
HAL Id: tel-02947030
https://pastel.hal.science/tel-02947030

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cyber-security of connected vehicles : contributions to
enhance the risk analysis and security of in-vehicle

communications
Khaled Karray

To cite this version:
Khaled Karray. Cyber-security of connected vehicles : contributions to enhance the risk analysis and
security of in-vehicle communications. Cryptography and Security [cs.CR]. Université Paris Saclay
(COmUE), 2019. English. �NNT : 2019SACLT023�. �tel-02947030�

https://pastel.hal.science/tel-02947030
https://hal.archives-ouvertes.fr

Cyber-security of Connected
Vehicles: Contributions to enhance

the Risk Analysis and Security of
in-Vehicle Communications.

Thèse de doctorat de l'Université Paris-Saclay
préparée à Institut Mines-Télécom - Télécom ParisTech

Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la communication (STIC)

Spécialité de doctorat : Réseaux, Information, Communications

Thèse présentée et soutenue à Télécom ParisTech, le 01-04-2019, par

 Khaled KARRAY

Composition du Jury :

Sjouke MAUW
Professeur, Université de Luxembourg Rapporteur
Vincent NICOMETTE
Professeur, INSA de Toulouse (LAAS) Rapporteur
Houda LABIOD
Professeur, Télécom ParisTech (LTCI) Président
Eric DEQUI
Maître expert Cyber securité, PSA-GROUPE Examinateur
Witold KLAUDEL
Expert Cyber securité, GROUPE RENAULT Examinateur
Sylvain GUILLEY
Directeur technique Secure-IC
Professeur, Télécom ParisTech (LTCI) Directeur de thèse
Jean-luc DANGER
Professeur, Télécom ParisTech (LTCI) Co-Directeur de thèse
Abdelaziz MOULAY ELAABID
Expert Cyber securité, PSA-GROUPE Encadrant industriel
Ludovic APVRILLE
Professeur, Télécom ParisTech (LTCI) Invité

N
N
T
 2

0
1
9S

A
C
L T

0
2
3

Titre : Cybersécurité des véhicules connectés: contributions pour améliorer l'analyse des risques et la
sécurité des communications embarquées.

Mots clés : Analyse de risque, Arbre d'attaques, Obfuscation sur CAN, Detection d'intrusion.

Résumé : Au cours de la dernière décennie, les
progrès technologiques ont rendu la voiture de plus
en plus autonome et connectée au monde extérieur.
D'un autre côté, cette transformation technologique a
soumis les véhicules modernes à des cyber-attaques
avancées. Les architectures cyber-physiques des
systèmes automobiles n'ont pas été conçues dans un
souci de sécurité. Avec l'intégration de plates-formes
connectées dans ces systèmes cyber-physiques, le
paysage des menaces a radicalement changé.
Dernièrement, plusieurs atteintes à la sécurité visant
différents constructeurs automobiles ont été signalées
principalement par la communauté scientifique. Cela
fait de la sécurité une préoccupation essentielle, avec
un impact important, en particulier sur la future
conduite autonome. Afin de remédier à cela, une
ingénierie de sécurité rigoureuse doit être intégrée au
processus de conception d'un système automobile et
de nouvelles methodes de protections adapté

aux specificitées des systemes vehiculaire doivent
etre introduite. La modélisation des menaces et
l'analyse des risques sont des éléments essentiels de
ce processus. Pour ce faire, les arbres d’attaque se
sont avérés un moyen raisonnable de modéliser les
étapes d’attaque et d’aider le concepteur à évaluer
les risques. Néanmoins, étant donné la diversité des
architectures, élaborer des arbres d’attaque pour
toutes les architectures peut rapidement devenir un
fardeau. Cette thèse aborde la problématique de la
sécurité des véhicules connectés. L'approche
présentée consiste à améliorer la méthodologies
d'évaluation de la sécurité par la génération
automatique d'arbres d'attaques pour assister à
l'étape d'analyse de risques. On propose aussi de
nouvelle méthodes de protections des réseau internes
véhiculaire capable de faire face aux attaques cyber-
physiques existante.

Title : Cyber-security of Connected Vehicles: Contributions to enhance the Risk Analysis and Security of
in-Vehicle Communications.

Keywords : Risk Analysis, Attack Tree, Obfuscation on CAN, Intrusion Detection.

Abstract : During the last decade, technological
advances have made the car more and more
connected to the outside world. On the flip side, this
technological transformation has made modern
vehicles subject to advanced cyber attacks. The
cyber-physical architectures of automotive systems
were not designed with security in mind. With the
integration of connected platforms into these cyber-
physical systems, the threat landscape has radically
changed. Lately, multiple security breaches targeting
different car manufacturers have been reported
mainly by the scientific community. This makes
security a critical concern, with a high impact
especially on future autonomous driving. In order to
address this gap, rigorous security engineering needs
to be integrated into the design process of an

automotive system and new protection methods
adapted to the specificities of the vehicle systems
must be introduced. Threat modeling and risk
analysis are essential building blocks of this process.
In this context, attack trees proved to be a
reasonably good way to model attack steps.
Nevertheless, given the diversity of architectures, it
can quickly become a burden to draw attack trees for
all architectures. This thesis tackles the issues of
security of connected vehicles. The proposed
approach allows enhancing the threat analysis with
the automated generation of attack tree used to assist
in the risk assessment step. We also propose novel
and efficient protection mechanisms for in-vehicle
communication networks capable of coping with
existing cyber-physical attacks.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

iii

iv

Rremerciments

Ma thèse s’est déroulée en partie à Telecom Paris au sein du département COMELEC, en
partie à PSA-Groupe au sein du service de Cyber Sécurité et de sureté de fonctionnement.
Avant de remercier les personnes qui m’ont aidée dans ma thèse, j’aimerais remercier PSA-
Groupe et Telecom Paris pour avoir financé ces travaux de recherche.

Tout d’abord, je tiens à remercier Dr. Moulay Abdelaziz Elaabid, Prof. Jean-Luc
Danger et Prof. Sylvain Guilley pour m’avoir proposé cette opportunité et avoir rendu
possible cette expérience enrichissante. Tous les trois ont activement participé à l’encadrement
et au bon déroulement de cette thèse.

Prof. Sylvain Guilley s’est avéré un directeur de thèse remarquable. Je le remercie
pour sa grande disponibilité, en particulier dans les moments clés. Les discutions avec Sylvain
ont toujours été bénéfiques et prolifiques. Sa faculté d’écoute et de compréhension en font un
excellent directeur de thèse.

Je tiens également à remercier mon encadrant de thèse Prof. Jean-Luc Danger pour le
suivis continu, son approche pédagogique ainsi que sa grande disponibilité. Je le remercie
aussi de sa bonne humeur et de la bonne ambiance de travail qu’il a su instaurer. Je tiens
aussi à souligner la facilité avec laquelle il est possible de discuter avec lui. Les réunions avec
Jean-Luc ont toujours été un plaisir et l’assurance de conseils avisés.

Enfin et surtout, je remercie Dr. Moulay Abdelaziz Elaabid pour avoir assuré
l’encadrement industriel de la thèse. Je le remercie pour les discussions qui m’ont aidé
à mieux comprendre les problématiques et les enjeux industriel. Je le remercie également pour
ses qualités personnelles et tous ses conseils qui m’ont aidé à mieux appréhender et naviguer
les procédure d’une grande entreprise telle que PSA-Groupe. Son aide m’a également été
précieuse dans l’organisation et la valorisation de mon travail.

Je remercie avec une grande considération les membres de mon jury de thèse Sjouke
MAUW,Vincent NICOMETTE,Houda LABIOD,Eric DEQUI,Witold KLAUDEL
et Ludovic APVRILLE pour avoir accepté et pris le temps d’évaluer mes travaux. Un
merci particulier à Prof. Sjouke MAUW et à Prof. Vincent NICOMETTE pour avoir
accepté d’être rapporteurs de ma thèse.

v

Un grand merci à mes collègues de Telecom Paris et de PSA-Groupe : Youssef Souissi,
Oualid Trabelsi, Sofiane Takarabt, Wei Cheng, Alexander Schaub, Michaël Timbert, Xuan
Thuy Ngo, Sébastien Carré, Annelie Heuser, Laurent Sauvage, Nicolas Bruneau, Margaux
Dugardin, Eric Dequi, Jean de Baudreuil, Moulay Abdelaziz Elabid, Béatrice Gardin-Balaÿ,
Yves Le Bobinnec, Cèdric Wilwert, avec qui j’ai partagé les longs déjeunés et les pause cafés,
ceux qui m’ont aider comprendre le monde de la recherche et de l’industrie.

Plus personnellement, je remercie tous mes amis et ma famille pour leur soutien incondi-
tionnel. Mes remerciements les plus profonds vont évidement à mes parents Walid KARRAY
et Hekma MARRAKCHI, qui m’ont toujours encouragée dans mes études. C’est grâce à eux
deux que j’ai cet amour des sciences. Ils m’ont toujours laissée libre de mes choix et ont
toujours été de bons conseils et modèles. Merci pour la confiance qu’ils m’ont accordée. Un
grand merci à mes deux frères, je sais que je peux toujours compter sur eux.

vi

Abstract

During the last decade, technological advances have made the car more and more autonomous
and connected to the outside world, and this will even accelerate in the near future. On the
flip side, this technological transformation has made modern vehicles subject to advanced
cyber attacks. The cyber-physical architectures of automotive systems were not designed
with security in mind. It is primarily due to the fact cars were closed systems, and internal
communication buses were considered to be trusted. With the integration of connected plat-
forms into these cyber-physical systems, the threat landscape has radically changed. Lately,
multiple security breaches targeting different car manufacturers have been reported mainly by
the scientific community. This makes security a critical concern, with a high impact especially
on future autonomous driving which will arrive soon.

In order to address this gap, rigorous security engineering needs to be integrated into
the design process of an automotive system. Threat modeling and risk analysis are essential
building blocks of this process. The security experts have to elaborate attack scenarios and
assess their impact and likelihood. This imposes a step to consider every possible way to
attack the vehicular system to reach a particular goal. In order to do this, attack trees proved
to be a reasonably good way to model attack steps and to assist the designer in risk assessment.
Besides, this formalism presents some similarities with Fault Trees that are widely used in
safety risk assessment in the automotive industry. This makes it easier to adopt for familiarity
reasons. Nevertheless, given the diversity of architectures, it can quickly become a burden
to draw attack trees for all architectures. The first part of the thesis tackles this particular
problem. An updated state of the art of attacks targeting modern vehicles is presented. This
gives a deeper understanding of the threat landscape, the complexity of the attack steps and
attackers profiles. A formal model is then established that takes as input the car architectural
model in terms of services, hardware, and network connections as well as an attacker model
represented as a set of basic attacks. This formal model is then used to automatically generate
possible attack paths that can be exploited by a potential adversary. As a result attack trees
are automatically generated given an architectural model and an attacker model. These attack
trees are then used as a starting point for accurate risk assessment. Consequently, the designer
will be able to decide what are the threats that need to be covered and what are the threats

vii

that can be accepted as part of the residual risk and depending on the compromise with the
implementation cost.

Following the first contribution, there was an interesting observation that gaining access
to internal communication buses of the vehicle is a central step of an important set of attacks.
This motivated the second part of the thesis which introduces novel techniques to protect
from and detect attacks on internal communication buses. The controller area network being
the most used, we concentrate our work on this protocol. For an attacker model that has
physical access to the CAN bus, we design the first solution based on identifier randomization
that is capable of protecting the system against reverse engineering, replay, and injection
attacks. This solution is evaluated using information theoretic metrics such as the entropy
and conditional entropy of the identifiers and compared to similar state-of-the-art techniques.
It is found that the proposed methods outperform known solutions and give the optimal
protection level.

Second, we investigate intrusion detection methods as one of the promising security
solutions. We present the different methods that are being used today for detection and
prevention. Then we propose a machine learning-based detection method that protects against
a more advanced attacker model that has indirect and remote physical access to the internal
communication buses. This solution is built by training using CAN log traces collected from
several hours of drive tests. It is also tested against state of the art attacks. Results show
that it has a high detection rate, and is more robust than known detection mechanisms.

viii

Résumé

Au cours de la dernière décennie, les progrès technologiques ont permis à la voiture d’être
de plus en plus connectée au monde extérieur. En contrepartie, ces nouvelles fonctionnalités
de communication ont ouverts la voie aux cyber-attaques sur les véhicules modernes. Le
problème vient du fait que les architectures des systèmes automobiles n’ont pas été conçues
dans un souci de sécurité. En effet, les voitures ont toujours été considérées jusqu’à lors
comme des systèmes isolés avec des bus de communication internes jugés de confiance. Avec
l’intégration de plates-formes connectées dans ces systèmes cyber-physiques, le paysage des
menaces a radicalement changé. Dernièrement, plusieurs atteintes à la sécurité visant différents
constructeurs automobiles ont été signalées. La sécurité est ainsi devenue une préoccupation
essentielle, en particulier sur la future conduite autonome.

Afin de remédier à cela, une ingénierie de sécurité rigoureuse doit être intégrée au processus
de conception d’un système automobile. La modélisation des menaces et l’analyse des risques
sont des éléments essentiels de ce processus. Les experts de la cyber-sécurité doivent élaborer
des scénarios d’attaque et évaluer leur impact et leur probabilité de succès. Cela impose
de considérer tous les moyens possibles d’attaquer le système véhiculaire pour atteindre un
objectif particulier. Pour ce faire, les arbres d’attaque représentent un moyen pour modéliser
les attaques et aider le concepteur à évaluer les risques et s’en prémunir. Néanmoins, étant
donné la diversité des architectures, élaborer des arbres d’attaque pour toutes les architectures
peut rapidement devenir un fardeau. La première partie de la thèse aborde ce problème
particulier. Un modèle formel est ainsi établi, qui prend en entrée le modèle architectural
de la voiture ainsi qu’un modèle d’attaquant. Ce modèle formel est ensuite utilisé pour
générer automatiquement des chemins d’attaque pouvant être exploités par un adversaire.
En conséquence, les arbres d’attaque sont automatiquement générés. Ces arbres d’attaque
sont ensuite utilisés comme point de départ pour une évaluation précise des risques. Par
conséquent, le concepteur devient en mesure de décider quelles sont les menaces à couvrir et
celles qui peuvent être acceptées comme faisant partie du risque résiduel.

Suite à la première contribution, on a pu noter que l’accès aux bus de communication
internes du véhicule est un moyen d’accès commun à un ensemble important d’attaques.

ix

Cela a motivé la deuxième partie de la thèse qui introduit de nouvelles techniques pour
protéger et détecter les attaques sur les bus de communication internes. Pour un modèle
d’attaquant disposant d’un accès physique au bus CAN, nous avons étudié des solutions
basée sur l’obfuscation des identifiants, capable de protéger le système contre les attaques en
rétro-conception et d’injection de trames. Cette solution est évaluée à l’aide de métriques issues
de la théorie de l’information telles que l’entropie et l’entropie conditionnelle des identifiants.
Elle est ensuite comparée à des techniques de l’état de l’art. Il a été constaté que les méthodes
proposées surpassent les solutions connues et donnent de meilleurs résultats.

De façon à contrer les attaques tirant parti des accès distants, nous avons étudié des
méthodes de détection d’intrusion faisant parties des solutions de sécurité prometteuses. Ces
différentes méthodes peuvent être utilisées à la fois pour la détection et la mise en place de
protections en cas d’alarme. Nous avons notamment proposé une méthode de détection basée
sur l’apprentissage automatique. Cette solution repose sur un entraÃőnement utilisant les
traces du bus CAN collectées pendant plusieurs heures de tests de conduite. La méthode a
également été évaluée contre des attaques simulées. Les résultats montrent qu’elle présente un
taux de détection très élevé et est ainsi plus robuste que les mécanismes de détection connus.

x

Contents

List of Figures xv

List of Tables xix

List of Abbreviations 1

1 Introduction 3
1.1 Context: security of connected vehicles . 3
1.2 The automotive industry challenges . 5
1.3 Motivation and goals . 5
1.4 Contributions . 6

1.4.1 Formal modeling approach for automatic attack tree generation 6
1.4.2 CAN identifier randomization strategy 6
1.4.3 Prediction-based intrusion detection system 7

1.5 Outline . 7

2 State of the Art 9
2.1 Introduction . 9
2.2 Cyber-physical architecture of connected cars 11

2.2.1 Sensors . 11
2.2.2 Actuators . 11
2.2.3 Electronic Control Units . 11
2.2.4 Communication interfaces . 12

2.2.4.1 In-vehicle shared communication buses 12
2.2.4.2 Diagnostics interface . 12
2.2.4.3 Communication with the outside world 13

2.2.5 Overall architecture . 13
2.2.6 Aftermarket and diagnostics Devices 13

2.3 Vulnerabilities and threats survey . 14
2.3.1 Vulnerabilities and attack vectors . 14

xi

CONTENTS

2.3.1.1 Direct physical access . 15
2.3.1.2 Indirect physical access . 16
2.3.1.3 Wireless access . 16

2.3.2 Threats . 17
2.3.2.1 Security violations . 17
2.3.2.2 Attacker motivation . 17

2.4 Countermeasures and Security methodologies 18
2.4.1 Countermeasures . 18

2.4.1.1 Architecture . 18
2.4.1.2 Asset protection and data security 20
2.4.1.3 Policy enforcement and run-time protections 20

2.4.2 Threat Analysis and Risk Assessment 21
2.5 In-Vehicule Secure Communication survey . 25

2.5.1 Controller Area Network Overview . 27
2.5.2 CAN Weaknesses . 31

2.5.2.1 Denial-of-Service . 31
2.5.2.2 Reverse engineering . 32
2.5.2.3 Fuzzing attack . 33
2.5.2.4 Impersonation attack . 33
2.5.2.5 Exhaustion attack . 33

2.5.3 Protection mechanisms . 34
2.5.3.1 Payload protection . 35
2.5.3.2 Identifier protection . 37
2.5.3.3 Intrusion Detection and Prevention Systems 38

2.5.4 Advantages and disadvantages . 40
2.6 Conclusion . 42

3 Risk analysis and Attack tree generation 43
3.1 Introduction . 43
3.2 Attack trees . 45

3.2.1 Presentation and formal definition . 45
3.2.2 Attack tree generation problem . 48

3.2.2.1 Attack trees in the automotive domain 48
3.2.2.2 Attack tree generation in other application domains 48

3.3 A case study: speed acquisition and display system 49
3.3.1 Description . 49
3.3.2 Goal of the attacker: forge displayed vehicle speed 50

3.4 Cyber-physical architecture formal model . 50
3.4.1 Data . 50
3.4.2 Communication mediums . 51
3.4.3 Hardware components . 51
3.4.4 Service components . 52
3.4.5 Attacker . 53
3.4.6 Architecture . 54
3.4.7 Security properties . 56
3.4.8 Case-study formal model . 57

xii

CONTENTS

3.5 Graph transformation system . 58
3.5.1 Definition . 58
3.5.2 Labeled transition system . 60
3.5.3 Tool support: GROOVE . 60
3.5.4 Case-study graph transformation system 60

3.6 Attack tree transformation . 62
3.6.1 Attack graph generation . 62
3.6.2 Attack tree generation: . 64
3.6.3 Case-study generation of attacks . 65

3.7 Security analysis and Countermeasure . 68
3.7.1 Security analysis . 68
3.7.2 Countermeasures: . 72

3.8 Conclusion . 73

4 Identifier Randomization: an Efficient Protection against CAN-bus At-
tacks 77
4.1 Introduction . 77
4.2 General formalism of ID-based protection . 78
4.3 Evaluation metrics . 80

4.3.1 Reverse-engineering attack . 80
4.3.2 Replay and injection attacks . 81

4.4 Proposed solutions . 81
4.4.1 The IA-CAN Approach . 81
4.4.2 Equal Intervals . 83
4.4.3 Frequency Intervals . 86
4.4.4 Dynamic Intervals . 88
4.4.5 Arithmetic Masking . 90

4.5 Comparison . 93
4.6 Conclusion . 96

5 On-board Intrusion Detection and Prevention system 97
5.1 Introduction . 97
5.2 Machine learning algorithms . 99

5.2.1 Learning strategy . 99
5.2.2 Parametric and non-parametric models 99

5.3 Principle and problem formulation . 100
5.3.1 Signal types . 100
5.3.2 Intrusion detection principle . 101
5.3.3 Mathematical formulation . 103
5.3.4 Real-valued signal . 104
5.3.5 Categorical signal . 105

