
architectures, the symmetry breaking for architecture is rather limited. However, a

147

possible direction for future work is to investigate symmetries that can be found in
the time slots allocation. Particularly during the latency optimization phase where
multiple slot allocation solutions can lead to the same latency. Figure 6.2 shows an
example of three scheduling solutions which result into the same quality of latency
but where slot allocation is different. Many similar slot allocation solutions can be
generated. It would be interesting to investigate how to reduce the number of sym-
metric solutions, like those illustrated in Figure 6.2c, which are explored and eval-
uate its impact on DSE run-time. This could also be applied to all situations when
we have concurrent communications between different tasks. As long as all these
communications complete at the same instant, investigating different communication
interleavings is probably not relevant.

A B24

(a) Example application excerpt.

P
A

Bus
A
(bw = 10 du/slot)

P
B

(b) Target architecture.

8 8 8

3 4 5

solution 1

solution 2

solution 3

6 10 8

6 8 10

AA

AA

AA

B

B

B

21 6

P
A

Bus
A

P
B

P
A

Bus
A

P
B

P
A

Bus
A

P
B

(c) Three possible scheduling solutions where slot allocation, for communication between
tasks A and B, are different but result into the same latency equal to 6 time slots.

Figure 6.2: Example of symmetric solutions in slot allocation.

148

6.4.4 Temporal decomposition

A well-known method to improve scalability of exact search is to decompose the
problem into smaller sub-problems. In the literature, decomposition between the
problems of mapping and scheduling, or task and communication is widely adopted.
However, this traditional decomposition can lead to solutions which are significantly
far from the actual optimum. This loss of optimality is due to ignoring inter-dependencies
between DSE problems (e.g., mapping, scheduling). Another possible way to lever-
age the benefit of decomposition is to study the impact of decomposing tempo-
rally the problem into smaller sub-problems, defined in small time intervals, solve
them individually, and merge the results. Here, in contrary to traditional decompo-
sition approaches, on a given time interval, inter-dependencies between mapping
and scheduling of tasks and communications are taken into account. For example,
in Figure 6.3, every possible combination of mapping and scheduling of tasks t1, t2

and t3 and its impact on the mapping and scheduling of communications between t1

and t2 and t2 and t3 are analyzed. However, ignoring dependencies between inter-
vals may lead to sub-optimal solutions. For instance, a mapping and scheduling of
a communication between two tasks, each included in a different time interval may
be sub-optimal because task mapping and scheduling decisions are taken locally for
each task. For example, communication between t1 and t7 is mapped and sched-
uled after the mapping of t1 and t7 have been decided locally in sub-problems 1
and 3. Therefore, an interesting challenge is to elaborate a methodology to decom-
pose, solve and merge sub-problems. The methodology should define how to cut
time intervals and handle inter-intervals communications between tasks such that
the loss of optimality is minimal. For example, it can be imagined that after solving
individually sub-problems, we reiterate on some portions of the sub-problems which
are inter-related, in order to refine the decisions taken locally. This decomposition is
likely to improve the scalability and allow enriching the problem with more complex
architecture aspects. The challenge remains to find an acceptable trade-off between
scalability gain and solution quality loss.

149

<0, 29>
<239, 268>

t
2

<30, 229>
<269, 468>

t
3

<230, 374>
<469, 613>

<375, 1149>
<614, 1388>

<1277, 1316>
<1516, 1555>

<1150, 1276>
<1389, 1515>

t
7

<1317, 1381>
<1556, 1620>

t
1

t
4

t
5

t
6

Sub-problem 1
Time interval 1

{0, …, 613}

Sub-problem 2
Time interval 2
 {375, …, 1555}

Sub-problem 3
Time interval 3

{1317, …, 1620}

Cut 1 Cut 2

Figure 6.3: Example illustrating time decomposition of the DSE problem.

150

Bibliography

[1] athena abdi, Alain Girault, and Hamid R. Zarandi. Erpot: A quad-criteria
scheduling heuristic to optimize execution time, reliability, power consumption
and temperature in multicores. IEEE Transactions on Parallel and Distributed
Systems, 30(10):2193–2210, 2019.

[2] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. A
UML-based Environment for System Design Space Exploration. In ICECS,
pages 1272–1275, 2006.

[3] Ludovic Apvrille. Ttool. http://ttool.telecom-paristech.fr, 2017.

[4] David Atienza, Federico Angiolini, Srinivasan Murali, Antonio Pullini, Luca
Benini, and Giovanni De Micheli. Network-on-chip design and synthesis out-
look. Integration, 41(3):340–359, 2008.

[5] Brian Bailey, Grant Martin, and Andrew Piziali. Chapter 1 - what is esl? In Brian
Bailey, Grant Martin, and Andrew Piziali, editors, ESL Design and Verification,
Systems on Silicon, pages 1–9. Morgan Kaufmann, Burlington, 2007.

[6] Adarsha Balaji, Yuefeng Wu, Anup Das, Francky Catthoor, and Siebren Schaaf-
sma. Exploration of segmented bus as scalable global interconnect for neuro-
morphic computing. In Proceedings of the 2019 on Great Lakes Symposium on
VLSI, GLSVLSI ’19, page 495–499, New York, NY, USA, 2019. Association for
Computing Machinery.

[7] Luca Benini and Giovanni De Micheli. Networks on Chips: Technology and
Tools. Systems on Silicon. Morgan Kaufmann, San Francisco, 2006.

151

http://ttool.telecom-paristech.fr

[8] Shuvra Bhattacharyya, Praveen Murthy, and Edward Lee. Optimized software
synthesis for synchronous dataflow. pages 250–262, 01 1997.

[9] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano. An efficient and complete
approach for throughput-maximal sdf allocation and scheduling on multi-core
platforms. In 2010 Design, Automation Test in Europe Conference Exhibition
(DATE 2010), pages 897–902, 2010.

[10] Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini. Through-
put constraint for synchronous data flow graphs. In Willem-Jan van Hoeve and
John N. Hooker, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 26–40, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[11] Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini.
Maximum-throughput mapping of sdfgs on multi-core soc platforms. Journal
of Parallel and Distributed Computing, 73(10):1337–1350, 2013.

[12] V. Chankong and Y. Haimes. Multiobjective decision making: Theory and
methodology. 1983.

[13] J. Y. Chen, W. B. Jone, J. S. Wang, H. . Lu, and T. F. Chen. Segmented bus de-
sign for low-power systems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1):25–29, 1999.

[14] Kenneth Chircop and David Zammit-Mangion. On epsilon-constraint based
methods for the generation of pareto frontiers. Journal of Mechanics Engineer-
ing and Automation, 3:279–289, 05 2013.

[15] Alessandro Cilardo and Edoardo Fusella. Design automation for application-
specific on-chip interconnects: A survey. Integration, 52:102–121, 2016.

[16] Alessandro Cilardo, Edoardo Fusella, L. Gallo, A. Mazzeo, and Nicola Maz-
zocca. Automated design space exploration for fpga-based heterogeneous in-
terconnects. Design Automation for Embedded Systems, 18, 03 2014.

152

[17] Alessandro Cilardo, Edoardo Fusella, Luca Gallo, and Antonino Mazzeo. Ex-
ploiting concurrency for the automated synthesis of mpsoc interconnects. ACM
Transactions on Embedded Computing Systems, 14:1–24, 04 2015.

[18] Indraneel Das and J. E. Dennis. Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization prob-
lems. SIAM Journal on Optimization, 8(3):631–657, 1998.

[19] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In TACAS,
pages 337–340, 2008.