5.4 Validation metrics . 105
5.4.1 Regression metrics for real-valued signals: 105
5.4.2 Classification metrics for categorical signals: 107

5.5 Supervised learning algorithms . 108
5.5.1 K-Nearest Neighbor . 108

xiii

CONTENTS

5.5.1.1 KNN for regression . 109
5.5.1.2 KNN for classification . 109

5.5.2 Decision tree . 110
5.5.2.1 Regression Trees . 111
5.5.2.2 Classification Trees . 112

5.5.3 Artificial Neural Network . 112
5.5.3.1 MLP for Regression . 115
5.5.3.2 MLP for Classification . 115

5.6 Data collection and feature engineering . 116
5.6.1 Experimental set-up . 116
5.6.2 Data collection . 116
5.6.3 Feature engineering . 118

5.7 Experimental validation and discussion . 119
5.7.1 Predicting a real-valued signal . 119

5.7.1.1 Speed signal . 119
5.7.1.2 Capturing nominal behavior of the speed signal 120

5.7.2 Predicting a categorical signal . 127
5.7.2.1 Brake lights command signal 127
5.7.2.2 Capturing nominal behavior of the brake-lights-command signal127

5.7.3 Unification of detection rule . 131
5.8 Evaluation against attacks . 131

5.8.1 Simulation of attacks . 132
5.8.2 Attacks against real-valued signal . 132

5.8.2.1 Random speed injection attack 132
5.8.2.2 Speed offset injection attack 133
5.8.2.3 Speed Denial of service (signal drop) attack 134

5.8.3 Attacks against categorical signal . 134
5.8.3.1 Random command injection attack 135
5.8.3.2 Inverse command injection attack 135
5.8.3.3 Denial of service (force to 0) attack 135

5.9 Alerts handling . 136
5.9.1 Prevention mechanism . 136
5.9.2 False positives reduction strategy . 137

5.10 Conclusion and discussion . 138

6 Conclusion 139
6.1 Summary . 139
6.2 Perspectives and future research directions . 140

6.2.1 On risk assessment . 140
6.2.2 On in-vehicle secure communications 140

Appendices 145
Transforamtion rules . 145
Entropy computations . 151

Bibliography 159

xiv

List of Figures

1.1 Conceptual diagram of the connected vehicle environment 4

2.1 Functionalities and services of Modern cars [1] 10
2.2 Example of cyber-physical architecture [95] 14
2.3 The EASIS project proposal architecture . 19
2.4 SAE-j3061 concept phase steps [32] . 22
2.5 CAN layer model . 27
2.6 CAN frame . 28
2.7 CAN controller . 29
2.8 Error handling in the CAN bus . 30
2.9 Attacker models . 35
2.10 High-level synthesis of detection mechanisms applied to the CAN frame . . . 38

3.1 Attack tree decomposition principle . 46
3.2 Attack tree for unauthorized active braking [52] 47
3.3 Architectural graph of the speed acquisition and display case-study 61
3.4 Speed acquisition rule (R1) . 61
3.5 Speed send to CAN rule (R2) . 62
3.6 CAN send rule (R3) . 62
3.7 Example of attacker rule . 63
3.8 Application of transformation rules (state space exploration) 63
3.9 Query: False speed . 64
3.10 Examples of Attack graph to Attack tree transformation 65
3.11 Attack tree automatically produced from the input model Figure 3.3 67
3.12 Attack tree automatically produced from Architecture-1 73
3.13 The overall approach to attack tree generation 74

4.1 Controller Area Network with original identifier distribution 78
4.2 CAN-ID randomization principle . 80
4.3 Illustration of the IA-CAN identifier transformation approach 82
4.4 IA-CAN transformation: Original (Left) Randomized (Right) 83

xv

LIST OF FIGURES

4.5 Illustration of the Equal intervals identifier transformation 85
4.6 Equal intervals transformation: Original (Left) and Randomized (Right) . . . 85
4.7 Illustration of the Frequency Intervals identifier transformation 87
4.8 Frequency intervals transformation: Original (Left) and Randomized (Right) 88
4.9 Illustration of the Dynamic intervals identifier transformation at t+ 1 (Left)

and t+ 2 (Right) . 90
4.10 Dynamic intervals transformation: Original (Left) and Randomized (Right) . 91
4.11 Illustration of the Arithmetic masking identifier transformation 92
4.12 Arithmetic masking transformation: Original (Left) and Randomized (Right) 93
4.13 Conditional entropy H(idr|ido) = f(N) . 96

5.1 Machine learning taxonomy . 100
5.2 Example of real-valued and categorical signals 101
5.3 Prediction principle . 102
5.4 Model choice depending on the target signal type. 103
5.5 Gaussian shaped prediction error . 107
5.6 Example of a decision tree . 111
5.7 Illustration of a feed-forward artificial neural network structure with an input

layer, one hidden layer, and an output layer. 113
5.8 One hidden neuron . 114
5.9 Multilayer perceptron structure . 114
5.10 Illustration of the data acquisition plateforme 117
5.11 Parsing the log file and building the training data. 118
5.12 Accuracy (Accreg %) of KNN algorithm as a function of the number of neighbors121
5.13 Accuracy (Accregtp %) of KNN algorithm as a function of the number of neighbors121
5.14 Mean of the prediction error µε of KNN algorithm as a function of the number

of neighbors . 121
5.15 Standard deviation of the prediction error σε of KNN algorithm as a function

of the number of neighbors . 121
5.16 Accuracy (Accreg %) of decision tree algorithm as a function of the tree depth 123
5.17 Accuracy (Accregtp %) of decision tree algorithm as a function of the tree depth

(tp = ±5 km/h): True Negative. 123
5.18 Mean of the prediction error µε of decision tree algorithm as a function of the

tree depth . 123
5.19 Standard deviation of the prediction error σε of decision tree algorithm as a

function of the tree depth . 123
5.20 Accuracy (Accreg %) of Neural-Network with logistic perceptron algorithm as

a function of the number of neurons in the first layer. 124
5.21 Accuracy (Accregtp %) of Neural-Network with logistic perceptron algorithm as

a function of the number of neurons in the first layer. 124
5.22 Mean of the prediction error µε of Neural-Network with logistic perceptron

algorithm as a function of the number of neurons in the first layer. 124
5.23 Standard deviation of the prediction error σε of Neural-Network with logistic

perceptron algorithm as a function of the number of neurons in the first layer. 124
5.24 Accuracy (Accreg %) of Neural-Network with Relu perceptron algorithm as a

function of the number of neurons in the first layer. 125

xvi

LIST OF FIGURES

5.25 Accuracy (Accregtp %) of Neural-Network with Relu perceptron algorithm as a
function as a function of the number of neurons in the first layer. 125

5.26 Mean of the prediction error µε of Neural-Network with Relu perceptron
algorithm as a function of the number of neurons in the first layer. 125

5.27 Standard deviation of the prediction error σε of Neural-Network with Relu
perceptron algorithm as a function of the number of neurons in the first layer. 125

5.28 Accuracy Acc of the KNN classification algorithm as a function of the number
of neighbors . 128

5.29 Accuracy Acc of the decision tree classification algorithm as a function of the
tree depth . 129

5.30 Accuracy Acc of the Neural network with logistic perceptron classification
algorithm as a function of the number of neurons in the first layer 129

5.31 Accuracy Acc of the Neural network with Relu perceptron classification algo-
rithm as a function of the number of neurons in the first layer 130

5.32 Illustration of Man-in-the-middle attack principle on the Speed signal 132
5.33 Evolution of the original speed signal (blue) and random speed signal (red)

over time. 133
5.34 Alerts raised by the decision tree (depth=40) detection rule against random

speed injection attack . 133
5.35 Evolution of the original speed signal (blue) and offset speed signal (red) over

time. 133
5.36 Alerts raised by the decision tree (depth=40) detection rule against speed offset

injection attack . 133
5.37 Evolution of the original speed signal (blue) and frozen speed signal (red) over

time. 134
5.38 Alerts raised by the decision tree (depth=40) detection rule against random

speed injection attack . 134
5.39 Alerts raised by the decision tree (depth=40) detection rule tested on three

different attacks on the brake-lights-command signal. On top is the ground
truth command, in the middle is the attack command and on the bottom is
the Alerts raised by the detection rule when receiving the attack signal. . . . 136

5.40 Comparison between the ground truth signal and the predicted signal (signal
predicted with decision tree (depth=40) regression algorithm 137

5.41 Characterization of the ratio of false alerts (in percentage%) raised as a function
of the number of successive false positives. 137

xvii

LIST OF FIGURES

xviii

List of Tables

2.1 In-vehicle communication bus technologies 12
2.2 Severity rating of threats in the EVITA approach 23
2.3 Rating of aspects of attack potential [52] . 24
2.4 Controllability classes . 25
2.5 Risk level as a function of the attack probability, severity level, and controllability 26
2.6 Summary of CAN Weaknesses . 34
2.7 Intrusion detection techniques applied to CAN 41

3.1 Rating of the basic attacks . 69
3.2 Estimates of attack potential of the identified attacks 71

4.1 Comparison between different randomization strategies 94

5.1 Detection metrics . 119
5.2 Linear Regression detection rule [results are averaged over 10 runs] 122
5.3 Prediction accuracy of detection rules for tp = ±5 km/h trained and tested

with data captures from three different drive tests 126
5.4 Logistic Regression detection rule . 128
5.5 Prediction Accuracy of detection rules for the brake-lights-command signal . . 130
5.6 Prediction Accuracy of the unified detection rules for the speed (Decision Tree

with Tree depth= 40) . 131
5.7 Prediction Accuracy of the unified detection rules for the brake-lights-command

(Decision Tree with Tree depth= 40) . 131
5.8 False Negative rate of simulated attacks on the Speed signal 134
5.9 False Negative rate of simulated attacks on the brake-lights-command signal 135

xix

LIST OF TABLES

xx

List of Abbreviations

ECU Electronic Control Unit
CAN Controller Area Network
MOST Controller Area Network
CPS Cyber Physical System
SOF Start Of Frame
EOF End Of Frame
DLC Data Length Code
RTR Remote Transmission Request
CRC Cyclic redundancy check
ACK Acknowledgment
LIN Local Interconnect Network
MOST Media Oriented Systems Transport
NFC Near Filed communication
NIST National Institute of Standards and Technology
FIPS Federal Information Processing Standard
CMAC Cipher-based Message Authentication Code
TEC Transmit Error Counter
REC Receive Error Counter
MSB Most Significant Bit(s)
LSB Least Significant Bit(s)
CS-MA/CA Carrier Sense Multiple Access / Collision Avoidance
TPMS Tire Pressure Monitoring System
V2V Vehicle-to-vehicle
V2X Vehicle-to-infrastructure
UDS Unified Diagnostic Services
DTC Diagnostic Trouble Codes

1

LIST OF TABLES

AT Attack Tree
FTA Fault Tree Analysis
EBIOS Fault Tree Analysis
TVRA ETSI Threat, Vulnerability, and implementation Risk Analysis
ETSI European Telecommunications Standards Institute
ITS Intelligent Transportation System
HEAVENS project Healing vulnerabilities to enhance software security and safety
OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation
TARA Threat Analysis and Risk Assessment
EASIS project Electronic architecture and system engineering for integrated safety systems
RFID Radio Frequency identification
GPS Global Positioning System
OTA Over The Air
RDS Radio Data system
TMC Traffic Message Channel
AES Advanced Encryption Standard
CBC Cipher Block Chaining
MAC Message Authentication Code
ID Identifier
GROOVE Graphs for object-oriented verification
GTS Graph Transformation System
LHS Left Hand Side
RHS Right Hand Side
LTS Labeled Transition System
TR Transformation Rule(s)
NAC Negative Application Condition
EVITA project E-safety vehicle intrusion protected applications
SW Software
HW Hardware
CPU Central Processing Unit
ISO International Organization for Standardization
SAE Society of Automotive Engineers
OBD On-board Diagnostics
ML Machine Learning
Acc Accuracy
IDS Intrusion Detection System
IDPS Intrusion Detection and Prevention System
DT Decision Tree
KNN K-Nearest Neighbors
NN Neural Networks
DoS Denial of Service
OS Operating System
HSM Hardware Security Module
PKI Public Key Infrastructure

2

CHAPTER 1

Introduction

This chapter gives a general overview of the context and motivation of the thesis. It
introduces the primary research goals and contributions that will follow in the upcoming
chapters.

Contents
1.1 Context: security of connected vehicles 3
1.2 The automotive industry challenges 5
1.3 Motivation and goals . 5
1.4 Contributions . 6
1.5 Outline . 7

1.1 Context: security of connected vehicles
The complexity of current automobiles is continuously increasing. The high demand for
safety and better user-experience by the consumers is pushing carmakers to integrate more
technologies into the cars. As a result, vehicles are becoming more connected to the outside
world via wireless links such as WIFI, Bluetooth, NFC, We have schematically depicted
in Figure 1.1 the connected vehicle environment to show the complexity and plurality of
interactions that a modern vehicle can engage in. The introduction of connectivity features to
the automotive industry is enabling numerous useful new services such as advanced navigation
and infotainment systems, remote safety services (diagnostics, emergency calls, . . .), car
sharing, and more These technologies are making the car more aware of its surroundings
and are paving the way towards fully autonomous vehicles with the introduction of multiple
sensors and perception equipment.

These significant technological advancements that comes with increased connectivity also
come with a downside: the car becomes more exposed to cybersecurity attacks and more

3

1. INTRODUCTION

GNSS

OEM Cloud3rd Party Cloud

OBD Dongle

Home wifi
Car keys USB stickV2V

Phone

V2X

wifi hotspot Cellular

Figure 1.1: Conceptual diagram of the connected vehicle environment

prone to hackers. It induces new risks that may impact the integrity and confidentiality of the
data processed by the computers. An investigation conducted in 2015 and ordered by Senator
Edward J. Markey (D-Massachusetts) [90] reports that: Nearly 100% of cars on the market
include wireless technologies that could pose vulnerabilities to hacking or privacy intrusions.
In fact, when an industry without experience in security starts connecting equipment to the
Internet, it typically makes some mistakes in how to evaluate the need for secure systems
and then how to implement them. However, with connected and autonomous automobiles,
the stakes for getting security right have never been higher. “What’s the worst that could
happen?” is a serious question when we are dealing with a set of computers traveling at 100
km/h, deciding and taking actions on behalf of the “driver”.

Since 2010, the scientific community has continuously been reporting weaknesses and
vulnerabilities in vehicles systems and architectures. In Defcon-2015, Charlie Miller and Chris
Valasek [95] demonstrated the first end-to-end remote exploitation of an unaltered passenger
vehicle. The attack showcased actions that can endanger the passengers’ safety as well as
privacy. Following this episode, the targeted car manufacturer issued a recall of approximately
1.4 million cars. Since then, multiple other findings have also been reported targeting other
car manufacturers including Tesla [88], BMW [4] and others.

4

1.2 The automotive industry challenges

1.2 The automotive industry challenges
The reported attacks showed that there are apparent issues and significant challenges facing
the future of the automotive industry with respect to cyber-security. In fact, recall campaigns,
although highly costly, are effective for software updates and bug fixing, but are completely
useless when the weakness is in the architecture of the ECUs, or the nature of the technology.
Clearly, some issues can hardly be solved after vehicle deployment. This is why adopting and
integrating security from design approaches is an important challenge towards more secure
and safer cars.

A clear understanding of the threats and the risk should be part of the vehicle development
process from the early design phase. The latter assumes that there should be tools and method-
ologies that can assist in risk analysis studies and help to explore possible weaknesses and
guide design decisions. Ultimately, these methodologies should help define security concepts,
from which can be derived and defined necessary security mechanisms and countermeasures
to be deployed.

Security countermeasures are employed ideally to prevent a security attack from taking
place or to minimizing and recording the effect of such an attack if prevention cannot be
accomplished. In general, no single countermeasure can succeed in thwarting all attacks, so
the principle of defence-in-depth is often advocated and adopted, where a number of layers
of security, using different strategies, are employed. Nevertheless, classical countermeasures
are not always adapted to the automotive application domain. In fact, there are unique
constraints related to the nature of the car environment such as limited computational and
storage capabilities, as well as limited communication throughput, and safety constraints.
Thus, the challenge is to adopt novel and cost-effective protection mechanisms that are
compliant and compatible with industry standards and needs.

1.3 Motivation and goals
To date, there is no dedicated methodology for systematic threat analysis and risk assessment
that is fully adapted to the automotive domain. Although, there are some running trends.
One of the trends is to systematically make threat analysis and risk assessment studies
using methodologies like EBIOS [3], TVRA [39] or EVITA methodology [2]. However, these
methodologies might not be mature enough to cope with the automotive industry requirements.
Another trend is to use methodologies that combine safety and security issues. In this context,
the ‘Society of Automotive Engineers (SAE) issued in 2016 the “Cybersecurity Guidebook
for Cyber-Physical Vehicle Systems” SAE-J3061. This guidebook, which should be further
developed and refined into a full standard, includes recommended practices of how to build a
cybersecurity process framework that covers the entire product life-cycle and is designed to
facilitate coordination with safety processes.

Thus, the first motivation of this thesis is to propose a formal model of the security that
aims, in a first place to validate the attacks in the specific context of the automotive industry,
and in a second place to study the resilience of the vehicle facing attack attempts and different

5

1. INTRODUCTION

opponent strategies. This formal modeling will allow defining the bases of secure design.

A second motivation of the thesis is to define security protection and prevention mechanisms
that can be deployed inside the vehicle in order to thwart potential threats. Indeed, in view of
the plurality of attack vectors of the connected car, and in view of the high safety standards
that the vehicle should guarantee, it becomes essential to study, in this context, the best
possible security barriers that can confine possible attacks and prevent them from spreading
from one component to the others inside the vehicle. These security mechanisms can give the
vehicle resilience capabilities.

1.4 Contributions
Throughout the thesis, three main contributions are presented and detailed. All of which are
dedicated to protect against potential threats and to reduce the gap towards more secure and
safer vehicles.

1.4.1 Formal modeling approach for automatic attack tree generation

During the design phase of a vehicle, this thesis proposes a formal method to assist in risk
assessment step.

• Formal model for the system: A framework for the formal modeling of the system is
defined and detailed. This framework allows defining the cyber-physical architecture
of a vehicle formally. It defines software, hardware, data and network architectural
components as well as the relations between them. It also defines an attacker model as
a set of a knowledge database and a set of capabilities in the form of basic attacks.

• Automated attack tree generation: Once defined, the cyber-physical architectural model
of a vehicle along with an attacker model is used to build attack trees for a pre-defined
attacker goal automatically. These attack trees, allow to better account for the attack
likelihood during the risk assessment step.

1.4.2 CAN identifier randomization strategy

In order to protect against an attacker model that has direct physical access to the CAN-bus,
we propose in this thesis a protection mechanism that uses an identifier randomization strategy.

• A general formalism of identifier based protections: The general formalism of identifier
protection family of protection solutions is established. Explicit constraints are explained
and formulated in order to build adequate randomization strategies to protect against
reverse engineering of the manufacturer-specific communication protocol used on top of
CAN as well as against injection and replay attacks. Evaluation metrics against target
attacks are also proposed based on information theory.

• Optimal randomization strategy: Depending on the constraints, multiple randomization
strategies are proposed and experimentally tested and compared with state-of-the-art
mechanisms and evaluated. An optimal randomization strategy is formally derived and
proved, and is used to build more advanced randomization strategy.

6

1.5 Outline

1.4.3 Prediction-based intrusion detection system

In order to protect against an attacker model that has indirect and remote access to in-vehicle
communication buses through the control over one of the legitimate Electronic Control Units
(ECUs)1, we propose in this thesis an intrusion detection mechanism that uses machine
learning techniques that protects against payload injection attacks.

• Formal framework of the detection principle: First, we propose a formal framework of
the detection principle using supervised machine learning techniques and outlier detection.
The detection principle depends on the type of monitored signal and exploits solely
other sensor values/states.