[20] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: An ap-
petizer. In Marcel Vinícius Medeiros Oliveira and Jim Woodcock, editors, For-
mal Methods: Foundations and Applications, pages 23–36, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[21] S. Edwards. “dataflow languages. http://www.cs.columbia.edu/~sedwards/
classes/2001/w4995-02/presentations/dataflow.ppt, 2001.

[22] M. Fakih, K. Grüttner, M. Fränzle, and A. Rettberg. Towards performance anal-
ysis of sdfgs mapped to shared-bus architectures using model-checking. In
2013 Design, Automation Test in Europe Conference Exhibition (DATE), pages
1167–1172, 2013.

[23] FICO. Mathematical programming. http://www.fico.com/
fico-xpress-optimization/docs/dms2018-04/getting_started/dhtml/
chap1_sec_c1s1.html.

[24] Peter C. Fishburn. Lexicographic orders, utilities and decision rules: A survey.
1974.

[25] M. R. Garey and David S. Johnson. Complexity results for multiprocessor
scheduling under resource constraints. SIAM J. Comput., 4:397–411, 1975.

[26] Raul Gorcitz, Emilien Kofman, Thomas Carle, Dumitru Potop-Butucaru, and
Robert Simone. On the scalability of constraint solving for static/off-line real-
time scheduling. In Formal Modeling and Analysis of Timed Systems, pages
108–123, Cham, 07 2015. Springer International Publishing.

153

http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.cs.columbia.edu/~sedwards/classes/2001/w4995-02/presentations/dataflow.ppt
http://www.fico.com/fico-xpress-optimization/docs/dms2018-04/getting_started/dhtml/chap1_sec_c1s1.html
http://www.fico.com/fico-xpress-optimization/docs/dms2018-04/getting_started/dhtml/chap1_sec_c1s1.html
http://www.fico.com/fico-xpress-optimization/docs/dms2018-04/getting_started/dhtml/chap1_sec_c1s1.html

[27] Matthias Gries. Methods for evaluating and covering the design space during
early design development. Integr. VLSI J., 38(2):131–183, December 2004.

[28] Hua Wang, A. Papanikolaou, M. Miranda, and F. Catthoor. A global bus power
optimization methodology for physical design of memory dominated systems by
coupling bus segmentation and activity driven block placement. In ASP-DAC
2004: Asia and South Pacific Design Automation Conference 2004 (IEEE Cat.
No.04EX753), pages 759–761, 2004.

[29] IBM. Mathematical programming vs constraint programming. http://
ibmdecisionoptimization.github.io/docplex-doc/mp_vs_cp.html.

[30] Ahmed Amine Jerraya and Wayne Wolf. Chapter 1 - the what, why, and how
of mpsocs. In Ahmed Amine Jerraya and Wayne Wolf, editors, Multiprocessor
Systems-on-Chips, Systems on Silicon, pages 1 – 18. Morgan Kaufmann, San
Francisco, 2005.

[31] Jui-Ming Chang and M. Pedram. Energy minimization using multiple supply
voltages. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
5(4):436–443, 1997.

[32] S. Kamil, L. Oliker, A. Pinar, and J. Shalf. Communication requirements and
interconnect optimization for high-end scientific applications. IEEE Transactions
on Parallel and Distributed Systems, 21(2):188–202, 2010.

[33] James E. Kelley and Morgan R. Walker. Critical-path planning and scheduling.
In IRE-AIEE-ACM, pages 160–173, 1959.

[34] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 19(12):1523–1543, 2000.

[35] N. Khalilzad, K. Rosvall, and I. Sander. A modular design space exploration
framework for multiprocessor real-time systems. In FDL, pages 1–7, 2016.

154

http://ibmdecisionoptimization.github.io/docplex-doc/mp_vs_cp.html
http://ibmdecisionoptimization.github.io/docplex-doc/mp_vs_cp.html

[36] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and Kees A. Vissers.
A methodology to design programmable embedded systems - the y-chart ap-
proach. In Embedded Processor Design Challenges: Systems, Architectures,
Modeling, and Simulation - SAMOS, page 18–37, Berlin, Heidelberg, 2002.
Springer-Verlag.