• Training and testing for different machine learning algorithm: Second, we propose and
demonstrate how to build and evaluate the detection rules. Use-cases are considered
and experimentally validated on multiple driving behaviors.

• Evaluation against attacks: Third, we propose also to evaluate the robustness of the
detection rules against attacks. We show how to simulate attacks and report experimental
results for example attacks.

• Alert handling: An alert handling strategy is developed. It allows determining, in case
of violation, how to handle different situations and how to reduce the error probability
in order to provide an appropriate response.

1.5 Outline
This thesis is composed of six chapters. Following the introduction, Chapter 2 review the
literature in order, first, to give a clear view of vehicular architecture and involved technologies,
then it introduces their weaknesses and the threats that they are exposed to, and finally, it
presents available methodologies and countermeasures for securing these systems. A substantial
part of this chapter is also dedicated to categories of protection mechanisms for in-vehicle
communication buses with a special emphasis on the Controller Area Network. Chapter 3
proposes a methodology of automatic Attack Tree generation based on an attacker and a
vehicle architecture formal models. The presented method is designed to support threat
analysis and risk assessment study, more precisely to better evaluate the attack likelihood for a
better risk assessment. This chapter presents the first contribution of this thesis. Following this
contribution, an important observation is made about the importance of securing in-vehicle
communication buses. As a consequence, a special focus is devoted to developing innovative
countermeasures. In Chapter 4, a first protection mechanism is developed for the Controller
Area Network. This protection mechanism is based on an optimal randomization strategy
designed to raise the security level against reverse-engineering and injection/replay type of
attacks. This chapter constitutes the second contribution of this thesis. In Chapter 5, the
third and final contribution of this thesis is presented. It exposes a novel in-vehicle intrusion
detection framework based on supervised machine learning techniques. The approach is also

1Electronic Control Unis are one of the components that constitute the cyber-physical architecture of
modern vehicles and will be introduced more in details in chapter 2

7

1. INTRODUCTION

evaluated on a real-world case-study. Finally Chapter 6 concludes the thesis with a summary
of the presented contributions and a discussion on their applicability, benefits, and drawbacks.

8

CHAPTER 2

State of the Art

This chapter covers the state of the art from different angles addressed in this thesis. It gives
background information on the cyber-physical architecture of modern vehicles. It presents a
survey of threats and attacks as well as methodologies to approach security in cars.

Contents
2.1 Introduction . 9
2.2 Cyber-physical architecture of connected cars 11
2.3 Vulnerabilities and threats survey 14
2.4 Countermeasures and Security methodologies 18
2.5 In-Vehicule Secure Communication survey 25
2.6 Conclusion . 42

2.1 Introduction
Modern automobiles are no longer just mechanical structures with battery-powered electric
components like alternator and carburetor. They are much complex than that as they integrate
multiple advanced functionalities. Even low-end cars now have 30 to 50 ECUs1 embedded
in the body, doors, dash, roof, trunk, seats, and just about anywhere else the car’s designers
can think to put them. That means that most new cars are executing tens of millions of lines
of software code, controlling everything from your brakes to the volume of your radio [26].
Figure 2.1 gives an overview of the plurality of functionalities that a modern vehicle can
offer and that are implemented throughout multiple embedded systems. Needless to say
that high-end automotive systems incorporate more embedded systems and communication
interfaces and thus are much more complex.

1ECUs stands for Electronic Control Units and are defined in section 2.2.3

9

2. STATE OF THE ART

Figure 2.1: Functionalities and services of Modern cars [1]

As a matter of fact, embedded hardware/software systems control innovative functions
in cars, support and assist the driver and realize new features for information and entertain-
ment [24]. They constitute the backbone of the high level of safety requirements that the
vehicle must respond to as well as user comfort and connectivity with the outside world. This
involves the use of advanced technologies based on a computing infrastructure composed
of numerous electronic components –named Electronic Control Units (ECUs)– embedded
inside the vehicle along with advanced sensors and actuators. In order to coordinate their
decision-making process and actions, the embedded systems need to communicate with each
other, as well as with the outside world, forming an embedded cyber-physical architecture
of the vehicle. However, like any other network, it is not excluded that vehicle embedded
software may contain vulnerabilities and that the architecture may contain design flaws that
an attacker can exploit.

Until recently, the cyber-physical automotive systems could be considered as a closed and
isolated. This assumption reduces significantly the risk of a vulnerability being exploited by a
hypothetical attacker. Nevertheless, with the integration of connectivity to the outside world,
the assumption is no longer valid, and risk assessment needs to be re-examined. This brings a
wide spectrum of challenges for the automotive industry. In the following we introduce in
section 2.2 the main components and functions of the cyber-physical architecture of modern
vehicles. Next, in section 2.3 we survey the principal threats and review the literature on

10

2.2 Cyber-physical architecture of connected cars

the main attack vectors for the connected vehicle. In section 2.4 we give main proposed
approaches to deal with these challenges from design step and finally section 2.5 proposes a
survey on solutions to secure in-vehicle communications.

2.2 Cyber-physical architecture of connected cars
The cyber-physical architecture of the car is composed of multiple components that could be
categorized into four main categories: sensors, actuators and Electronic Control Units (ECUs)
all communicating over shared communication buses.

2.2.1 Sensors

The set of sensors that we can find inside a modern car have multiple functions. These
functions can be categorized into two main categories or roles. The first role of the sensors
is to report information about the state of the vehicle. Example: the vehicle speed, vehicle
acceleration, state of the vehicle doors (open/closed), engine oil temperature The second
role is to report information about the vehicle environment and surroundings. Example:
vision radars, ultrasonic sensors and cameras, The data produced by the sensors are sent
to Electronic Control Units (ECUs) to be processed in order to produce commands for the
actuators.

2.2.2 Actuators

Actuators play an essential role inside the vehicle. They are the components that transform
commands into actions necessary in order to the vehicle to accomplish its main function. In
general, an actuator requires a control signal and a source of energy. Inside the vehicle, these
controls signals (or commands) are sent by Electronic Control Units (ECUs). Examples of
actuators in the car include the lights, engine, displays, wheel orientation system,

2.2.3 Electronic Control Units

Electronic Control Units are the most important components of the automotive architecture.
They are in charge of processing sensed data through embedded sensors and outside data
sources, and transforming them into commands for the actuators. In general, they are
composed of hardware electronic components (memories, micro-controllers,. . .) that have a
processing capacity, and that embed algorithms (software) needed to ensure the control of
every single functionality inside the vehicle. These functionalities include safety functions
like antic breaking, lane-keep-assist to more advanced functionalities that ensure the user
comfort air-conditioning as well as the navigation system, internet connectivity Another
important role for ECUs is to orchestrate communication with each other and the outside
world through different types of communication interfaces.

11

2. STATE OF THE ART

2.2.4 Communication interfaces

2.2.4.1 In-vehicle shared communication buses

Communication buses in the automotive domain were introduced as soon as the number
of ECUs embedded in the vehicle has reached a certain level of complexity that made a
point-to-point communication approach no longer viable, and impossible to implement and
maintain. At that point, the car as a system on its own was isolated from its external world.
The choice of communication buses was not motivated by information security, but rather by
safety and robustness issues.

As for today, in-vehicle shared communication buses represent the backbone of the
architecture and the main medium of communication between the ECUs. Multiple technologies
of buses could be found in today’s cars. Examples include the Controller Area Network (CAN),
Local Interconnect Network (LIN), FlexRay, Media Oriented Systems Transport (MOST)
and Ethernet. Each technology has some characteristics that justify its presence between
specific ECUs: robustness, implementation cost, throughput. . . . However, the Controller
Area Network (CAN) imposed itself as the de-facto communication bus for the automotive
applications, and almost all automotive manufacturers are implementing the CAN bus in
their cars.

Table 2.1: In-vehicle communication bus technologies

Technology Standard Data Rate Application example
LIN ISO 9141 ≤ 19.2Kbps Sensor and actuator control.
CAN ISO 11898/11519 ≤ 1Mbps Real-time communication: en-

gine management.
FlexRay ISO 17458 ≤ 10Mbps(×2) Safety critical: steer-by-wire

and brake-by-wire systems.
MOST ISO 7498-1 150Mbps Multimedia content, naviga-

tion.
Ethernet IEEE 802.3 100Mbps1 Advanced safety features: 360-

degree surround view parking
assistance, rear-view cameras.

2.2.4.2 Diagnostics interface

The diagnostics interface (also known as On-board diagnostics (OBD) interface) is a standard
interface that gives access to the status of the various vehicle subsystems. It is designed in
order to be used by the repair technician, the car owner or any other entity that may be
interested in diagnostics information and that provides real-time data in addition to a stan-
dardized series of diagnostic trouble codes (DTCs), which allow one to identify malfunctions
in vehicle components rapidly.

12

2.2 Cyber-physical architecture of connected cars

In order for this diagnostic to be possible, ECUs and diagnostics equipment implement
the Unified Diagnostic Services (UDS) communication protocol (specified in ISO 14229-1).
This protocol allows a request-response type of interrogation to the ECUs and implements
multiple services. These services include Diagnostics session, Programming Session, ECU reset,
firmware updates, memory read, memory write, Some of those sessions require a Security
Access, although as we will see in the next section, it has been proven that it is not well secured.

Technically, the diagnostics interface is designed to communicate with the outside world
(a diagnostic device) and gives access to the in-vehicle communication buses at the same
time. Depending on the architecture, the diagnostics interface can be directly connected
to communication buses, but can sometimes be connected to a Gateway ECU that handles
diagnostics communication (requests and responses) and re-routes them to appropriate sub-
networks. The latter design paradigm has been proven to be more efficient from a security
point of view, although it could induce more implementation cost.

2.2.4.3 Communication with the outside world

These communication interfaces are relatively new the automotive industry. They have
been introduced in order to enhance the safety and autonomy of the vehicle but also to
make the car more comfortable and convenient as well. They encompass all technologies
that are related to infotainment systems like Bluetooth, wifi, cellular . . . , but also safety
related like Vehicle-to-vehicle (V2V) communication, and vehicle-to-infrastructure (V2X)
communications. Generally speaking, such communication technologies can be implemented
in multiple ECUs inside the vehicle. Nevertheless, multiple communication interfaces are
sometimes grouped in one or two ECUs (This is, in particular, the case for the Head-unit,
Telematics-units or infotainment system for some architectures) depending on the architecture.

Besides their importance with respect to road-safety applications, these communication
interfaces (in particular cellular and internet connectivity) enable multiple useful services like
remote diagnostics, over-the-air updates, car-sharing,

2.2.5 Overall architecture

The cyber-physical architecture of the vehicle is composed of the previously mentioned
components. Electronic control units constitute the main part. They implement sensors and
communication interfaces and share in-vehicle communication buses that are used to transfer
information and data from one unit to the others. Figure 2.2 gives an example a vehicle
cyber-physical architecture1.

2.2.6 Aftermarket and diagnostics Devices

Aftermarket devices are equipment that can be added to the vehicle but are not part of
the car manufacturer official architecture. Examples of such aftermarket devices include

1Figure 2.2 is a sketch of the architecture of the Jeep Cherokee vehicle produced by Fiat-Chrysler and
demonstrated vulnerable by Miller et al. [95]

13

2. STATE OF THE ART

BCM

IPC

Radio

ACC

AHLM

ORC

FFCM

OCM

PAM

EPB

ABS

DTCM

EPS

PCM

TCM

ESM

RFH

ICS

HVAC

AMP

RBSS

LBSS

DDM

PDM

PLGM

MSM

ODB

Figure 2.2: Example of cyber-physical architecture [95]

insurance dongles produced by insurance companies to keep track of vehicle-related and driver
related information. These insurance dongles are generally also equipped with long-range
(cellular) connection and can be remotely managed by the insurance companies. Additionally,
examples include diagnostic devices designed to have short-range wireless (Wifi, Bluetooth) con-
nection to the user smartphone in order to report some diagnostics information on user request.

In general, these devices are designed to connect to the vehicle via the diagnostic port and
use diagnostic commands. They nevertheless have access to information communicated over
in-vehicle communication networks as the OBD port is sometimes wired directly to in-vehicle
communication networks.

2.3 Vulnerabilities and threats survey

2.3.1 Vulnerabilities and attack vectors

Given the main architectural elements presented in the previous section, an attacker can
leverage multiple entry points of the vehicle in order to reach his/her goal. In fact, in the
last years, researchers began to report multiple important issues related to the design and
implementation of different architectures. These entry points can be categorized according to
the proximity of the attacker into three main access types: Direct physical access, Indirect
physical access, and remote access. In what follows we analyze the access vectors of today’s
cars from the attacker point of view supported by examples of attack principles reported in
research work whenever suitable.

14

2.3 Vulnerabilities and threats survey

2.3.1.1 Direct physical access

The first attack vector that the adversary might be tempted to use is the direct physical access
to the car architectural components. This includes direct physical access to communication
buses as well as to electronic control units.

An early work of Hoppe et al. [54] pointed out the importance of the threats of direct
access to in-vehicle bus networks, namely frame injections on the CAN bus were carried out
on a simulated bench. In particular, they demonstrated that this access could be leveraged to
target the electric window lift, warning lights, and airbag control system.

These observations have been further confirmed later by Koscher et al. [79] and Checkoway
et al. [28] that performed CAN frame injections on a real vehicle with direct physical access to
the communication bus of the car. In fact, since during design phase, in-vehicle communication
buses were assumed to be “trusted”, an adversary directly connected to them can have read
and write access. This gives the attacker the possibility of impersonating any sensor ECU,
to issue commands in order to control actuators and receive all information that is being
transmitted on the communication medium. The principle of these attacks will be further
detailed in section 2.5 and possible countermeasures will be discussed.

Additionally, direct physical access to the OBD-port, in general, can be leveraged to
launch other types of attacks that use diagnostics commands. In fact, diagnostics proto-
cols are implemented inside almost all ECUs. They support multiple functions including
re-configuration, re-programming, reset, log recovering, actuators tests However, most
critical functionalities are only accessible through authenticated sessions (namely Security
Access). An attacker leveraging direct physical access to the in-vehicle communication bus
can use diagnostic sessions in order to activate one of these functionalities. In [94, 95] Miller
et al. used diagnostics session in order to activate the brakes. In practice, an attacker may
also be tempted to by-pass or break authentication mechanism in order to gain access to more
advanced functionalities like ECU reprogramming and re-configuration and even reset which
can enable more advanced scenarios.

Moreover, gaining direct access to in-vehicle networks constitutes a privacy threat, as the
attacker can read all the information communicated on the network. In this context, there
are some tools that are designed to help the attacker in the procedure of reverse-engineering
protocols of in-vehicle networks [14, 118]. Besides, even user-related information can be leaked
via in-vehicle networks. In [91, 92] Martinelli et al. explain how it is possible to derive the
driver profile directly from data collected on in-vehicle communication networks.

In the same category of attacks, direct physical access to embedded systems (ECUs
electronic boards) can reveal much information and allows the attacker to manipulate lots
of functionalities in the car. Examples of such attacks include memory dump attacks that
allow the attacker to recover software for reverse-engineering purposes. It also allows learning
configuration parameters which constitute a privacy violation from the automotive manu-
facturer point of view. Access to external memory components of the ECUs can also grant
the attacker write access that can be exploited in order to modify the ECU software. These

15

2. STATE OF THE ART

types of attacks are especially used for car tuning. Car tuning community are seen as hackers
from the automotive manufacturer point of view. Their primary objective is to augment the
capacity of the car by modifying specific engine parameters as well as activating some non-free
functionalities in the car.

2.3.1.2 Indirect physical access

Direct physical access to the internal communication buses or ECUs of the vehicle may seem a
strong assumption as an attacker model. In fact, from the car manufacturer point of view for
whom the primary concern is the safety of the passengers, an attack leveraging direct physical
access to in-vehicle communications might not represent a high risk due to the limited window
of opportunity and the limited accessibility to the specific sub-networks. However, an attacker
might have access to a device that has access to the vehicle equipment. Such an attack vector
is known as the indirect-physical access to the car. In general, these devices would have to
carry an attack payload that ultimately would exploit a vulnerability in an ECU connected to
in-vehicle networks.

In [28] Checkoway et al. explain and demonstrate how they were able to send arbitrary
CAN messages on the CAN bus using a carefully crafted version of an audio file stored on
a CD and played on the CD player of a car. Their attack leveraged a code vulnerability in
the WMA parser of the media player. In [42] Foster et al. analyze an aftermarket dongle
that connects to the vehicle via the On-Board-Diagnostics (OBD) port. They prove that an
attacker can use this category of devices to reach the communication buses of the vehicle.
The same attack principle was already explained in [28] using a diagnostic “PassThru” device
that connects to the car also via the OBD port.

2.3.1.3 Wireless access

Besides the physical access to the vehicle, the attacker can also leverage wireless access vectors.
As a consequence of the introduction of remote connectivity to the car, additional attack
vectors are also added. Reachability of these attack vectors depends on the technology used.
In general, we can split them into two main categories: short-range wireless vectors and
long-range wireless vectors.

Short-range wireless access: A short-range wireless attack vector is a wireless commu-
nication access that has a limited reachability range. Examples of these communication
technologies that we find in today’s cars include: Wifi, Bluetooth, RFID . . . These communi-
cation channels constitute an entry point for the attacker. In fact, Ishtiaq et al. [58] show
that in the case of Tire Pressure Monitoring System (TPMS) the wireless access vector is not
well secured which poses privacy issues, besides they were able to perform message spoofing
to trigger system warnings. In [95] Miller et al. analyze the Bluetooth and wifi interfaces of a
car and expose how and why it is practically possible to use those interfaces to take Control
of the car.

Long-range wireless access: The car attack surface also includes long-range access vectors.
These attack vectors are more or less security sensitive depending on whether they are

16

2.3 Vulnerabilities and threats survey

addressable or not and how the received data on those channels is being processed. Examples
of non-addressable attack vectors include Global Positioning System (GPS), Satellite Radio,
Digital Radio, Radio Data system (RDS), Traffic Message Channel (TMC) . . . Besides of the
non-addressable attack vectors, the car is also equipped with long-range addressable wireless
channels. An example is the cellular network which is an important feature of today’s and
future connected cars that supports a broad range of applications that are safety-sensitive
(diagnostics, crash reporting, Over The Air software updates . . .) and essential for user
comfort (navigation system, internet access, . . .). These long-range wireless technologies
open the vehicular architecture as well and constitute long-range attack vectors. It has been
practically demonstrated in [95] that it is possible to use these attack vectors to gain control
of a vehicle. In general, the recent works performed in this area have shown that combinations
of exploits and misconfigurations are the typical means by which an attacker breaks into a
car communication bus.

2.3.2 Threats

2.3.2.1 Security violations

The exploitation of the previously mentioned vulnerabilities and flaws correspond to security
violation from the car manufacturer point of view. We can thus classify the reported attacks
into three main categories according to the violation of a security principle.

• Privacy/Confidentiality violation: This type of violation includes violation of the driver
privacy, for instance by intruding on the user profile private data stored in the infotain-
ment system, by identifying the driver, tracking the vehicle, by listening to conversations
inside the vehicle leveraging access to the microphone, Also intrusion on the
privacy and confidentiality of certain manufacturer specific information. For instance
reverse-engineering protocols, firmware, and intellectual property violation.

• Integrity violation: This type of violation include attacks that make modifications to the
vehicle configuration for instance by modifying the engine performance (ECU tuning), by
adding functionalities to the vehicle or by tempering with control information (sensors
and actuators) in order to influence the behavior of the car from the inside or the
outside.

• Availability violation: This type of violation include attacks that target the availability
of certain services like communication between ECUs, communication with the outside
world or even some safety services

2.3.2.2 Attacker motivation

The different reported attacks exploit multiple vulnerabilities and design flaws. These flaws
can be exploited for multiple purposes and to reach a number of different goals depending
on the attacker motivation. In general, we can categorize these attacks, with regards to the
attacker motivation, in the following way:

• Financial gain:
In this category, the attacker’s motivation is to gain money from the attack. This

17

2. STATE OF THE ART

category includes flaws that would allow a car theft, flaws that would allow augmenting
the value of a car for instance by reducing the odometer value,. . . .

• Information gain:
In this category, the attacker’s motivation is to gain information either about the car
or about the owner/driver of the car or event about the car manufacturer regarding
intellectual property.