[37] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing. IEEE Trans. Comput.,
36(1):24–35, 1987.

[38] Jing Lin, Andreas Gerstlauer, and Brian L. Evans. Communication-aware het-
erogeneous multiprocessor mapping for real-time streaming systems. Journal
of Signal Processing Systems, 69:279–291, 2012.

[39] Mingze Ma and Rizos Sakellariou. Communication-aware scheduling algo-
rithms for synchronous dataflow graphs on multicore systems. In SAMOS,
pages 55–64, 2018.

[40] R. Marler and Jasbir Arora. Survey of multi-objective optimization methods
for engineering. Structural and Multidisciplinary Optimization, 26:369–395, 04
2004.

[41] Peter Marwedel. Embedded and cyber-physical systems in a nutshell. dac.com
Knowledge Center Article, 01 2010.

[42] Kaisa Miettinen. Introduction to Multiobjective Optimization: Noninteractive Ap-
proaches, pages 1–26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[43] O. Moreira, J. . Mol, M. Bekooij, and J. van Meerbergen. Multiprocessor re-
source allocation for hard-real-time streaming with a dynamic job-mix. In 11th
IEEE Real Time and Embedded Technology and Applications Symposium,
pages 332–341, 2005.

[44] T. Mudge. Power: a first-class architectural design constraint. Computer,
34(4):52–58, 2001.

155

[45] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and L. Peh. Re-
search challenges for on-chip interconnection networks. IEEE Micro, 27(5):96–
108, 2007.

[46] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures: Sys-
tem on Chip Interconnect. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[47] A. D. Pimentel. Exploring exploration: A tutorial introduction to embedded sys-
tems design space exploration. IEEE Design Test, 34(1):77–90, Feb 2017.

[48] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint
Programming. Elsevier Science Inc., USA, 2006.

[49] K. Rosvall, T. Mohammadat, G. Ungureanu, J. Öberg, and I. Sander. Exploring
Power and Throughput for Dataflow Applications on Predictable NoC Multipro-
cessors. In DSD, pages 719–726, 2018.

[50] K. Rosvall and I. Sander. A constraint-based design space exploration frame-
work for real-time applications on MPSoCs. In DATE, pages 1–6, 2014.

[51] Kathrin Rosvall and Ingo Sander. Flexible and Tradeoff-Aware Constraint-Based
Design Space Exploration for Streaming Applications on Heterogeneous Plat-
forms. ACM TODAES, 23(2):21:1–21:26, 2017.

[52] E Salminen, A Kulmala, and Timo Hämäläinen. Survey of networks-on-chip
proposals. OCP International Partnership, page 13 p, 01 2009.

[53] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software
design methodology for embedded systems. IEEE Design Test of Computers,
18(6):23–33, 2001.

[54] T. Seceleanu. Communication on a segmented bus. In IEEE International SOC
Conference, 2004. Proceedings., pages 205–208, 2004.

[55] T. Seceleanu, V. Leppänen, and O. S. Nevalainen. Improving the performance
of bus platforms bymeans of segmentation and optimized resource allocation.
EURASIP J. Embedded Syst., 2009, January 2009.

156

[56] T. Seceleanu, V. Leppanen, J. Suomi, and O. Nevalainen. Resource alloca-
tion methodology for the segmented bus platform. In Proceedings 2005 IEEE
International SOC Conference, pages 129–132, 2005.

[57] T. Seceleanu and S. Stancescu. Arbitration for the segmented bus architecture.
In 2004 International Semiconductor Conference. CAS 2004 Proceedings (IEEE
Cat. No.04TH8748), volume 2, pages 487–490 vol.2, 2004.