• Functionality gain:
In this category, the attacker’s motivation is to add some functionalities that are not part
of the initial design of the car. This category includes, for instance, adding activating
services for free, augmenting the capabilities of the car through the modification of
performance parameters (also known as ECU tuning, or car tuning)

• Harm/control:
In this category, the attacker’s motivation is to harm the safety of the driver for instance
by tampering with the normal functioning of the car internally or externally.

2.4 Countermeasures and Security methodologies
All of the attacks described in the previous section are made possible due to flaws and
vulnerabilities introduces during different steps of the design of the vehicle. Some of them
could be avoided only through the consideration of security issues at an early design phase
and adopting security-by-design approaches. Others arise later during product development
and implementation. Finally, some others could not be avoided and need run-time monitoring
capabilities in order to protect against them. In this what follows we report the main
countermeasures to be integrated into different steps of the vehicle production lifecycle.

2.4.1 Countermeasures

During the design phase of the vehicle, multiple decisions regarding services to be implemented,
the ECUs that will hold those services, the expected architecture of the overall system, are
made. Additionally, multiple parameters regarding hardware capabilities are fixed. Once
these choices are made and parameters defined, they can not be changed during the vehicle
lifetime. Some of them are important from a security point of view.

2.4.1.1 Architecture

The network architecture of in-vehicle communication buses and ECUs connected to them
can significantly influence the capability of an attacker to reach specific components. In [128]
Miller et al. present a raking of the easiest “attackable” architecture amongst a list of
candidate architectures. Take as an example the architecture proposed by the EASIS1 project
presented in figure 2.3 and compare it with the architecture introduced in the previous section
(figure 2.2). The architecture of figure 2.3 takes into consideration isolation of domains with
different criticality levels (Powertrain, Chassis-and-safety, Body electronic module) from

1Electronic architecture and system engineering for integrated safety systems

18

2.4 Countermeasures and Security methodologies

Figure 2.3: The EASIS project proposal architecture

connectivity to the outside world (communication control unit including radio, cellular, car2X
and diagnostics interface) and infotainment system (head unit include connectivity to user-
devices). On the other hand, the architecture of figure 2.2 connects the Radio ECU (which is
connected to the outside world via cellular, wifi and Bluetooth) to both CAN sub-networks.
It is easier for an attacker to reach safety-critical functions from remote entry point (and
even from direct physical access to the OBD port) in the architecture of figure 2.2 than in
the architecture of figure 2.3. In chapter 3, the developed formal model takes as input this
architecture and use it to depict possible attack paths. Ultimately it intends to study the
impact of architectural changes during the design phase amongst other aspects.

Similarly, from a software point of view, the separation between software components can
influence the security of the system. This is, in particular, the case for ECUs that should ac-
commodate applications from different domains (safety-critical, connectivity, diagnostics, . . .).
In this context, as part of the OVERSEE1 project [9], Groll et al.[46] propose an application
isolation solution based on virtualization where applications of different levels of criticality, run
in guest Operating System (OS) above a hypervisor responsible for securing communications
between different guest systems.

Additionally, access rights of software components to ECUs assets whether they are basic
hardware modules such as CPU, memory, and peripherals or data assets have an impact on
privacy and confidentiality of assets. As an attacker that exploits a vulnerability in a software

1Open Vehicular Secure Platform project [9]

19

2. STATE OF THE ART

component have the same access rights as that software component, it is sometimes required
that software components or applications are granted minimum access rights. These access
rights can be subject to the context and state of the vehicle. In chapter 3 we develop a formal
model that can help to define these access rights based on a risk minimization approach.

2.4.1.2 Asset protection and data security

Asset protection is a set of preventive techniques generally based on cryptographic primitives
whose goal is to protect confidentiality and integrity and authenticity of data assets, software
assets, and data flows. Depending on the attacker model and threat, some of these protection
mechanisms can be more relevant than others. Previous works have already identified the
main security functions and components to be deployed depending on the security need. Wolf
et al. [131] identify core security technologies and relevant security mechanisms for critical
vehicular applications Kleberger et al. [74] focus in particular on in-vehicle network. Studnia
et al. [123] presented the main threats, challenges and security tendencies in deploying security
components in automotive systems. The EVITA project[2] have also identified main security
needs and mechanisms based on which three Hardware Security Modules (HSM) components
have been defined to be integrated in ECUs with different security needs. In this section we
highlights the main tendencies.

First, in order to protect ECUs from executing attack payloads, the integrity of the
executed firmware should be guaranteed. The validation of ECU code is generally done via
firmware integrity checks, secure boot mechanisms [19, 96]. Protecting the confidentiality of
the ECU’s firmware for intellectual property reasons is also necessary [30, 84]. Additionally,
secure software update procedures of ECUs (over UDS or over-the-air), preventing chip tuning,
preventing the unauthorized change of the mileage, or assembling non-original parts are
necessary to ensure firmware integrity during the vehicle lifetime.

Second, protection of data storage and data flows is necessary in order to thwart privacy
violations. Generally symmetric and asymmetric cryptographic techniques for data encryption
(like AES1, ECC2) are used. Encryption keys have also to be secured, generally in secure
storage techniques like tamper-proof memories. However, one constraint is the management
of cryptographic keys. The systems have to implement protocols to distribute and generate
keys. In particular, when deploying certificates, the deployment of public key infrastructure
(PKI) that can distribute and manage keys is a must.

In-vehicle security mechanisms are presented more in details in section 2.5. In chapter 4,
in order to protect the CAN-bus from an attacker with direct physical access, we investigate
obfuscation strategies over the identifier field of the CAN frame.

2.4.1.3 Policy enforcement and run-time protections

In addition to the above-mentioned protection mechanisms, which define a security policy,
there are also other mechanisms whose role is to reinforce this policy during run-time.

1Advanced Encryption Standard
2Elliptic Curve Cryptography

20

2.4 Countermeasures and Security methodologies

At the software level, well-known solutions like intrusion detection systems based on
functions-calls [130], system-calls [53], and Control-Flow-Graph and Control-Flow-Integrity [10]
can be deployed. Schweppe al. [115] and Bouard et al. [23] proposed a security framework
with taint tracking tools that allows to dynamically monitor data flows within and between
ECUs to enforce security and privacy of data assets.

At the network architecture level, network firewalls that can monitor legitimate frames in
sub-networks, and routing frames between them. Network intrusion detection systems also
can monitor the behavior of specific nodes and frames. These techniques are presented more
in details in section 2.5. In chapter5, in order to monitor the behavior of the CAN network
frames exchanged between multiple network nodes, we propose a prediction-based intrusion
detection system trained with machine learning techniques.

2.4.2 Threat Analysis and Risk Assessment

To be truly effective, the security mechanisms in cars must be specified with an overall
vision of the system and at an early design phase. For this purpose, the defense-in-depth
strategy is generally advocated. It consists of multiplying security mechanisms to protect the
overall system. In practice, this means deploying security mechanisms (complementary and/or
redundant) at several levels of the system, instead of merely protecting its entry points. This
implies a step during the design phase, where security engineers come-up with different ways
the system could be compromised in order to build strategies to protect against intrusions
namely a Threat Assessment and Risk Analysis step (TARA).

In this context, one of the first initiatives to integrate the TARA step into the design phase
of the vehicle was proposed by the SAE International1 that published in 2016 the “Cybersecurity
Guidebook for Cyber-Physical Automotive Systems” SAEJ3061 [32]. Additionally, an on-going
effort is put into a new standard ISO/SAE-21434 [7] that is expected to become the major
standard for cybersecurity engineering in the automotive domain. A final version is presumed
to be published by early 2020. Meanwhile, the SAEJ3061 guidebook provides high-level
guidance, best practices, tools and methods to integrate cybersecurity into the existing
development process of an organization. More precisely, it divides the vehicle life-cycle into
concept-phase, product development, production, operation and service. In the concept-phase
the goal is to define cybersecurity goals and strategy that ultimately should be translated into
detailed technical requirements to be pushed into product development. The proposed steps to
be followed during the concept phase (see figure 2.4) are centered around the main step that
is the “Threat analysis and risk assessment”. The goal of a TARA step is to identify threats,
estimate their potential and based on the risk they present formulate security requirements to
be implemented.

Multiple TARA methods and techniques have been proposed and represent the state-of-the-
practice in the automotive industry as part of the decision basis for elaborating cybersecurity
requirements. Examples include methods like:

1Society of Automotive Engineers

21

2. STATE OF THE ART

Item Defenition

Initiation of Cybersecurity
Lifecycle (planning)

Threat Analysis
& Risk Assessment

System Level
Cybesecurity Concept

Identify Functional
Cybersecurity Requirements

Initial Cybersecurity
Assessment

Concept Phase
Review

Identify Highest Risk
Potential Threats

Identify Cybersecurity
Goals

{

Figure 2.4: SAE-j3061 concept phase steps [32]

• ETSI Threat, Vulnerability, and implementation Risk Analysis (TVRA) standard [39],

• EBIOS Expression des Besoins et Identification des Objectifs de Sécurité [3],

• Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) [13],

• E-Safety Vehicle Intrusion Protected Applications (EVITA) project [2],

• HEAVENS security model [6],

• Attack Trees [114].

• . . .

The EVITA approach: It has been developed in the context of a European project In
what follows we present the EVITA methodology as reported by Henniger et al. [52], as being
the only approach that was developed precisely for risk analysis in the automotive domain. In
this approach, the goal is to identify the most relevant security requirements based on the risk
posed by potential attacks. The risk here is defined as a function of the severity of the attack
from the stakeholders’ point of view and the estimated probability of success of an attack.
Some threat may impact the safety of the vehicle; in this case, the risk assessment includes an
additional controlability parameter.

1. Severity:
The EVITA risk assessment approach considers the severity of a threat in four different

22

2.4 Countermeasures and Security methodologies

Table 2.2: Severity rating of threats in the EVITA approach

Severity Aspect of security threats
Class Safety Privacy Financial Operational

0 No injuries No unauthorized
access to data

No financial loss No impact on op-
erational perfor-
mance

1 Light or moderate
injuries

Anonymous data
only (no specific
driver of vehicle
data)

Low-level loss (≈
10 euros)

Impact not dis-
cernible to driver

2 Severe injuries
(survival proba-
ble);light/moderate
injuries for multi-
ple vehicles

Identification of
vehicle or driver;
anonymous data
for multiple
vehicles

Moderate loss (≈
100 euros); low
losses for multiple
vehicles

Driver aware
of performance
degradation;
indiscernible im-
pacts for multiple
vehicles

3 Life threatening
(survival uncer-
tain) or fatal
injuries; severe in-
juries for multiple
vehicles

Driver or vehicle
tracking; identifi-
cation of driver or
vehicle for multi-
ple vehicles

Heavy loss
(≈ 1000 euros);
moderate losses
for multiple
vehicles

Significant impact
on performance;
noticeable im-
pact for multiple
vehicles

4 Life threatening
or fatal injuries for
multiple vehicles

Driver or vehicle
tracking for multi-
ple vehicles

Heavy losses for
multiple vehicles

Significant impact
for multiple vehi-
cles

dimensions. First, in terms of the safety of the vehicle, its occupants and other road
users. Second, in terms of the privacy aspect of data assets whether this data is relative
to the vehicle users (personal data) or the vehicle manufacturer and equipment suppliers
(i.e. intellectual property). Third, in terms of financial losses that result from a successful
attack on the vehicle owner, ITS1 operators and car manufacturer. Fourth, in terms of
interference with the operational performance of the vehicle and ITS functions. Table 2.2
presents the definition of the respective severity classes.

2. Probability of success:
Also called “Attack potential”, is defined with regards to five different aspects and
should be estimated for each attack scenario. Here an attack scenario represents the
technical details of how the defined threat could be accomplished. In this send, for
each defined threat there could be multiple attack scenarios. The first aspect is the
time necessary to conduct the attack. It includes the time spent on reverse-engineering
the system, identifying possible vulnerabilities and developing the attack method to

1Intelligent Transportation System

23

2. STATE OF THE ART

leverage them. Second, the expertise required in order to conduct the attack scenario.
Four different expertise levels are defined: Layman, Proficient, Expert and Multiple
experts. Intermediate expertise levels can also be selected. Third, the level knowledge
of the system required describes how easy it is to access the needed information. Fourth,
the window of opportunity during which the attack is possible. Finally, the necessary
equipment required to perform the attack steps of the attack scenario. The rating details
of the attack potential aspects are presented on table 2.3.

Table 2.3: Rating of aspects of attack potential [52]

Factor Level Value

Elapsed Time

≤ 1-day 0
≤ 1-week 1
≤ 1-month 4
≤ 3-months 10
≤ 6-months 17
> 6-months 19
Not practical ∞

Expertise

Layman 0
Proficient 3
Expert 6
Multiple experts 8

Knowledge of the system

Public 0
Restricted 3
Sensitive 7
Critical 11

Window of opportunity

Unnecessary/unlimited 0
Easy 1
Moderate 4
Difficult 10
None ∞

Equipment

Standard 0
Specialized 4
Bespoke 7
Multiple bespoke 9

These attack potential aspects should be summed up in order to come up with the
attack probability. Intuitively, a small attack potential sum is an indicator of an attack
scenario rather easy to perform, thus will be associated with a high success probability.
Inversely, a high attack potential sum is an indicator of an attack scenario rather difficult
to perform and will be associated with a low success probability.

3. Controllability:
It is a parameter that is specified for attacks with safety impact. It expresses the

24

2.5 In-Vehicule Secure Communication survey

probability that the driver can influence the severity of the outcome. Table 2.4 reports
the controlability classes and their meaning.

Table 2.4: Controllability classes

Controllability Meaning
1 Avoidance of an accident is normally possible with a normal human

response.
2 Avoidance of an accident is difficult, but usually possible with a sensible

human response.
3 Avoidance of an accident is very difficult, but under favorable circum-

stances some control can be maintained with an experienced human
response.

4 Situation cannot be influenced by a human response.

The controllability is estimated for each threat regardless of the attack scenarios and
attack steps. Note that the score of the controllability increases as the situation becomes
uncontrollable.

4. Risk:
Finally, after the estimation of the previous factors, the EVITA risk assessment method-
ology defines a mapping table that assigns for each threat the associated risk. The
mapping is presented in table 2.5. The intuition is that as the probability of success in-
creases (similarly the severity level and controllability level), the risk level also increases.
The risk is a four dimension vector that indicates a risk level for each dimension of the
severity.

The outcome of this procedure is a list of threats ranked according to their contribution to
the overall risk. Managing the risk involves threat processing through the appended security
countermeasures specification, the purpose of which is to limit or even completely cancel
the threat and thus reduce the risk. Finally, the result should be a set of strong security
requirements on how the system should behave, what are the security concepts and security
measures to be implemented in order to guarantee the required level of security (at least from
a design perspective).

2.5 In-Vehicule Secure Communication survey
As explained in the previous sections, in-vehicle communication buses constitute the backbone
of the vehicle as they ensure most of the communications between ECUs. In fact, the vehicle
as a system would not be able to function or even start without at least the core electronic
components successfully communicating over internal networks. They are a central building
block for nearly all automotive functions that span through multiple ECUs. There are multiple

25

2. STATE OF THE ART

Table 2.5: Risk level as a function of the attack probability, severity level, and controllability

Controlability Severity P = 1 P = 2 P = 3 P = 4 P = 5

C=1

S = 1 0 0 1 2 3
S = 2 0 1 2 3 4
S = 3 1 2 3 4 5
S = 4 2 3 4 5 6

C=2

S = 1 0 1 2 3 4
S = 2 1 2 3 4 5
S = 3 2 3 4 5 6
S = 4 3 4 5 6 7

C=3

S = 1 1 2 3 4 5
S = 2 2 3 4 5 6
S = 3 3 4 5 6 7
S = 4 4 5 6 7 7+

C=4

S = 1 2 3 4 5 6
S = 2 3 4 5 6 7
S = 3 4 5 6 7 7+
S = 4 4 5 6 7+ 7+

communication bus technologies used for this purpose. Table 2.1 gives a summary of the main
communication bus technologies used in today’s cars. The Controller Area Network (CAN)
bus is by far the most commonly used one.

The constant evolution of the threat landscape facing modern connected vehicles makes
the adoption of defense in depth necessary. This imposes to no-longer consider in-vehicle
networks as a trusted domain, but rather as the last line of defense against elaborated attacks
that need to use internal communication networks in order to spread from one node to another.
For these reasons, it is necessary to propose solutions that can overcome the weaknesses of
these communication buses.

It is worth noting that there is a tendency to substitute old technologies like CAN and
LIN, and move towards integration of more advanced ones like Ethernet, especially to comply
with growing data and throughput need. This tendency is mainly driven by the need for
more multimedia content use and the integration of autonomous driving technologies that
generate a considerable amount of data. The good news is that these new technologies can
offer the capability to integrate security features that can cope with integrity, authenticity and
confidentiality needs. Although, the trend is slowed by the low cost of classical technologies
and high implementation cost of relatively new communication technologies.

In this section, we present a survey of the proposed security methods and their principles
that can be applied to the internal communication network of the vehicle, in particular, applied
to the CAN-bus. We begin by presenting an overview of the CAN protocol in section 2.5.1.
Then we present the protocol weaknesses in section 2.5.2. We identity three state-of-the-
art protection mechanisms, namely payload protection, identifier protection and intrusion

26

2.5 In-Vehicule Secure Communication survey

Data Link (Layer 2) ISO 11898-1

Physical (Layer 1)
ISO 11898-2

[CAN High speed]

ISO 11898-3

[CAN Low speed]

Figure 2.5: CAN layer model

detection systems that we present in details in sections 2.5.3, as well as their limitations. We
conduct a comparative study and discuss the effectiveness of these protection mechanisms in
section 2.5.4.

2.5.1 Controller Area Network Overview

The Controller Area Network (CAN) is an asynchronous, serial field-bus system. It was
introduced in 1983 by Bosch company for the networking of control devices in automobiles.
The aim of this communication bus was the reduction of cables length and weight. Since
1991 [120], CAN is internationally standardized as ISO 11898 and defines the Layer 2 (Data
Link Layer) [60] and Layer 1 (Physical Layer) [61, 62] of the OSI reference model presented
in figure 2.5. The physical layer can be realized in two versions: high-speed CAN (ISO
11898-2) [61] and low-speed CAN (ISO 11898-3) [62]. Usually, these layers are implemented
respectively in a CAN transceiver and a CAN controller. It is known to be very resistant to
electromagnetic interference and thus found wide adoption in vehicular onboard networks.

A CAN frame (figure 2.6) is composed of multiple fields:

• SOF: is the Start Of Frame bit that signals to all CAN controllers that a new frame is
about to be sent on the bus.

• ID: is the arbitration filed, also called identifier as it identifies the data payload. It is
composed of 11 bits for standard CAN and 29 bits for extended CAN frames. Its main
function is to prioritize physical access to the bus. Prioritization will be detailed in the
rest of the section. The identifier is relative to the frame data in the sense that it is
not used to identify the sender or the receiver but rather the content of the frame. The
proper intended use of the CAN protocol makes an important hypothesis on the use of
identifiers within the same network: There must not be two CAN-controllers that can
send the same identifier, i.e. each identifier is sent by at most one ECU.

• RTR, IDE, DLC: these are control fields that indicate the type of the frame and the
length of the data it contains.

• Data: is the data field. It contains the payload information (also called signals) shared
between the sender and the receivers.

• CRC: is the Cyclic Redundancy Check field. It ensures the integrity of the data field.

• ACK: is the acknowledgment field, sent by all the controllers that correctly received
the frame. This field attests that the CRC field was correctly validated and no errors
occurred during the transmission.

27

2. STATE OF THE ART

• EOF: is the En-Of-Frame field.

S
O
F

1

Identifier

11 bits

R
T
R

1

I
D
E

1

r

1

DLC

4 bits

Data

0-8 bytes

CRC

16 bits

ACK

2

EOF

7 bits

Control-FieldArbitration

Field

Data-Field Check-Field

Figure 2.6: CAN frame

Each ECU that communicates on the CAN bus is equipped with a CAN-controller and a
CAN-transceiver (figure 2.7). The CAN bus is event triggered protocol. On the application
level, whenever the ECU software wants to send a message on the CAN bus, it needs to specify
the identifier (ID) and the data payload to the CAN controller (layer 2). This information
is temporarily stored in a buffer waiting to be sent on the bus. The CAN controller then
constructs the appropriate CAN frame by adding the remaining fields then passes it to the
CAN transceiver (layer 1) whose role is to send the frame on the communication bus physically.
The CAN-transceiver then needs to check if the bus is free (no information is being sent) in
order to trigger a frame sending process.

The CAN bus implement a Carrier Sense Multiple Access / Collision Avoidance (CS-
MA/CA) media access control method. The collision avoidance property is implemented
by means of the arbitration field (frame identifier) that defines the priority of the message.
In fact, whenever a node needs to send a frame on the bus, it needs to check whether the
bus is free, then it starts sending. Because each identifier is sent by at most one ECU, two
ECUs that want to send a message at the same time will necessarily present different frame
identifiers. The arbitration phase is processed at the bit level according to a straightforward
rule: in case of collision, the dominant bit (“0”) wins the arbitration over the recessive bit
(“1”). This means that in case two ECUs want to send frames at the same time, and in
case of collision at the bit level between a dominant bit (“0”) and a recessive bit (“1”), the
dominant bit is physically transmitted. Thus, each CAN controller implements a loop-back
that monitors the bus for possible collisions and that decides whether to continue sending or
to drop and retry when the bus becomes available again. Given that the fact frame sending
process is executed in a serial fashion (one bit at a time) starting from the Most Significant
Bit (MSB), the arbitration rule translates to the following: in case of collision, the lowest
identifier (in arithmetic representation) wins the arbitration.

Usually, for safety reasons, safety-critical signals are assigned to priority message identifiers.
The more the signal is safety-relevant, the higher the priority is assigned to its identifier.

CAN Bus Error Handling mechanism: Error handling is one of the most important
features that are built into the CAN protocol, and that makes it attractive from a safety

28

2.5 In-Vehicule Secure Communication survey

ID Data

CAN-Controller

——– Controller Interface ——–

Transmit Buffer

ID3 Data

ID2 Data

ID1 Data

Receive Buffer

ID′
3 Data

ID′
2 Data

ID′
1 Data

Acceptance Filter

——– CAN Protocol Engine ——–

SOF ID Control Data CRC ACK EOF

CAN-Bus Transceiver

Figure 2.7: CAN controller

point of view. It aims at detecting errors in messages appearing on the CAN bus, in order for
the transmitter to re-transmit an erroneous message. All the CAN controllers connected to
the bus implement these error handling mechanisms and will try to detect errors within a
message. An error flag is transmitted by any node that discovers an error, thus destroying
the bus traffic. The other nodes will detect the error caused by the Error Flag (if they have
not already detected the original error) and take appropriate actions (i.e., discard the current
message).

Each node maintains two error counters: the Transmit Error Counter (TEC) and the
Receive Error Counter (REC). In principle, a transmitter detecting a fault increments its
Transmit Error Counter. Moreover, a receiver detecting a fault increments its Receive Error
Counter. A node starts in Error Active mode. When any Error Counter raises over a certain
“error threshold”, the node will first become “error passive”, that is, it will not actively destroy

29

2. STATE OF THE ART

Figure 2.8: Error handling in the CAN bus

the bus traffic when it detects an error, and then turn into “bus off” mode, which means that
the node does not participate in the bus traffic at all. Figure 2.8 gives more details about this
process.

Five different error detection mechanisms are implemented:

1. Bit Monitoring: Each transmitter on the CAN bus implements a loop that reads back
the transmitted bits. If the transmitted bit differs from the one that is read on the
bus, a Bit Error is raised. During arbitration, no bit errors are raised. However, this
mechanism serves the transmitter to know it won the arbitration or not.

2. Bit Stuffing: Each node that transmits five consecutive bits of the same level (five
consecutive “0” bits, or five consecutive “1” bits) is required to add a sixth bit of the
opposite level. At the reception, the receivers will remove this extra bit. Thus, if more
than five consecutive bits of the same level occurs on the bus, a Bit Stuffing Error is
raised.

3. Frame Check: Some parts of the CAN message have a fixed format defined by the
standard (for example the CRC Delimiter, ACK Delimiter, End of Frame). If a CAN
controller detects an invalid value in one of these fixed fields, a Form Error is raised.

4. Cyclic Redundancy Check: Each message features a 15-bit Cyclic Redundancy Checksum
(CRC). All the nodes that are receiving the message have to calculate the checksum
based on the data field. A CRC Error is raised if a difference is found between the
calculated checksum and the received one.

5. Acknowledgement Check: All nodes on the bus that correctly receive a message are
expected to send a dominant bit as Acknowledgement in the message. Thus, if the
transmitter can not detect a dominant level in the ACK slot, it means that no node has
received the message correctly and an Acknowledgement Error is raised.

30

2.5 In-Vehicule Secure Communication survey

2.5.2 CAN Weaknesses

The CAN bus thus presented has a good robustness property that matches the high safety
requirements needed and that allows it to be used in vehicles. Nevertheless, it has weak
security properties that caused it to be leveraged to mount cyber-physical attacks against
modern cars. Some of these weaknesses are inherent to the bus technology itself, and some
others are due to the way it is used in the automotive industry. It is important to make the
difference between these two types of weakness as the ones that are inherent to the technology
cannot be removed and fixed unless the standard is revised. For the others, protection solutions
can be developed.

In what follows we give an overview of these weaknesses in the form of attacks. These
attacks suppose that the attacker has gained access to the communication bus. This access
can be either granted through direct physical access to the bus, where an attacker plugs a
controlled device equipped with a CAN controller, or through an indirect or remote physical
access where an attacker somehow gains control of a legitimate ECU and uses it to launch the
attacks.

2.5.2.1 Denial-of-Service

There are two possible ways for an attacker to perform a Denial-of-Service attack over the
CAN bus depending on the targeting impact.

ID-based Denial-of-Service: One of the first attacks that have been published and that
target the CAN bus is the ID-based DoS [29, 54, 94]. The principle is simple and consists in
exploiting the principle of arbitration implemented in the CAN bus. In fact, as we already
stated in section 2.5.1, during the arbitration phase, the lower the identifier, the higher the
priority. This means that the lowest identifier (in arithmetic representation) will always win
the arbitration phase. The attack principle is then to continuously send a message with
the identifier [ID = 0], which is the lowest possible identifier. Even if the message will not
be effectively consumed by any ECU, it will nevertheless cause other messages with higher
identifiers to always loose the arbitration phase in favor of the attacker message. The effect is
that all messages will be blocked and no message other then the attacker message will be sent
on the communication bus. This attack is inherent to the used technology as it exploits the
arbitration principle that is implemented by the standard itself.

Error-based Denial-of-Service: Recall from section 2.5.1 that one of the hypotheses
that the standard makes on the use of the CAN protocol is that within the same network
there must not be two CAN-controllers that can send the same identifier. In fact, this
assumption guarantees that at the end of the arbitration phase, only one node will have the
possibility to send further information (i.e. continue to send “data“ content of the frame).
However, if this assumption is not respected, it can jeopardize the integrity of the protocol
and generate errors due to conflicts in the data fields. An attacker can use this behavior to
his advantage. More concretely, if a legitimate ECUi wants to send a frame with an identifier
IDi, and if an attacker succeeds to synchronize with ECUi and also tries to send another
frame but with same identifier IDi. During arbitration, since there is no difference between

31

2. STATE OF THE ART

the identifiers, both CAN controllers of ECUi, and the attacker will have the illusion that
they have won the arbitration and thus can proceed with sending the remaining fields of
the frame. If the data payload of the frame of ECUi and the data payload of the attacker
frame are not the same then necessarily a bit error will be generated that will translate in a
bad Acknowledgment (ACK) field. In general, this will cause ECUi to send the frame again.
However, it will also trigger the controller error counter, as the ECU will believe that the CAN
transceiver somehow caused the error. With enough persistence in repeating the same process
successfully, the attacker can cause the error-counter to overflow, which the CAN-controller
at the ECU level will interpret as if CAN-transceiver is generating too many errors and
will automatically disconnect causing the ECU to be no-longer be part of the network and
out of service. This attack has been demonstrated by Palanca et al. [104] and is relatively
sophisticated and can target a specific ECU, knowing at least one of the identifiers that it sends.

The weakness is inherent to the used technology as the error counting process is specified
in the CAN standard. One possible remedy to this attack is to try to reconnect the CAN-
controller after being forced to disconnect. It has nevertheless one drawback which occurs
when the ECU is not under attack but rather a safety hazard like short-circuit happened at
the transceiver level. This safety hazard will cause the ECU implementing the remedy to
continuously try to reconnect which in return will short-circuit the entire communication bus.

2.5.2.2 Reverse engineering

The automotive industry uses the CAN protocol for periodic and event-based messaging
between ECUs. Each car manufacturer specifies a protocol on top of CAN, shared between all
the ECUs, for them to understand the information (sensor values and commands) being sent
from one node to another. This protocol is proprietary. If an attacker were to understand
the content of the protocol he/she can mount attacks like ECU impersonation and ECU
exhaustion that we explain after. The first thing that the attacker needs to collect is the used
identifiers and their periodicities. This is relatively easy and straightforward since the attacker
can simply listen on the bus and capture traffic. The analysis of the traffic can reveal this
type of information. This knowledge can be used later to target specific functionalities. Next,
an attacker can also try to understand the content of the data payload for each identifier.
This is relatively more complex to do since he/she needs to perform more complex analysis
on the captured data using more advanced statistical tools like signal correlation analysis [14]
and comparison of multiple CAN log captures [118].

From a security point of view, the attack constitutes a confidentiality violation. In fact,
since the protocol is proprietary and not public, it can be considered as confidential infor-
mation. Besides, reversing the protocol gives access to more sensitive information of the car
manufacturer, but also private information. For instance, Martinelli et al. [91, 92] have shown
that CAN traffic can be exploited for instance to identify the driver.

The attack is not inherent to the CAN protocol, and car manufacturers can protect at
least the data payload. In section 2.5.3 we examine the possible ways of protection against
reverse engineering.

32

2.5 In-Vehicule Secure Communication survey

2.5.2.3 Fuzzing attack

The fuzzing attack constitutes in sending multiple messages in the CAN bus in order to confuse
ECUs, or in order to discover and test functionalities. The fuzzing attack can be considered
as a technique to reverse-engineer (in an active way) the car manufacturer protocol on top of
CAN as it allows to trigger functionalities and observe the effect on the car. During the attack,
the attacker can try to change and modify the different fields of a CAN frame. For instance,
send multiple identifiers, send the same identifier with multiple data length codes or with
multiple data fields. All of these fields can be carefully chosen in order to build a smart fuzzing
strategy. Such attacks are already supported in some tools dedicated to the CAN protocol [14].

The attack is not inherent to the CAN protocol. Protection techniques against this type
of attacks can be adopted, to some extent, in order to stop/block frames.

2.5.2.4 Impersonation attack

As mentioned previously, the CAN protocol does not implement proper source/destination
addressing in the sense that the node does not have identities on the network. The identifiers
are rather used to identify the message itself but not the destination. It indicates the source
as the CAN network assumes that each identifier is sent at most by one node. However,
technically there is nothing that blocks a second node from sending a message with the same
identifier as the first node. From an attacker point of view, this makes an ECU impersonation
possible if there is no source control at the data payload level. In fact, and as was reported
by multiple research papers [28, 29, 55, 94, 104], car manufacturers do not implement source
authentication. The principle of the attack is thus to capture a message and replay it on the
CAN bus. At receiving end, the ECUs will assume that it is an authentic message sent by
the legitimate ECU, and will process the data allowing the attacker to manipulate sensor
values, and command actuators. This technique was tested successfully on multiple cars and
was used to reproduce effects on cars such as activating the horn, activating lights and in
some cases even cause safety-critical scenarios like activating the breaks and opening the
doors at high speed. The attack can even be used to impersonate the diagnostic tool and
open diagnostic sessions with ECUs that give it the ability to perform any type of action
including the most safety-critical ones. The attacker can either replay a message recovered
from network captures, or completely forge a message. These two alternatives are respectively
called Message Replay Attack and Message injection Attack.

This attack is not inherent to the technology but rather to the way the CAN protocol is
used. Car manufacturers can use the CAN protocol differently and introduce security features
in order to block this type of attacks. In fact, from a security standpoint, it constitutes an
authenticity violation. In the following sections, we will expose possible methods that can
block this type of attack and their drawbacks.

2.5.2.5 Exhaustion attack

To exhaust an ECU in this context is to give it more information then what it actually needs,
for instance, with an update frequency superior to the original update frequency. The intent
of the attack is to overwrite the original messages by issuing even more messages then the

33

2. STATE OF THE ART

Table 2.6: Summary of CAN Weaknesses

Weakness Ref. Violation Inherent Not
type inherent

ID-based DoS [29, 94] Availability X
Error-based DoS [104] Availability X
Reverse-engineering [14, 118] Confidentiality X
Fuzzing [14] Authenticity X
Impersonation attack [54, 94] Authenticity X
Exhaustion attack [54] Availability & Authenticity X

legitimate ECU.

This attack is not inherent to the CAN standard and is related to the way the protocol is
used in the automotive industry. Possible remediation strategies to this weakness exist and
will be presented in section 2.5.3.

Table 2.6 gives a summary of the attack types over the CAN protocol. Attacks that are
not inherent to the CAN standard are related to the way the automotive industry uses the
standard. In the next section, we investigate possible protection methods for these attacks.

2.5.3 Protection mechanisms

Knowing the CAN weaknesses, and in order to protect in-vehicle communication buses, it
is necessary to understand the attacker model and attacker objectives. In section 2.3 we
exposed the attack surface of connected cars. From this attack surface, we concluded that an
attacker can have three types of access to in-vehicle communication buses: direct physical
access, indirect physical access, and remote access. Depending on the access type, the attacker
has some capabilities with regards to the in-vehicle communication buses. An attacker has
direct physical access when he/she can connect a controlled attack device directly to the
communication bus. In this case, the attacker can read frames communicated on the commu-
nication bus and can interact with other ECUs by crafting and sending frames. An attacker
has indirect and remote physical access to the communication bus when he/she somehow
succeeds in taking partial or full control over a legitimate ECU, for instance leveraging a
software or hardware vulnerability. In this case, the attacker can, not only, read and write
frames but also modify the content of legitimate frames and impersonate the controlled ECU.
Figure 2.9 illustrates the difference between these two types of attackers: in figure 2.9-a we
represent an attacker with direct physical access to the CAN bus. This attacker is capable
of sending an entire extra CAN frame (in red) to accomplish the attack. In figure 2.9-b we
represent an attacker that has indirect/remote access to the CAN bus levering the control of
one of the legitimate ECUs. This attacker is capable of not only sending an extra message
but also directly modify the content (payload in red) of a legitimate message.

34

2.5 In-Vehicule Secure Communication survey

ECU 1

CAN-Bus

ECU 2

Attacker

ID DLC Payload

ID DLC Payload

(a) Direct physical access to the CAN-Bus

ECU 1

CAN-Bus

ECU 2

Attacker

ID DLC Payload

(b) Indirect/remote access to the CAN-Bus

Figure 2.9: Attacker models

Protection solutions have been proposed, depending on the adopted attacker model, in
order to neutralize their capacity of extracting information and/or harming the system. We
identified in the literature three main families of protection mechanisms that are proposed for
this purpose.

• Payload protection: in reference to the frame payload, this protection mechanism uses
cryptographic primitives in order to protect the data part of the frame.

• Identifier protection: in reference to the frame identifier, this protection mechanism uses
randomization strategies to protect the identifier part of the frame.

• Intrusion detection system: this protection mechanism uses multiples detection principles
each one designed to trigger one specific bad behavior.

In what follows, each family of protection solutions is detailed.

2.5.3.1 Payload protection

One of the first and obvious family of solutions that were proposed to secure the CAN
bus is the payload protection solutions. In fact, when dealing with an authenticity and/or
confidentiality violations, the first step towards overcoming this weakness is to protect the
payload data with cryptographic mechanisms. Nilsson et al. [102] proposed a delayed data au-
thentication using compound message authentication codes. Their idea is to use Cipher-Block
Chaining Message Authentication Code (CBC-MAC) along with the KASUMI encryption
algorithm [40] in order to send message authentication codes over consecutive CAN frames
to authenticate the messages. In [50] Hartkopp et al. proposed a security concept that uses
symmetric authentication measures such as the Cipher-based Message Authentication Code
(CMAC) algorithm to authenticate signals and time-stamps to guarantee the freshness of the
messages. In [129] Van Herrewege et al. propose a broadcast CAN authentication solution

35

2. STATE OF THE ART

that uses the least significant bits of HMAC [80] using group authentication keys. In [47]
Groza et al. present an ECU authentication solution called LiBra-CAN that rely on Mixed
Message Authentication Codes (M-MACs). The proposed solution needs to assign pre-shared
encryption keys to groups of ECUs. In [97] Mundhenk et al. introduce an Open source
simulator for real-time performance analysis of automotive networks. This simulator was used
later in [98] to evaluate and compare between multiple ECU authentication and authorization
strategies.

The payload protection family targets the capacity of the attacker that has direct physical
access to the communication bus, to read and/or write data. It neutralizes its capability to
understand the content of the payload data, and to impersonate an ECU depending on the
used cryptographic primitives.
Limitations:
The main limitation of this type of protection is that the produced data is larger than the
original data which causes a bandwidth overhead on the communication link. For instance,
Van Herrewege et al. [129] introduce an additional 112 bits authentication code (including
a counter and a message signature) in the frame payload for each message that needs
authentication. In fact, here the goal is to protect the confidentiality/authenticity of the sent
data, we have to send a data authentication code along with the original data. State-of-the-art
encryption solutions suggest using no less than 128 bits encryption key with a block cipher of
minimum 64 bits (128 bytes for AES-128). Similarly and according to NIST [37] and FIPS [41]
recommendations, cryptographic authentication codes should have a minimum length of 64
bits, when no additional measures to limit the validation rate are taken. This involves a
significant increase in data size. Although both Hartkopp et al. [50] and Schweppe et al. [116]
argue that since CAN network has limited speed, the CMAC can be further be reduced to
32 bits if session keys are used. While the impact of this transformation could be negligible
for only one message, the generalization of the use of such solutions to all the messages will
cause a significant network overhead. This will have practical side effects such as increasing
the delay of messages and increasing errors on the CAN network. Furthermore, the payload
protection mechanism does protect the confidentiality and integrity of the data but does not
protect against reverse-engineering. Since the identifiers are kept unchanged, the attacker
can still reverse-engineer part of the car manufacturer protocol. Besides, the attacker can
still perform exhaustion attack on the ECUs, by sending messages with correct identifiers but
wrong payload, thus forcing dummy and useless processing on the receiving side and leading to
a DoS attack. In fact, before accepting the message, each ECU will have to perform a message
verification step in which it will re-compute the authentication code. This step will introduce
processing delays that can be more or less important depending on whether the security
function is software or hardware enabled (cf. [98] for a comparison between hardware/software
introduced delays). Additionally, in order to use payload protection mechanisms, we have to
build key management strategies, including key distribution and key agreement protocol runs
for each new session. This adds not only a deployment complexity to the existing system but
also delays and possible de-synchronization issues.

36

2.5 In-Vehicule Secure Communication survey

2.5.3.2 Identifier protection

Recall from section 2.5.1 that each car manufacturer define a proprietary protocol on top of
CAN and that is implemented inside all ECUs. This protocol defines which identifiers are sent
across the CAN network and for each identifier the content of the payload information of the
corresponding frame. The idea behind identifier protection solutions is to make the message
identifiers not fixed, but instead continually changing in a way that the sending and receiving
ECUs can synchronously agree on the same identifier for a given message. The underlying
principle is also called an obfuscation process or randomization process.