[58] Tiberiu Seceleanu. The segbus platform – architecture and communication
mechanisms. Journal of Systems Architecture, 53(4):151–169, 2007.

[59] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-
core systems: Survey of current and emerging trends. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–10, 2013.

[60] Stephen M. Smith and J. Michael Brady. Susan - a new approach to low level im-
age processing. International Journal of Computer Vision, 23(1):45–78, 1997.

[61] Sundararajan Sriram and Shuvra Bhattacharyya. Embedded Multiprocessors:
Scheduling and Synchronization, Second Edition. 01 2009.

[62] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal. Multiprocessor resource
allocation for throughput-constrained synchronous dataflow graphs. In 2007
44th ACM/IEEE Design Automation Conference, pages 777–782, 2007.

[63] S. Stuijk, M. Geilen, and T. Basten. Sdf3: Sdf for free. In Sixth International
Conference on Application of Concurrency to System Design (ACSD’06), pages
276–278, 2006.

[64] D. Sylvester and Chenming Wu. Analytical modeling and characterization of
deep-submicrometer interconnect. Proceedings of the IEEE, 89(5):634–664,
2001.

[65] FRONTLINE SYSTEMS. SOLVER TUTORIAL - SIZE, SPARSITY AND INTE-
GER VARIABLES. https://www.solver.com/size-sparsity-integer.

[66] P. Tendulkar, P. Poplavko, I. Galanommatis, and O. Maler. Many-core schedul-
ing of data parallel applications using smt solvers. In 2014 17th Euromicro
Conference on Digital System Design, pages 615–622, 2014.

157

https://www.solver.com/size-sparsity-integer

[67] Pranav Tendulkar. Mapping and Scheduling on Multi-core Processors using
SMT Solvers. PhD thesis, University of Grenoble, 2014.

[68] Pranav Tendulkar, Peter Poplavko, and Oded Maler. Symmetry breaking for
multi-criteria mapping and scheduling on multicores. In Víctor Braberman and
Laurent Fribourg, editors, Formal Modeling and Analysis of Timed Systems,
pages 228–242, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[69] Kalray. Kalray MPPA-256. http://www.kalray.eu/.

[70] International Technology Roadmap for Semiconductors (ITRS) The ITRS Tech-
nology Working Groups. http://www.public.itrs.net, 2005.

[71] William Thies. Language and Compiler Support for Stream Programs. PhD
thesis, USA, 2009. AAI0821753.

[72] TTool. http://ttool.telecom-paristech.fr/diplodocus.html, 2006.

[73] Erik B. van der Tol and Egbert G.T. Jaspers. Mapping of MPEG-4 decoding on
a flexible architecture platform. In Sethuraman Panchanathan, V. Michael Bove
Jr., and Subramania I. Sudharsanan, editors, Media Processors 2002, volume
4674, pages 1 – 13. International Society for Optics and Photonics, SPIE, 2001.

[74] Peter van Stralen and Andy Pimentel. Scenario-based design space exploration
of mpsocs. In 2010 IEEE International Conference on Computer Design, pages
305–312, 2010.

[75] S. Voss and B. Schätz. Deployment and scheduling synthesis for mixed-critical
shared-memory applications. In 2013 20th IEEE International Conference and
Workshops on Engineering of Computer Based Systems (ECBS), pages 100–
109, 2013.

[76] Sebastian Voss, Johannes Eder, and Florian Hölzl. Design Space Exploration
and its Visualization in AUTOFOCUS3. In SE Workshop, volume 1129, pages
57–66, 2014.

[77] P. Wielage and K. Goossens. Networks on silicon: blessing or nightmare? In
Proceedings Euromicro Symposium on Digital System Design. Architectures,
Methods and Tools, pages 196–200, 2002.

158

http://www.kalray.eu/
http://www.public.itrs.net
http://ttool.telecom-paristech.fr/diplodocus.html

[78] W. Wolf. The future of multiprocessor systems-on-chips. In Proceedings. 41st
Design Automation Conference, 2004., pages 681–685, 2004.