Humayed et al. [56] proposed a solution called ID-Hopping to counter Denial of Service
attacks directed against a specific message. Their method works closely with an intrusion
detection mechanism1 which is needed to identify the existence of an undergoing attack
against a specific message. Once the attack has been detected, the ID-Hopping mechanism is
activated. Its role is to assign a new but previously defined, identifier as a substitute identifier
for the attacked message. Another interesting solution to protect the CAN protocol is to
regularly randomize the identifier. The constraint is that both sender and receiver need to
use the same identifier. Han et al. [48, 49] proposed a candidate randomization function
that includes a random number at the least significant bits of the identifier. In [87] Madl et
al. propose to re-assign a CAN profile, defined as the set of message identifiers used by the
car manufacturer, to the car so that each vehicle at a given time would be using a different
CAN profile. This would increase the complexity of large scale attacks against a fleet of vehicles.

This security principle is efficient to protect the CAN bus from identifier reverse-engineering,
large scale attacks as well as injection and replay attacks. In fact, if the identifier is not fixed
across vehicles, a large scale attack that could affect all the cars is no longer possible as the
identifiers of messages will change from one vehicle to another. Moreover, if the identifiers are
not fixed within the same vehicle, a frame replay attack will not succeed because the identifier
is continuously changing, and thus no ECU will catch the replayed frame. A frame injection
attack neither will work, because the attacker will have to “predict” what will be the next
identifier to be injected in order for the attack to be successful.
Limitations:
It is clear that this protection technique allows protecting the identifier but does not allow to
protect the payload data of the frame. Nevertheless, in principle, it could be combined with
other protection mechanisms (payload protection and intrusion detection system) Additionally,
depending on the used protection strategy, the level of protection against replay/injection
attacks and reverse-engineering is not the same. For instance, the proposition of Humayed
et al. [56] that allows agreeing on a new yet predefined identifier in case of attack, does
not protect against identifier reverse-engineering per se (as defined in section 2.5.2.2) as well
as injection and replay attacks. While, the proposition of Han et al. [48, 49] that allows a
dynamic identifier set offers a higher level of protection against these attacks. In chapter 4 we
visit more in details this family of protection mechanisms and study their effectiveness.

1Intrusion detection systems are another family of protection solutions and will be presented in the next
section

37

2. STATE OF THE ART

2.5.3.3 Intrusion Detection and Prevention Systems

Another family of protection solutions is known as in-vehicle network Intrusion Detection and
Prevention Systems (IDPS). Their role is to monitor in-vehicle networks (CAN for instance)
and perform an analysis of the passing traffic on the entire sub-network for suspicious behavior.
Once an attack is identified, or abnormal behavior is sensed, the alert can be raised and
prevention counter-measures, if any, can be adopted.

Detecting intrusions on the in-vehicle communication buses is important as it can prevent
attacks from spreading to other ECUs. The main difference from the previously introduced pro-
tection mechanisms is that IDPS systems do not introduce fundamental design changes to the
vehicle. They can be backward compatible with existing equipment. Nevertheless, they need to
be placed at a strategic point(s) within the network to monitor the traffic to and from all ECUs.

Many mechanisms have been proposed to detect possible intrusions on the CAN bus.
They are more or less effective depending on the attacker model (Figure 2.9) In general,
state-of-the-art detection mechanisms can be categorized into two main classes: Rule-based
detection mechanisms and Anomaly-based detection mechanisms. Table 2.7 gives a listing of
state of the art intrusion detection mechanisms applied to the CAN bus. Figure 2.10 gives
a high-level overview of these mechanisms applied to the CAN protocol. Prevention on the
CAN network can be either by filtering out the attack frames or by killing the suspicious
frames by causing a frame error. Advanced prevention methods that rely on error correction
also exist. In all cases, prevention mechanisms can be adopted when the confidence level is
very high.

S
O
F

Identifier
R
T
R

I
D
E

r DLC Data CRC ACK EOF

Identifier filtering

Timing analysis

Identifier sequence

Syntax check

Deep packet inspection

Outlier detection

Classification

Bit level prevention

Figure 2.10: High-level synthesis of detection mechanisms applied to the CAN frame

Rule-based Intrusion detection Rule-based intrusion detection mechanisms, tend to
define specific rules of how the network traffic should be. These rules can be extracted directly
from specifications, or known attack signatures, or observed behavior of the network traffic.
Any message that does not comply with these predefined rules is reported as intrusions.
Therefore possible prevention mechanisms could be applied to it. Examples of such rules can
be defined for the Gateway ECU that implements routing functionalities between different
network segments or syntax of messages as defined by the manufacturer

38

2.5 In-Vehicule Secure Communication survey

• Identifier filtering:
Based on the identifier, an intrusion detection system can establish a list of allowed
and forbidden identifiers, based on which it can decide which frames to accept and
which frames to filter. This technique is best known as identifier filtering or identifier
white-listing [95, 100]. Such a white list can also depend on the context of the vehicle: for
instance, the intrusion detection system may allow specific identifiers when the vehicle
is on parking state, and reject them when the vehicle is moving.

• Diagnostics:
In order to detect attacks that try to open diagnostics sessions while the vehicle is
moving, Miller et al. [94] proposed to define detection rules of diagnostics messages
based on the state of the vehicle. The idea is based on the fact that the vehicle needs
to implement a diagnostics policy that defines when certain diagnostic requests are
allowed or not. This diagnostics policy can be featured inside each ECU or on a Gateway
ECU whose role is to re-direct diagnostics requests to the appropriate sub-network.
Implementing these rules can help enforce diagnostic policy and thwart attacks that try
to exploit diagnostics commands.

• Identifier timing analysis:
In order to detect attacks that uses periodic messages, multiple methods [29, 54, 100]
proposed mechanisms that take advantage of the identifiers timing analysis. In fact,
since the goal of the CAN-IDPS is to protect against injection of extra packets onto the
network, and given the fact that most normal frames have predefined frequencies (set-up
during the design phase), then if the particular message does not respect its frequency,
it should be reported as an intrusion. In other words, if the same message is received
outside of its acceptance time-window, the system shall consider it as an intrusion
and shall filter it out. Taylor et al. [124] proposed a detection algorithm based on the
comparison of previous and current frame timings to implement this principle. Cho et
al. [29] proposed an ECU authentication method based on identifier timing and used
to detect frames sent by a possible attacker. Song et al. [119] proposed a light-weight
intrusion detection algorithm based on the analysis of time intervals of CAN messages.
Lee et al. [82] proposed a detection algorithm based on request/response message timing
analysis.

• Identifier sequence:
In order to detect message injections it is also possible to focus on identifier sequences.
In [125] Taylor et al. train long short-term memory networks in order to detect the
correct identifier sequence. Marchetti et al. [89] proposed to use identifier sequence to
define identifier transition matrix used to detect possible false transitions.

• Word sequence:
The same idea can also be defined to payload content and not only to identifier sequence.
This method is called "word sequence". Studnia et al. [121, 122] proposed a language-
based intrusion detection system that is based on word sequences.

• Syntax check:
Besides the identifier of the messages, the data length code (DLC) can also be exploited

39

2. STATE OF THE ART

to detect bad behavior. In fact, each manufacturer sets-up a proprietary protocol over
the CAN standard. This protocol consists of creating a mapping between identifiers and
payload information (sensor values for instance), also called signals, shared across all
ECUs. This mapping defines a syntax that can be checked based on the payload length
of each message. Müter et al. [100] proposed that messages that violate this syntax (i.e.,
messages sent with the wrong DLC or wrong signals) are then flagged as intrusions.

Anomaly-based Intrusion detection Anomaly-based detection mechanisms tend to define
statistical measures computed over a window of time and used to classify normal and suspicious
behavior. First, the goal is to create a model of trustworthy activity during a training phase,
based on the statistical measure. Then in the operational phase, compare new behavior
against this model.

• Entropy:
An early work of Müter et al. [99] proposes to use the entropy of the CAN frames as
a measurement to classify normal and abnormal behaviors observed on the CAN bus.
Their approach is to measure the entropy based on frame bits over a window of time.
This first phase serves to characterize the level of entropy (upper and lower bound)
during the normal functioning of the CAN bus. The idea is that certain attacks will
modify the level of entropy. For instance, during a Dos-attack (section 2.5.2.1), the
entropy will be low, and inversely during a fuzzing-attack (section 2.5.2.3) the entropy
will be very high. Thus the lower and upper entropy bounds will serve during deployment
to detect these kinds of attacks.

• Hamming distance:
Recently, Dario et al. [34] proposed an intrusion detection algorithm that identifies
anomalies by computing the Hamming distance between consecutive payloads. Similar
to the entropy, this Hamming distance is compared with minimum and maximum
thresholds defined during the set-up phase, and that defines the normal behavior.

• Deep learning:
Kang et al. [70] train a deep neural network structure to classify normal versus attack
packets using probability-based feature vectors of packet payload bits. Training data
were generated by the Open Car Test-bed and Network Experiments (OCTANE) packet
generator [22]. Normal and attacked packets were necessary in order to train the
algorithm.

• Hidden Markov model:
Narayanan et al. [101] propose to build Hidden Markov Model of the normal behaviour
of the car based on sensor values (or signals). Their work shows that it is possible to
detect data manipulation attacks like speed discontinuity.

2.5.4 Advantages and disadvantages

The presented protection mechanisms presented in the previous section have different capabili-
ties to thwart attacks on in-vehicle communication buses. The payload protection mechanisms

40

2.5 In-Vehicule Secure Communication survey

Table 2.7: Intrusion detection techniques applied to CAN

Ref. Type Measure Application
Müter et al. [100] Rule-based vehicle state All frames
Miller et al. [95] Rule-based Vehicle state Diagnostics
Taylor et al. [124] Rule-based Identifier timing Periodic and remote frames
Cho et al. [29] Rule-based Identifier timing Periodic and remote frames
Song et al. [119] Rule-based Identifier timing Periodic and remote frames
Lee et al. [82] Rule-based Identifier timing Periodic and remote frames

Marchetti et al. [89] Rule-based Identifier se-
quence

Frame identifiers

Taylor et al. [125] Rule-based Identifier se-
quence

Frame identifiers

Studnia et al. [121, 122] Rule-based Word sequence Frame identifier and payload
Müter et al. [100] Rule-based Syntax check Frame length (DLC)
Müter et al. [99] Anomaly-based Entropy Frame bit distribution
Dario et al. [34] Anomaly-based Hamming dis-

tance
Frame payload data

Kang et al. [70] Anomaly-based Deep neural net-
work

Frame bit distribution

Narayanan et al. [101] Anomaly-based Hidden Markov
model

Frame payload data

target, in general, an attacker that has direct physical access to the communication bus, as
well as an attacker that has indirect or remote access to one of the legitimate ECUs, provided
that the controlled ECU does not hold the shared secret. Nevertheless, even for an attacker
that has direct physical access, some attacks are still possible like partial reverse-engineering
and exhaustion attacks. Payload protection also has an impact on the data throughput that
depends on the used cryptographic primitives. Moreover, they introduce a processing time for
data verification that also depends on whether the cryptographic primitives are software or
hardware based.

Similarly, identifier protection techniques have the ability to protect against the same
types of attackers (i.e. attacker with physical access and indirect/remote access to a legiti-
mate ECU provided that the controlled ECU does not hold the shared secret). Additionally,
depending on the obfuscation strategy it can also protect against reverse-engineering (which
can thwart a large scale attack against a fleet of vehicles) and exhaustion attack provided that
the identifier verification procedure is faster than payload verification. Generally speaking,
identifier protection does not have an effect on the data throughput but still introduce a
processing time for verification that also depends on whether the obfuscation strategy is based
on software or hardware processing components. Chapter 4 will be dedicated to this type of
protection mechanisms.

Intrusion detection systems offer protection against an attacker that has direct physical
access. All of these detection mechanisms focus on the integrity of the protocol (timing

41

2. STATE OF THE ART

analysis, syntax check, . . .). Some intrusion detection techniques also offer protection against
indirect/remote access to one of the legitimate ECUs. These are the mechanisms that perform
deep-packet-inspection type of detection. Most of them are outlier detection techniques that
are based on a statistical measure (entropy, hamming distance) that are effective against
fuzzing and DoS attacks, but may fail against carefully crafted packets. Some of them are
trained with machine learning techniques and need normal and attacked packet in order to
recognize attacks. In chapter 5 we build an intrusion detection system in order to address
this limitation.

2.6 Conclusion
In this chapter, we gave an overview of threats posed on the cyber-physical architecture
of modern cars. We first presented the cyber-physical architecture of modern vehicles as
well as possible attack vectors and examples of reported attacks. We presented possible
countermeasures along with design methodologies to handle security problems. Additionally,
we dedicated an important part in order to study possible countermeasures for in-vehicle
communication buses. In view of state of the art, in chapter 3 we investigate and develop a
framework for the formal modeling of the cyber-physical architecture of the connected vehicle.
The framework allows defining formally the main components in the system architecture
as well as an attacker model. It is used to generate attack trees useful for risk analysis
step automatically. Similarly, given the state of the art in-vehicle protection mechanisms,
in chapter 4 we investigate obfuscation procedures for the CAN-bus. These obfuscation
procedures are applied to the identifier part of the frame and target an attack with direct
physical access to the communication bus. Multiple strategies are compared based on their
capacity to protect against reverse engineering of the manufacturer-specific communication
protocol used on top of CAN as well as against injection and replay attacks. Finally, in
chapter 5 we introduce a prediction-based intrusion detection system that uses machine
learning technique in order to protect against an attacker that has indirect and remote access
to one of the legitimate ECUs. We demonstrate the feasibility of the intrusion detection
system on two safety-critical information and test its capacity to withstand multiple attacks.

42

CHAPTER 3

Risk analysis and Attack tree generation

In this chapter, we introduce the concept of attack trees as well as a formal modeling
framework of the car architecture to help deduce minimum attack trees and exploit them to
compute risks. Results presented in this chapter have been scientifically valued by an article
published as a book chapter in Cyber-Physical Systems Security [71].

Contents
3.1 Introduction . 43
3.2 Attack trees . 45
3.3 A case study: speed acquisition and display system 49
3.4 Cyber-physical architecture formal model 50
3.5 Graph transformation system . 58
3.6 Attack tree transformation . 62
3.7 Security analysis and Countermeasure 68
3.8 Conclusion . 73

3.1 Introduction
In chapter 2 we presented a survey of a wide range of possible attacks against modern vehicles.
These attacks leverage multiple attack vectors, exploit a plurality of hardware and software
vulnerabilities, and they chain multiple, sometimes complicated, steps that can take advantage
of core components of the vehicle. Goals of the attacker start from a simple gain of information
(privacy violation) to gaining full control of the vehicle by impersonating ECUs. However, in
the automotive domain, security violations have a direct impact on the users’ safety.

Facing this increasingly growing threat, car manufacturers have to guarantee a certain
security level of the equipment embedded in the automobile. Thus, the management of risk is
becoming the primary concern of automotive manufacturers, especially for the future fully

43

3. RISK ANALYSIS AND ATTACK TREE GENERATION

connected and autonomous cars. The obvious approach to this problem is to conduct a
security assessment study. The goal of the security assessment is to identify the assets and
the associated threats regarding availability, integrity, and confidentiality [16, 59]. There are
available methods like EBIOS, TVRA, EVITA, and others that could be adapted to conduct
such a study in the automotive domain. Ultimately the study will help the manufacturer
decide where to best implement the security mechanisms. To do so, the risk is evaluated
relative to each threat based on its impact and its likelihood.

Risk =
∑
i

Impact(thri)× Pocc(thri) where:

• {thri} is the set of identified threats.

• Impact is a function that evaluates the impact of a given threat.

• Pocc is the likelihood or the probability of occurrence of the given threat.

While the impact of the threat has to be defined by domain experts, determining what
threats are likely to occur is a little more complicated and strongly depends on the given
architecture. Eventually, security experts have to imagine every possible way the attacker
can exploit the system (called attack scenarios) in order to reach their objective. A fairly
good way to model these attack scenarios and to document them is to use attack trees or
the attack graphs. These formalisms are presented as one of the possible solutions put for-
ward in the new Cybersecurity Guidebook for Cyber-Physical Vehicle Systems (SAE-J3061) [31].

The attack tree formalism allows understanding effectively how the attacker can reach
its objectives. It also allows easy visual inspection as well as documentation of the possible
attack paths. Moreover, it presents some advantages in particular in the automotive domain
as it presents some similarities with Fault Tree Analysis and can be leveraged to address
safety and security issues altogether based on similarities in the engineering processes [33].
These similarities have been, in part, put forward in the SESAMO1 project whose goal was
the analysis of safety and security cross influences in embedded systems at the architectural
level including in the automotive domain. From a threat analysis point of view, it is used
to refine the risk assessment step through the elucidation of the basic attacks that serve
a particular scenario. They require nonetheless a lot of work and expertise to elaborate.
This expertise encompasses knowledge of the vehicle architecture, software components, and
protocols used as well as of basic attacks that target each of these items. That is why the
automated generation of attack paths can be of great importance in this context. However, a
formal model of the system under evaluation is required for this task.

Chapter contributions. In this chapter, we first propose a method to model elements of
the cyber-physical architecture of the vehicle using graphs. The model captures the security
policy implemented as well as vulnerability information and access rights. Besides we consider
an attacker model as a set of attacks originating from all the attack vectors (short range, long
range, and indirect physical access). The system and attacker are modeled with behavioral
rules using graph transformation system.

1SEcurity and SAfety Modeling: http://sesamo-project.eu/

44

3.2 Attack trees

Second, we use the model to generate possible attack paths (combinations of actions) that
can be used by the attacker to drag the system into a vulnerable state. Thus the generated
attacks are more detailed, and we can capture more information about the possible attacker
actions. The simulation of this behavioral model will allow us to find all vulnerable states and
to retrace attacker actions that allowed him to reach it. Using this information we generate
an attack tree that summarizes all possible steps that allow the attacker to reach his goal.
Based on such a model we can try to answer questions like:

• Is a vulnerable configuration/state reachable from an initial state? In other words is an
attack scenario achievable on the proposed architecture?

• Which sequence of basic attacks the attacker has to perform in order to reach such
vulnerable state?

In what follows, section 3.2 gives some preliminary notions and definitions of attack trees
as well as some background on the attack tree generation problem. In section 3.3 we introduce
a case study that deals with speed acquisition and display system, and that will be treated
as an example throughout the chapter. Section 3.4 presents the formal framework that we
established in order to model a given cyber-physical architecture of a vehicle. Section 3.5
introduces a graph transformation system as the underlying modeling language used, and the
tool used for the generation the system state space. In section 3.6 we show how to transform
the state space into an attack tree and how to perform the security analysis and introduce
countermeasures of the generated attacks in section 3.7. And finally section 3.8 concludes.

3.2 Attack trees

3.2.1 Presentation and formal definition

Attack trees are a very famous graphical security model [27, 44, 77, 93, 108, 114] whose main
purpose is to define and analyze possible attacks on a system in a structured way. They
are generally used in industry for managing threats and perform a security risk assessment.
One of their benefits is that they constitute a very useful tool to document very complex
attack scenarios in a compact way. Additionally, they are very effective in representing threat
scenarios in a structured way that open the door to more complex analysis and possibly the
definition of effective countermeasures.

Attack trees have been popularized by Schneier [114] as a useful way to document and
understand attacks on a given system and most importantly is a way of making decisions
about how to improve the security of the target system. Figure 3.1 illustrates the concept
and main elements of an attack tree. An attack tree is a set of leaf nodes structured using the
conjunction [AND] and disjunction [OR] operators. The root node in an attack tree represents
the attack goal (or threat), and leaf nodes represent atomic attacker actions (also called basic
attacks). Each intermediate node in the tree is either a [AND] node or a [OR] node.

• The [AND] node has child nodes that represent different steps of achieving the goal. In
this case, all child nodes must be all executed by the attacker in order for the parent
node to be reached.

45

3. RISK ANALYSIS AND ATTACK TREE GENERATION

Goal

AND

Sub-goal 1

OR

Sub-goal 2

AND

a b c d

Goal of the Adversary

Decompose the goal
into sub-goals

AND : All sub-goals have
to be achieved

OR: : At least on sub-goal
has to be achieved

Basic Attacks

Figure 3.1: Attack tree decomposition principle

• The [OR] node has child nodes that represent different ways of achieving the goal. In
this case, only one child node needs to be executed in order for the parent node to be
reached.

Optionally, another type of node can be added to enrich the decomposition, denoted [SAND]
(for Sequential AND) [68] and expresses the fact that not only child nodes must all be executed,
but also must be executed sequentially in the right order (relatively to time or to a specific
condition).

Graphical security models such as attack trees and attack graphs have been used for
security analysis of SCADA systems [25, 127], network administration [15, 67, 117] automotive
systems [12, 27, 52, 112, 113], socio-technical systems [36, 38, 83], . . .More formally, and as
formulated by Mauw et al [93], an attack tree can be defined with the following definition 3.1.

Definition 3.1. Let A be the set of possible atomic attacker actions (or basic attacks), the
components of the attack tree T are A ∪ {AND,OR}, and the following grammar generates
the attack tree:

t := a | OR(t, .., t) | AND(t, ..t) where a ∈ A

Later work of Jhawar et al. [68] extended this formal definition to include also a sequential
combination of basic attacks. In this thesis, we consider only the basic form (i.e., with
conjunctive and disjunctive combinations only).

46

3.2 Attack trees

However, a single attack tree may be represented differently. That is to say that two
attack trees with different structures may represent the same set of attacks. In [93] Mauw et
al. introduced an equivalence relation between such attack trees by defining reduction rules
whose ultimate goal is to define an attack tree with its associated normal form. Informally
the set of normal forms is defined as the set of attack trees with depth less or equal to one. In
the rest of the chapter, we will only consider the normal form of an attack tree.

Attack trees have found their way to practice because they are well designed to support
risk assessment studies. In fact, one of the main purposes it serves is to point out the set
of attacks that are more likely to occur. Even more, they allow a wide range of qualitative
and quantitative analysis methods [78, 81], which makes them perfect for analyzing the cost
of attacks, skills needed, time, probabilities Most of these analysis techniques follow a
bottom-up approach and propagate values from the leaves to the top of the tree. In figure 3.2
we report an example borrowed from the work of Henniger et al. [52] of analysis performed on
an attack tree that describes possible ways to trigger unauthorized active braking. In this
example, authors computed the attack potential of the basic attacks defined as the effort
required to create and carry out an attack (in terms of needed expertise, knowledge of the
system, equipment, . . .) according to ISO/IEC-18045 [64], and ISO/IEC-15408 [65] and then
used the tree structure to propagate these probabilities right to the top in order to compute
the risk.

Figure 3.2: Attack tree for unauthorized active braking [52]

Tools that support such evaluation process are available. A number of commercial software
applications for tree-like structures can be used for this purpose, like AttackTree [85] and
SecurITree [126]. Free open source software solutions are also available. Kordy et al. [76] and
Gadyatskaya et al. [43] built a tool, called ADTool, for automated bottom-up evaluation of
security-relevant measures on attack trees. The tool also supports ranking of attack scenarios
based on quantitative attributes entered by the user.

Nevertheless, the elaboration of attack trees can be a tedious task and error-prone for large

47

3. RISK ANALYSIS AND ATTACK TREE GENERATION

and complex systems. This is why automated techniques to generate such representations of
attacks have been proposed.

3.2.2 Attack tree generation problem

3.2.2.1 Attack trees in the automotive domain

In the automotive domain, little work has been conducted in such direction. To the best
of our knowledge the work of Salfer et al. [112, 113] is the only one that proposes such an
approach. In [113], Salfer et al. present automated attack tree generation as a reachability
problem of assets inside the cyber-physical architecture of the vehicle modeled as a graph.
Nevertheless, the proposed model focuses on scalability issue using heuristic techniques and
does not address the exhaustivity of the attack paths. Lugou et al. and Apvrille et al. [17, 86]
use SysML-Sec modeling language to model safety and security aspects of the car architecture
and formally prove safety (with Uppaal [20]) and security (with Proverif [21]) properties.
In [18] Apvrille et al. explain how to use an input attack graph modeled with SysML-Sec for
the verification of a system. The issue of how to create such an attack graph is not addressed,
in other words, the attack scenarios are not automatically generated and need to be manually
fed to the tool. Cheah et al. [27], present an approach to systematic security evaluation and
testing of vehicular systems using attack tree. In their approach, the attack trees are also
considered as an input of the evaluation engine.

3.2.2.2 Attack tree generation in other application domains

In contrast, automated generation of attack trees has been addressed in other domains,
especially in network security and enterprise security [15, 57, 67, 106].

In [106] Phillips et al. build an attack graph based on topology and vulnerability infor-
mation whose goal is the analyze network vulnerabilities, they also use the attack graph to
identify attack paths with high probability or low cost. The analysis system requires as input
a database of common attacks, broken into atomic steps, specific network configuration, and
topology information as well as an attacker profile. In [110] Ritchey et al. used a model
checker to provide single attack scenarios to depict vulnerabilities due to the configuration
of various hosts in a network. The pieces of information about the network are fed to the
model checker and then assert that an attacker cannot acquire a given privilege on a given
host. The model checker provides a counterexample (the attack steps) in case the assertion
is false. As an extension of this work, in [117] Sheyner et al. present an automated method
to analyze a network of hosts with known vulnerabilities and produce an attack graph that
depicts all possible ways for the attacker to reach his goal.

Later works focused on reducing the complexity of the approaches. In [15] Ammann et al.
propose a scalable attack graph generation based on the monotonicity assumption (an exploit
never invalidates another exploit). In [103] Ou et al. introduced a logic-based approach for
network security analysis. The method relies on inference rules implemented on a modified
version of the XSB inference engine to depict all attack paths combining vulnerabilities in a
network. In [57] Ingols et al. use network configuration data to compute network reachability
automatically, classify vulnerabilities and builds an attack graph used to recommend actions

48

3.3 A case study: speed acquisition and display system

to improve network security. In [67] Jajodia et al. use topological information to analyze
vulnerability dependencies and assess the impact of individual and combined vulnerabilities
on overall security, then identify critical vulnerabilities and provide strategies for protection.

The problem has also been investigated for enterprise security domain [36, 66, 83] also
called socio-technical physical system. The goal is to implement enterprise security policy
against possible “insider attack” or attacks that leverage certain “trust” relations and social
interactions between actors (employees). Thus efforts focused on modeling trust relations
and asset mobility. In [66] Ivanova et al. present a general framework of a model for en-
terprise security and how to transform this model to an attack tree that exploits possible
trust relations between actors. In [36] only the modeling aspect of the problem is discussed
and also focuses on trust relations and asset mobility. In [83] Lenzini et al. investigate a
formal model to evaluate the security of physical systems with objects as assets and peo-
ple as agents. Their model can detect and quantify attacks with associated probability and cost.

Generation techniques used in the previously mentioned papers rely on models that are
not suited for the automotive domain. However, the general approach could be adapted. This
approach is more or less the same for all of the presented works: first, the real system is
abstracted in a model that captures only the essential aspects. Second, the modeled system is
expressed using the language of an inference engine (Model checker, Horn clauses . . .). It is
then processed by the inference engine whose output is a set of possible attacks to be analyzed.
The work presented in this chapter has been partly inspired by the previously mentioned
frameworks.

3.3 A case study: speed acquisition and display system
In this section, we introduce a case-study on which the methodology has been applied. The
case study will be mentioned at each step of the methodology throughout the chapter in order
to clarify based on an example.

3.3.1 Description

To clarify the model let us consider the case-study of Figure 3.3. In this case study, we propose
the speed acquisition and display system implemented on an architecture composed of 3 ECUs
connected to the same CAN-bus. The CAN-bus is connected to an OBD port for diagnostics
purposes. The first ECU (denoted ECU1) is equipped with a CAN controller that allows it to
communicate over the CAN-bus, a speed sensor and a processing unit on top of which runs
a service whose role is to make the acquisition from the sensor and send the information to
other ECUs on the CAN-bus. The second ECU (denoted ECU2) is also equipped with a CAN
controller, a processing unit and a human-machine interface (denoted screen). On the ECU2
runs a service whose job is to read the speed information from the CAN-bus and to pass it to
the screen to be displayed for the driver. ECU2 is the instrument cluster. Finally, the third
ECU (ECU3) similarly is equipped with a CAN controller in order to be able to communicate
over the CAN-bus. Additionally, it is equipped with a cellular network controller that enables
communications with the outside world. ECU3 also has a processing unit on top of which

49

3. RISK ANALYSIS AND ATTACK TREE GENERATION

runs a diagnostics service whose role is to receive diagnostics commands from the cloud that
need to be relayed to the CAN-network and sends back diagnostics responses.

3.3.2 Goal of the attacker: forge displayed vehicle speed

For this particular example, we focus on studying the ability of the attacker to inject an
erronous speed measurement into the system. Obviously, such an attack will have a substantial
safety impact, as the speed of the vehicle is used by many other functions (like the display
function for the user) including safety critical functions. We focus in this chapter on the single
user-display aspect. Other functions can be studied similarly.

3.4 Cyber-physical architecture formal model
In this section, we present the formal model that we will use in order to define main components
of the system, and that will be used to automatically generate attack paths first in the form
of an attack graph, and that will be transformed into an attack tree. The formal framework
will serve to formally define an abstract representation of the system (and its behavior) as
well as the attacker. The latter will be defined with a behavioral model composed of a set of
actions (interpreted as basic attacks) that can be guarded by contextual conditions. Finally,
the framework is implemented with means of graph transformation system.

As introduced in chapter 2, the cyber-physical architecture of the vehicle is composed of
four main components that are ECUs, communication buses, sensors, and actuators. The
ECUs are composed of electronic components that implement storage capacity, communication
interfaces to the outside world as well as processing capabilities. ECUs also run software that
implements multiple services whose role is to process data produced by the interfaces and
necessary for the proper functioning of the vehicle. In this section, we present the abstracted
formal model that we define for each of the aforementioned elements.

A formal model of a cyber-physical architecture of a connected vehicle is a tuple <
Comm,Hardware, Service,Data,Arch,Att >, where: “Comm” models the communication
mediums inside the vehicle as well as to the outside world. “Hardware” models the hardware
components that are physically accessible by an attacker. “Service” models the services that
are implemented inside the ECUs. “Data” models the data components that are exchanged
between services and ECUs. “Arch” models the structure of the architecture, i.e., the relations
that exist between different entities and finally, “Att” models the attacker.

3.4.1 Data

Data elements constitute the set of data being communicated and processed between other
components of the cyber-physical architecture of the vehicle. They are produced by sensors
and communication interfaces, processed by services and consumed by actuators. They can
be transported by communication mediums and stored by hardware elements (memories in
particular). Formally, data elements Data is a tuple < D,TypeD,ModifiedD, ClassD >,
where:

50

3.4 Cyber-physical architecture formal model

• D is a finite set of data elements.

• TypeD : D → TD return the type of the data in a set of predefined data types (TD).

• ModifiedD is a predicate (True/False) that specifies if the data itself has been modified
by an attacker.

• ClassD is an attribute that captures the data class depending to its importance. The
class of the data is in {Public, Restricted, Sensitive, Critical}.

3.4.2 Communication mediums

Communication mediums (Comm) are very important in order to assure data exchange
between at least two components, and they can be shared, or point to point communication
mediums. We can find multiple communication mediums used inside the vehicle whether they
are used to implement communication inside a single ECU, between ECUs or even between
the vehicle and the outside world. Examples include CAN, FlexRay, USB, I2C, UART, WiFi,
Bluetooth, Cellular . . . Formally, Comm is a tuple < C,CommType,Accessibility > where:

• C is a finite set of communication mediums.

• CommType is an attribute that captures the type (name) of the communication medium.
Typically CAN, FlexRay, USB, . . . The CommType attribute plays an essential role in
the interpretation of the attack as it captures the involved access vectors.

• Accessibility is an attribute that captures the accessibility range of the communication
medium. Typically in the set { Long-range access, Short-range access, Physical access }.
The Accessibility attribute plays an essential role in the assessment of the attack as it
captures a component of the attack potential. This accessibility attribute expresses in
some sens the window of opportunity from the attacker point of view.

3.4.3 Hardware components

Hardware components represent an essential part any ECU. They are used to model sensors,
actuators, storage capacity (memory), communication controllers, etcetera. A particular type
of hardware components are sensors that can produce data (i.e. create new data elements),
and actuators that can consume data (i.e. delete data elements). Hardware components
can be accessed from software components and help data flow between multiple components.
Formally, hardware components Hardware is a tuple < H,ΣH , bH >, where:

• H is a finite set of hardware components.

• HardwareType is an attribute that captures the type (name) of the hardware component.
Typically it could be CAN-Controller, Cellular-Controller, USB-Controller, Memory,
Sensor . . .

• ΣH is a finite set of basic hardware actions defined in order to describe the behavior
of some of the hardware component with regards to the data. The finite set of basic

51

3. RISK ANALYSIS AND ATTACK TREE GENERATION

hardware actions is defined in (3.1).

ΣH = {
ReadFromComm(h, c, d),
WriteToComm(h, c, d),
New(d), Delete(d)
h ∈ H, c ∈ C, d ∈ D}

(3.1)

• bH : H → L returns the expression that describes the behavior of the hardware
component.

Remark 1. ReadFromComm(h, c, d) is a behavioral rule that allows a data d that is initially
located on a communication medium c to be read by the hardware component h after which it
changes location. WriteToComm(h, c, d) is the opposite behavioral rule. These two behavioral
rules could be conditioned by the type of hardware component, the type of data or other
predicates. New(d) is a behavioral rule that is specific to “sensor” that serves to model the
fact that sensors produce data. However, the number of data component is bounded which
makes the use of this behavioral rule limited. Delete(d) is a behavioral rule that is specific to
“actuators” that serve to model the fact that actuators consume data.

3.4.4 Service components

Service components are elements that describe the software running on top of an ECU. They
are used to model the “processing” done on data components. The service layer is modeled
with a data flow diagram that consists of “processes” (also called services) and data stores.
Each process has input data and produces output data. Informally, a service is a process that
transforms “input data” into “output data”. More formally we can write:

din1 , d
in
2 , d

in
3 , . . .

s−→ dout1 , dout2 , dout3 , . . .

Where {din1 , din2 , din3 , . . . } is the input data set, {dout1 , dout2 , dout3 , . . . } is the output data set and
the connective s−→ is read : “service s is used to produce”. This paradigm is very convenient
to model software components [11] in an abstract way as it can adapt to different stages of
software engineering through top-down data flow diagram process decomposition. Additionally,
a service component has access to hardware components (for instance memory to store data,
communication controllers to send/receive data, . . .), expressed in terms of "read" and "write"
access rights.

Formally, service components is a tuple < S, Inputs,Outputs,ΣS , bS >, where:

• S is a finite set of service components.

• Inputs(s), (s ∈ S) is a set of input data components types that are used to produce the
outputs.

• Outputs(s), (s ∈ S) is a set of output data components types produced by the service.

• v is an attribute vulnerability to indicate whether there is a vulnerability in the service
(optionally this can be expressed as an estimated probability of the presence of a
vulnerability [112]).

52

3.4 Cyber-physical architecture formal model

• ΣS is a finite set of basic service actions defined in order to describe the behavior of the
service component with regards to the data and the hardware. The finite set of basic
service actions is defined in (3.2).

ΣS = {
ReadFromHw(s, h, d),
WriteToHw(s, h, d),
P rocess(d)
s ∈ S, h ∈ H, d ∈ D}

(3.2)

• bS : S → L returns the expression that describes the behavior of the service component.

Remark 2. ReadFromHw(s, h, d) is a behavioral rule that allows a service s ∈ S to read a
data d ∈ D that is initially located on a hardware component h ∈ H. It is designed in order for
the service to collect the set of its input data. WriteToHw(s, h, d) is the opposite behavioral
rule that allows the service s ∈ S to write to the hardware component h ∈ H the output data
d ∈ D. These two behavioral rule could be conditioned by the type of hardware component,
the type of data or other predicates. Process(d) is a behavioral rule that is specific to each
service and transforms the data inputs into data outputs by deleting the input data elements
and creating a new output data elements. Types of data inputs and data outputs is not the
same.

3.4.5 Attacker

The attacker “Att”, is an outsider agent whose goal is to perform an attack. Informally, the
attacker in our approach is modeled as a set of behavioral rules (actions or basic attacks) that
sets up the level of the attacker (regarding expertise), as well as a set of knowledge (regarding
data components). This particular set of rules is a hypothesis on the intruder model and
can be replaced by any stronger or weaker model. The attacker can nevertheless expand its
knowledge database while performing the attack. The architecture of the system is assumed
to be known to the attacker. More formally, an attacker is a tuple < Att,ΣAtt, bAtt >, where:

• Att is a component that models the attacker.

• ΣAtt is a finite set of basic attacks defined in order to describe the behavior of the

53

3. RISK ANALYSIS AND ATTACK TREE GENERATION

attacker with regards to the system. The finite set of basic attacks is defined in (3.3).

ΣS = {
ConnectToHw(h),
WriteToHw(h, d),
ReadFromHw(h, d),
ConnectToComm(c),
WriteToComm(c, d),
ReadFromComm(c, d),
Exploit(s),
ExploitRead(s, d),
ExploitWrite(s, d),
Modify(d)
s ∈ S, h ∈ H, d ∈ D}

(3.3)

• bAtt : Att→ LA returns the expression that describes the behavior of the attacker.

Remark 3. In order to better account for the attacker’s actions and impact on the cyber-
physical system, we impose to all the “process” behavioral rules associated with services to be
preserving with regards to the “modified“ predicate. That is to say that if a service’s input
data has been ”modified” by the attacker, the output data will also have a “modified” predicate.
Example: consider a service s1 that takes as input two data elements d1, d2 that are processed
in order to output a third data element d3.

(d1, d2
process(s1)−−−−−−−→ d3)

If d1 has been modified (d1 or d2 or both) by the attacker (d1(modified = true)), then the
modifier predicate will also be true for the output data d3 (d3(modified = true)).

3.4.6 Architecture

The architecture “Arch” describes the relations between the previously introduced components.
It links hardware controllers to communication mediums, services to hardware components,
and data to communication, hardware and service components. Formally, Arch is a labeled
graph G =< V,E, lV , lE > where:

• V is the set of labeled vertices: V = D ∪ C ∪H ∪ S ∪Att.

• E is the set of labeled edges between vertices:

E ⊆ (H×C)∪(S×H)∪(D×S)∪(D×H)∪(D×C)∪(D×Att)∪(Att×C)∪(Att×H)∪(Att×S)

• lV : V → {Data,Comm,Hardware, Service, Attacker} is a vertices labeling function
that assigns a label to each vertice v ∈ V corresponding to its type.

54

3.4 Cyber-physical architecture formal model

• lE : E → {r, w, rw, connected, located, stored} is an edge labeling function that assigns
a label to each edge depending on the type of nodes connected by the edge. Informally,
for each service component s ∈ S that has a read and/or write access on a hardware
component h ∈ H a label is assigned to the edge between s and h whose label is in
{r, w, rw}. For each hardware component h ∈ H connected to a communication medium
c ∈ C, a label “connected” is assigned to the edge between h and c. The evolution of
the attacker “Att“ inside the system is tracked with edges from the Att component to
the communication/hardware/service component reached by the attacker. These edges
are labeled with the label located. Finally, a data component d ∈ D can be stored on
a communication/hardware/service component. Thus a label ”stored“ is assigned to
the edge between the data component and the communication/hardware/service node.
Additionally the attacker ”Att“ also can store data.

• Write : S × H → {True, False} is a predicate function that indicates if a service
component s ∈ S has a write access to a hardware component h ∈ H.

∀(s, h) ∈ (S×H),Write(s, h) = True ⇐⇒ (s, h) ∈ E∧(lE((s, h)) = w∨lE((s, h)) = rw)

• Read : S × H → {True, False} is a predicate function that indicates if a service
component s ∈ S has a read access to a hardware component h ∈ H.

∀(s, h) ∈ (S×H), read(s, h) = True ⇐⇒ (s, h) ∈ E∧(lE((s, h)) = r∨ lE((s, h)) = rw)

• Connect : H × C → {True, False} is a predicate function that indicates if a hardware
component h ∈ H is connected to the communication medium component c ∈ C.

∀(s, h) ∈ (H × C), Connect(h, c) = True ⇐⇒ (h, c) ∈ E ∧ lE((h, c)) = connected

• Locate : Att × (C ∪H ∪ S) → {True, False} is a predicate function that indicates if
the attacker Att has reached a communication/hardware/service component.