[79] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-on-chip (mpsoc)
technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(10):1701–1713, 2008.

[80] Yv Haimes Yv, L. Lasdon, and Dang Da. On a bicriterion formation of the prob-
lems of integrated system identification and system optimization. IEEE Trans-
actions on Systems, Man, and Cybernetics, pages 296–297, 1971.

[81] Y. Zhang, R. Y. Chen, W. Ye, and M. J. Irwin. System level interconnect power
modeling. In Proceedings Eleventh Annual IEEE International ASIC Conference
(Cat. No.98TH8372), pages 289–293, 1998.

159

Titre: Une approche basée programmation par contraintes pour l’exploration d’architectures multi bus pour les applica-
tions flots de données

Mots clés: Exploration d’architecture, Programmation par contraintes, Satisfiability Modulo Theories, UML / SysML,
Ingénierie des modèles, Flot de données

Résumé: Cette thèse a été effectuée à Télécom Paris et
a été financée par Nokia Bell Labs France. Dans ce con-
texte, nous nous intéressons à l’exploration d’architecture
des systèmes embarqués pour le déploiement des appli-
cations de traitement de signal, au niveau système. Ici,
l’exploration d’architecture vise à identifier l’allocation et
l’ordonnancement des deux composants des applications
: les tâches et leurs transferts des données. Cette iden-
tification a un impact clé sur la performance (e.g., latence
de bout en bout) globale du système. Tandis que plusieurs
travaux se sont intéressés aux diverses architectures de
communication, cette thèse se focalise sur les architectures
multi-bus, particulièrement adaptées aux plateformes de
calcul pour les applications de traitement de signal. Pour
ce type de plateformes, nous montrons que les contribu-
tions déjà proposées sont insuffisantes. A cet égard, nous
proposons trois contributions : 1) Une formulation satis-
fiability modulo theories (SMT) qui permet d’explorer les
décisions d’allocation et d’ordonnancement sur les archi-
tectures multi-bus pour l’optimisation de la latence ; Nous
démontrons son applicabilité pour produire des solutions

pour des applications connues. 2) Pour améliorer la scal-
abilité de la recherche optimale de la première contribu-
tion, nous proposons une nouvelle technique pour couper
l’espace des solutions recherchées. Notre évaluation dé-
montre un gain de scalabilité. Finalement, 3) la consom-
mation de puissance par les communications est étudiée
; nous montrons comment optimiser la latence et la con-
sommation conjointement. Nos évaluations montrent com-
ment différents compromis entre latence et consommation
de puissance peuvent être étudiés. De plus, nous mon-
trons comment nos contribution ont été intégrées à un outil
de modélisation et de vérification particulièrement adapté
à la conception des systèmes embarqués au niveau sys-
tème (TTool). Enfin, nous identifions deux axes principaux
pour les perspectives de ce travail. Le premier porte sur
l’extension de la formulation actuelle pour modéliser de
nouveaux aspects des systèmes étudiés (e.g., mémoire
partagée, débit). Le deuxième axe concerne l’élaboration
de nouvelles techniques pour améliorer davantage la scal-
abilité de la recherche optimale.

Title: Constraint Programming for Design Space Exploration of Dataflow Applications on Multi-Bus Architectures

Keywords: Design Space Exploration, Constraint Programming, Satisfiability Modulo Theories, UML / SysML, Data
Flow, Model-Driven Engineering

Abstract: This thesis is part of a collaboration between
Télécom Paris and Nokia Bell Labs France. In this con-
text, we focus on the system-level Design Space Explo-
ration of embedded systems for the execution of signal pro-
cessing applications. In the system we target, the design
space exploration process intends to identify the allocation
and scheduling of both application tasks and data trans-
fers between these tasks: this identification plays a key
role in the overall performance (e.g., end-to-end latency)
of these systems. While there are already multiple work
for diverse communication architectures, this thesis focuses
on multi-bus architectures that are particularly well-suited
for computation platforms of signal processing applications.
For these platforms, we show that only limited contributions
have already been proposed. Three contributions are pro-
posed to tackle the above mentioned problem. 1) A sat-
isfiability modulo theories (SMT) formulation which allows
to explore mapping and scheduling decisions on multi-bus

architectures for latency optimization; We demonstrate its
ability to produce a solution for well-known applications.
Yet, 2) to mitigate the scalability limitations for the opti-
mal solution search of this first contribution, we propose
a technique to prune the design space of searched solu-
tions. Evaluations we provide demonstrate a better scal-
ability. Last, 3) communication allocation is enhanced with
power consumption, and we show how to jointly optimize la-
tency and power consumption. Our evaluation is again ap-
plied to a set of well-known signal processing applications
and demonstrates how different trade-offs between latency
and power consumption can be studied. Our contributions
are integrated into a state-of-the-art modeling and verifica-
tion tool for the system-level design of embedded systems
(TTool). Perspectives are articulated in mainly two axes. 1)
Extending the current formulation to account for new design
aspects (e.g., shared memory, throughput). 2) Further im-
proving the scalability of the optimal search.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Design Space Exploration
	Applications
	Architectures
	The segmented bus interconnect

	Problem Statement
	Contribution
	Thesis Outline

	Context and Related Work
	Design Space Exploration Problems
	Application model
	Processing models: heterogeneity
	Communication models
	Design decisions
	Design objectives
	Mapping and scheduling models

	Design Space Exploration Techniques
	Evaluation methods
	Search strategies

	Targeted Systems
	Existing Design Space Exploration Work
	Summary and Conclusion

	A Satisfiability Modulo Theories Formulation for the dse of Multi-Bus architectures
	Introduction
	Problem definition
	Workload Model
	Architecture Model
	Deployment Solution
	The SMT formulation
	Decision variables
	Constraints
	Latency design objectives

	Implementation
	Overview of the implemented solution
	Model-based design
	UML/SysML-to-SMT transformation
	Model-based deployment solution

	Evaluation
	Experiment 1: Best interconnect selection
	Experiment 2: Scalability evaluation

	Summary and limitations

	A Reduction Method to Prune the Design Space for the Problem of Scheduling Tasks and Communications
	Introduction
	A smt Model for the Problem of Scheduling Tasks and Communications
	Assumptions
	The smt Model

	Description of the Design Space Reduction Method
	Overview
	The pre-analysis
	The reductions
	Example

	Evaluation
	Experiment 1: Influence on exploration run-time
	Experiment 2: Influence on granularity
	Experiment 3: Optimal solution search
	Experiment 4: Adjusting granularity to solve larger scale problems

	Conclusion

	Extending the Latency SMT Model with a Power Consumption Model for Multi-Bus Interconnects
	Introduction
	Power Consumption Modeling for the Multi-Bus Interconnect
	Scope and assumptions
	The SMT model

	DSE for Latency and Power Optimization
	Approach 1: Minimize power under minimal latency
	Approach 2: Minimize power under deadline constraints
	Approach 3: Pareto optimality for latency and power consumption

	Evaluation
	Experiment 1: Evaluation of Approach 1 and Approach 2
	Experiment 2: Generating Pareto optimal solutions using Approach 3
	Experiment 3: Evaluating granularity effect

	Conclusion

	Conclusion and Future Work
	Summary of the contributions
	Summary of the first contribution
	Summary of the second contribution
	Summary of the third contribution
	Summary of the integration to a mde design environment

	Conclusions
	Limitations and Improvements
	Future work
	Extending the approach with new specification
	Refining the pre-analysis with task mapping information
	Symmetry breaking in time slots allocation
	Temporal decomposition

	Bibliography