∀(a, x) ∈ (Att×(C∪H∪S)), Locate(a, x) = True ⇐⇒ (a, x) ∈ E∧lE((a, x)) = located

• Store : D × (C ∪H ∪ S ∪Att)→ {True, False} is a predicate function that indicates
if a data component d ∈ D is stored on a communication/hardware/service/attacker
component.

∀(d, x) ∈ (D×(C∪H∪S∪Att)), Store(d, x) = True ⇐⇒ (d, x) ∈ E∧lE((d, x)) = stored

The language, L, of a hardware and service component behavioral expression is generated
by the grammar expressed in (3.4).

l ::= end | β.l | l +g l ,where: β ∈ ΣS ∪ ΣH (3.4)

Similarly, the language, LA, of the attacker behavioral expression is generated by the
grammar expressed in (3.5).

l ::= end | β.l | l +g l ,where: β ∈ ΣAtt (3.5)

55

3. RISK ANALYSIS AND ATTACK TREE GENERATION

The term ”end“ expresses inaction, the operator < . > is the sequential composition,
and the operator < +g > is guarded composition. The guard g is a contextual condition,
questioning whether a hardware component is connected to a communication medium, whether
a data is of the right type Formally, a guard is an expression < e > in the propositional
logic language expressed in (3.6).

e ::= True | p | ¬e | e ∧ e (3.6)

p ::=TypeD(d) = t|Write(s, h)|Read(s, h)|Connect(h, c)|Locate(a, c)|
Locate(a, h)|Locate(a, s)|Store(d, a)|Store(d, c)|Store(d, h)|
Store(d, s)
{s ∈ S, h ∈ H, d ∈ D, a ∈ Att, c ∈ C ∪H ∪ S ∪D ∪Att, t ∈ TD}

(3.7)

3.4.7 Security properties

Along with the attacker and system formal models, we also formalize the attacker goal (that
can also be interpreted as a security property of the system) as a condition or an expression
in propositional logic language also expressed with (3.6). The goal is then to check the
satisfiability of this security property in the considered model in order to generate the attacker
basic actions that allowed it. The security properties that can be expressed by the introduced
formal model can be summarized in the following way:

• Check if the attacker can extract information from the cyber-physical architecture. It
is particularly helpful to trace the actions that allow the attacker to obtain critical
or restricted information which constitutes a confidentiality/privacy violation. This
property can be expressed as follows:

Store(d(ClassD = critical/restricted), a) = True;

• Check if the attacker is able to modify a data in the system. It is particularly insightful
to trace the actions that allow the attacker to influence the behavior of an actuator
which constitutes an integrity violation. This property can be expressed as follows:

Store(d(modified = True), h) = True;

• Check if the attacker is able to exploit a service in the system. This is helpful in order
to determine what are the most important This property can also be interpreted as an
availability issue in the sense that if an attacker can somehow take control of a service,
the availability of the service is no-longer guaranteed.

Locate(a, s) = True

• Check if the attacker is able gain a read/write access rights to a hardware component.

[Locate(a, s) = True] ∧ [write(s, h) = True]

[Locate(a, s) = True] ∧ [read(s, h) = True]

56

3.4 Cyber-physical architecture formal model

3.4.8 Case-study formal model

Coming back to the case-study introduced in section 3.3, we can apply the formal model in
order to define an abstract view of the system in the following way:

• In data elements, we define a data components one of type “speed”.

D = {(d1, type = speed,modified = False, Class = Sensitive)} (3.8)

• In the communication mediums, we define two components: a CAN-bus and a cellular
network.

Comm = {(Commtype = CAN,Accessibility = Physical-access),
(CommType = Cellular,Accessibility = Long-range)}

(3.9)

• In the hardware set, we define four types of hardware components: 3 CAN-Controller
(one for each ECU), a cellular network controller (for ECU3), a screen-hardware (for
ECU2) and a speed-sensor (for ECU1).

• In the service components, we define three elements denoted S1, S2 and S3.

– S1 is the service that runs on top of ECU1 and is responsible for the speed acquisition
from the speed-sensor, it has a "read" access to the speed-sensor hardware, and a
"write" access to the CAN-controller.

– S2 is the service that runs on top of ECU2 and is responsible for reading the speed
information from the CAN-controller and repay it to the screen-hardware to be
displayed for the user. Thus it has a "read" access to the CAN-controller, and a
"write" access on the screen-hardware.

– S3 is the service that runs on top of ECU3 and is responsible for relaying a
diagnostics command from the cellular network to the CAN-bus and responses
from the CAN-bus to the cellular network. Thus it has a read and write (rw)
access on the cellular network controller and read and write (rw) access to the
CAN-controller. Additionally, we suppose that this service has a vulnerability.

57

3. RISK ANALYSIS AND ATTACK TREE GENERATION

• The architecture of the overall system can be defined by the following predicates:

Read(S1, speed-sensor) = True,

Read(S2,HW-CAN-2) = True,

Read(S3,HW-CAN-3) = True,

Read(S3,HW-cellular-1) = True,

Write(S1,HW-CAN-1) = True

Write(S2,HW-screen) = True,

Write(S3,HW-CAN-3) = True,

Write(S3,HW-cellular-1) = True,

Connect(HW-CAN-1,CAN-bus) = True,

Connect(HW-CAN-2,CAN-bus) = True,

Connect(HW-CAN-3,CAN-bus) = True,

Connect(HW-cellular-1, cellular) = True,

Store(d1, speed-sensor) = True

(3.10)

Note that the set of predicates that defines the start architecture can change throughout
the system evolution with the application of behavioral rules. In particular, the location
of the attacker can be defined as the attacker interacts with the defined system and
data can move between service, hardware and communication components.

• In this example, we adopt an attacker model that has the ability to connect to the
CAN-bus, the cellular network and read and write on them, to modify data and to
exploit vulnerabilities of the services.

• The goal of the attacker is to forge an erroneous vehicle speed to be displayed to the
driver.

Store((d, type = speed,modified = True),HW-screen) = True

• The behavioral rules implemented for this case-study as well as the behavioral rules of
basic attacks are exposed in this thesis Appendix.

3.5 Graph transformation system

In this section, we briefly introduce "graph transformation system" (GTS) as a rule-based
modeling approach that allows capturing the structural as well as behavioral aspects of a
system. We use it as the underlying formal modeling language supporting the methodology.

3.5.1 Definition

Graphs are helpful data structures that are capable of capturing a broad range of systems. If a
system consists of entities and relations between them, it can be easily represented as a graph
in which vertices model the entities and vertices model the relations. Dynamic configurations

58

3.5 Graph transformation system

or states of a graph can model the dynamic behavior of the system. In such systems, entities
and relations can evolve, new relations and entities can be created or deleted. These evolutions
are captured with "transformations“ operated on the graph. A graph transformation system is
a formal approach for structural modifications of graphs via the application of transformation
rules. It is thus a tuple (G, R) where G is a graph and R is a set of transformation rules. A
typed GTS is a GTS where each element of the graph is assigned a type. Transformation rules
are then type-preserving. A graph transformation rule TR is a modification that transforms a
host graph Ghost into a result graph Gresult by adding or deleting nodes and edges. It consists
of:

1. A left-hand side graph L specifying a pattern that needs to be present in the host graph
in order for the rule to be applicable.

2. A Negative Application Condition (NAC) specifying a sub-pattern that must be absent
from the host graph in order for the rule to be applicable.

3. A right-hand side graph R specifying how the resulting graph should be after the
transformation, and

4. A mechanism specifying how to transform L into R when the NAC is satisfied. This
mechanism determines the elements to be deleted from the host graph and the elements
to be added to the resulting graph.

Graph transformation system has been used in multiple applications to model the dynamic
behavior of systems [45, 51].

In our approach, we model mainly three types of transformation rules:

• Transformation rules to describe the normal behavior of the hardware components. For
each type of hardware node, we define a behavioral model. For instance a Memory node
used to store Data, accepts a Data node only from a service that has a write (w) access
right on it. It also can transfer data only to a service that has a read (R) access right
on it. These transformation rules model the set of basic hardware actions ΣH .

• Transformation rules to describe the behavior of services (one or multiple rules for each
service). These rules are conditioned by the availability of the input data. We assume
that as soon as the input data are all available, the transformation rule can be triggered.
The effect of this transformation rules will be to delete the input data (consumed by the
service) and to create the output data with the correct output type and made available
for other services. These transformation rules model the finite set of basic service actions
ΣS .

• Transformation rules to describe the attacker actions: the behavior of the attacker
is modeled with transformation rules that represent basic attacks or actions that the
attacker can perform on the system to interact with it. These transformation rules
model the finite set of basic attacks ΣAtt.

59

3. RISK ANALYSIS AND ATTACK TREE GENERATION

3.5.2 Labeled transition system

The application of the transformation rule < TR > to the host graph < Ghost > in order to
produce the resulting graph < Gresult > is a transition from a state of the system corresponding
to < Ghost > to a state modeled by < Gresult >. This transition is labeled with the applied
transformation rule. Formally, we write the application of this transformation as in (3.11).

Ghost
TR(L,NAC,R)=========⇒ Gresult (3.11)

The recursive application of all the modeled transformation rules to the start graph (start
state) of the system produces a Labeled Transition System (LTS) (G, Gstart,

TR==⇒) where G

is the set of all graph states (or system states), Gstart ∈ G is the start state and ” TR==⇒“ is
the labeled transition relation produced by the application of the transformation rules to
the system graphs. The label assigned to the transition between two states is the action
(hardware/service/attacker behavioral rule) being executed as well as the entities on which it
operates. The defined LTS models the evolution of the system behavior as the result of the
evolution of the behavior of its components and the attacker.

3.5.3 Tool support: GROOVE

In order to implement this modeling framework on example use-cases, we used a tool that
supports graph transformations. GROOVE (GRaphs for Object-Oriented VErification) is an
open source tool developed by the University of Twente [5]. It supports formal modeling using
graphs and graph transformations along with a user-friendly and intuitive graphical interface.
It is built to support specifications of graph grammars and application of transformation rules
to graph models. However, the most attractive functionality of GROOVE is the recursive
application of transformation rules to a start graph and all graphs generated through the
application of these transformations. Thus, the simulator functions as a model checker, i.e. it
generates the full state space of a given graph grammar [109]. It results in the generation
of a state space, defined above as the LTS (Labeled Transition System). Additionally, the
entire LTS is stored, which is an excellent source of information that can be of great value
for conducting further analysis. In the next section, we will show how we can exploit the
generated TLS in order to generate the attack tree.

GROOVE was previously used to model and explore multiple graph-based transformation
systems case-studies [45]. In particular, the security analysis framework called Portunes for
representing attack scenarios spanning through the physical, digital and social domain. [36].
Besides, the tool allows a flexible way to implement our proper graph grammar, specified in
the previous section.

3.5.4 Case-study graph transformation system

Architectural graph: The architectural graph of the case-study introduced in section 3.3
is represented in Figure 3.3. In this architectural graph, we can see labeled vertices or node
types (speed data, hardware CAN controllers, services, . . .) and relations between them
represented with labeled edges between vertices.

60

3.5 Graph transformation system

ECU1

HW
CAN

HW
CPU

HW
Sensor

S1

R

W

ECU2

HW
CAN

HW
CPU

HW
Screen

S2

W

R

ECU3

HW
CAN

HW
CPU

HW
Cellular

S3
{vul}

RWRW

AttackerHW
OBD

Comm
CAN

Comm

Speed

Figure 3.3: Architectural graph of the speed acquisition and display case-study

Transformation rules: As an example let us introduce transformation rules that we model
for the architectural graph (Figure 3.3) of the example introduced above.

1. To describe the behaviour of the Speed-acquisition service (S1), we implement the
transformation rule of Figure 3.4. This rule means that if the speed data is available,
the speed-acquisition service (S1), will read a speed data from the speed-sensor.

LHS - RHS
HW
CPU

HW
Sensor

S1

R

Speed

=⇒

HW
CPU

HW
Sensor

S1

R

Speed

Figure 3.4: Speed acquisition rule (R1)

The transformation rule of Figure 3.5 means that is the speed data is available on
the speed-acquisition service (S1), and that service have the write access right to the
CAN-hardware, then the service can send the data the CAN-hardware.

2. To describe the behavior of the CAN-hardware, we implement the transformation rule

61

3. RISK ANALYSIS AND ATTACK TREE GENERATION

LHS - RHS
HW
CAN

HW
CPU

S1

W

Speed

– =⇒

HW
CAN

HW
CPU

S1

W

Speed

–

Figure 3.5: Speed send to CAN rule (R2)

of Figure 3.6. Note that at this stage it does not matter if the data is a speed data or
not. This is mainly because this behavioral rule is designed to send any data on the
CAN bus. The rule is also common to all CAN hardware as opposed to some rules
which are sometimes specific to one in particular.

LHS - RHS

HW
CAN Data

Comm
CAN

=⇒
HW
CAN

Comm
CAN

Data

Figure 3.6: CAN send rule (R3)

3. To describe the behavior of the attacker, we model transformation rules that gives her
the ability to connect to any communication link and to read and write data on that
link. She is also able to exploit vulnerabilities and modify the collected data and replay
it. The transformation rule (Figure 3.7) could be read as follows: if the attacker (Att)
is connected-to the CAN-network, and if there is a Data packet transiting on the CAN
network, then the attacker can copy the Data.

3.6 Attack tree transformation

3.6.1 Attack graph generation

Given a start graph (Figure 3.3 for instance), and a set of transformation rules (Figure 3.4,
Figure 3.5, Figure 3.6, Figure 3.7, . . .) , the recursive application of the transformation rules
on the start graph will generate a state space which represents all possible states that could
be generated from the set of transformation rules. In the state space, each state represents

62

3.6 Attack tree transformation

LHS - RHS

Attacker HW
CAN

Data

Locate

=⇒
Attacker HW

CAN

Data Data

Locate

Figure 3.7: Example of attacker rule

a graph, and a transition between two states (source and destination) represents a rule
application that allowed the transformation of the graph from the source state to match that
of the destination state. For instance, the application of the transformations rules of Figure
3.4 and Figure 3.5 for the modeled example of Figure 3.3 will produce the state space of
Figure 3.8.

ECU1

HW
CAN

HW
CPU

HW
Sensor

S1

R

W

ECU2

HW
CAN

HW
CPU

HW
Screen

S2

W

R

ECU3

HW
CAN

HW
CPU

HW
Cellular

S3
{vul}

RWRW

AttackerHW
OBD

Comm
CAN

Comm

Speed

State 1

ECU1

HW
CAN

HW
CPU

HW
Sensor

service

S1

R

W

ECU2

HW
CAN

HW
CPU

HW
Screen

service

S2

W

R

ECU3

HW
CAN

HW
CPU

HW
Cellular

service

S3

{vul}

RWRW

AttackerHW
OBD

Comm
CAN

Comm

Speed

State 2

ECU1

HW
CAN

HW
CPU

HW
Sensor

service

S1

R

W

ECU2

HW
CAN

HW
CPU

HW
Screen

service

S2

W

R

ECU3

HW
CAN

HW
CPU

HW
Cellular

service

S3

{vul}

RWRW

AttackerHW
OBD

Comm
CAN

Comm

Speed

State 3

R1

R2

. . .

Ri

. . .

Rj

. . .

Rk

. . .

Rl

. . .

Rm

Figure 3.8: Application of transformation rules (state space exploration)

The modeled rules are a combination of attacker actions (or basic attacks) and rules that
describe the behavior of the modeled elements. The produced state space contains transitions
that model both attacker steps and element behavior. By definition of the attack graph, the
state space contains the attack graph.

63

3. RISK ANALYSIS AND ATTACK TREE GENERATION

Given a particular attack scenario (attacker objective), we have to make a query to find
states in the state space where the scenario is realized (the attacker has reached its objective).
Thus queries allow detecting a vulnerable state. They are also expressed in the form of a
graph. Figure 3.9 gives an example of a query that allows us to detect if there is a state of the
system where the screen displays a modified speed. In practice, we modeled the architectural

HW
CPU

HW
Screen

Speed
modified

Figure 3.9: Query: False speed

graph and transformation rules using GROOVE [5]. The tool also allows the transformation
of the input model and produces the associated LTS as the result of the recursive application
of transformation rules. It also allows detecting states where the query (attacker objective) is
true. In the next section, we will process this state space to capture only attacker actions in
the form of an attack tree.

3.6.2 Attack tree generation:

The generated state space is quite complex and large. For instance, for the introduced
case-study we obtained 768 states and 2860 transitions. Besides, it includes transitions that
describe the behavior of the system as well as transitions that describe basic attacks performed
by the attacker. The entire LTS contains too many information which makes it unusable in
practice as ”too much information kills the information“. A convenient way to keep only the
relevant information is to transform this state space into an attack tree that only captures
attacker actions. The attack tree procedure will allow us to discard all the transitions that are
not basic attacks and to output, in the form of a tree, a compact representation of complex
attacks. Based on the attack graph (state space) generated in the previous section, in this
section, we introduce two main transformations to this attack graph in order to produce the
corresponding attack tree.

Let G = (VLTS , ELTS , label) be the Labeled Transition System produced by the recursive
application of transformation rules with a start state S0. This graph, as mentioned before,
contains the attack graph. Let LV = {S1

v , S
2
v , . . . , S

n
v } be the set of vulnerable states of the

system (i.e. a state where a security breach has been detected). The security breach detected
by that state is placed on the root of the attack tree. The goal is to collect all sequences
of transformations (attacker actions only) that led to that state. Let A be the set of labels
corresponding to the attacker basic attacks. We explore the attack graph from the target
state (Siv) backward to the start state. Each time we encounter a state with more than one
incoming edges we place a [OR] node in the attack tree (meaning that there is more than
one way to reach that state) and each time we encounter a state with only one incoming
edge, we place an [AND] node in the attack tree. Finally each time we encounter a state with

64

3.6 Attack tree transformation

more than one outgoing edges, we place a sub-tree and check if we already computed that
sub-tree. Sub-trees are attack trees that are present more than once inside a single attack
tree. Algorithm 1 gives the details of the operated transformation. In this algorithm, the
function card(L) returns the cardinality of a set L, the function InputEdges(S) returns the
input edges of the state S ∈ VLTS , the function Pred(S) return the predecessors of a state
S ∈ VLTS Figure 3.10 gives examples of these transformations.

Remark 4. Note that the tree generation algorithm does not necessarily output the normal
form of the tree. We can nevertheless use logical reduction techniques to output the normal
form of the attack tree. In our implementation we used the python SymPy librabry [69] to
simplify the attack tree to its disjunctive normal form.

Attack Graph Attack Tree

s0

s1

s2

sv

r1

r2 r3

r4

Or

And And

r1 r4 r3r2

p1 = r1 ∧ r4
p2 = r2 ∧ r3 Obj = p1 ∨ p2

s0

s1

s2

s3

sv

Query=True

r1

r2 r3

r4

r5

And

r5 Or

And And

r1 r4 r3r2

p1 = r1 ∧ r4 ∧ r5
p2 = r2 ∧ r3 ∧ r5 Obj = p1 ∨ p2 = r5 ∧ ((r1 ∧ r4) ∨ (r2 ∧ r3))

Figure 3.10: Examples of Attack graph to Attack tree transformation

3.6.3 Case-study generation of attacks

Using the example introduced in section 3.3 (Figure 3.3), we make a the query (cf. Figure
3.9) to detect vulnerable states where the attacker can force the system into a state where
the screen displays a modified speed. The results produced by the methodology is shown in
figure 3.11.

65

3. RISK ANALYSIS AND ATTACK TREE GENERATION

1 ConstructAttackTree (L);
Input : L-List of states of the LTS {S1

v , S
2
v , . . . , S

n
v }

Output :Attack − Tree
2 if card(L) > 1 then
3 n=card(L);
4 for i = 1 to n do
5 Ti=ConstructAttackTree({Siv}) ;
6 end
7 Return OR(T1, T2, . . . , Tn);
8 else
9 if card(L)==0 then

10 Return Null;
11 else
12 I = {I1, I2, . . . , Id} = InputEdges(L[1]) ;
13 if card(I)==0 then
14 %comment : L[1] = S0 this is the start state
15 Return True ;
16 else
17 if card(I) == 1 then
18 if label(I) ∈ A then
19 Return And(label(I), ConstructAttackTree({Pred(I)}))
20 else
21 Return ConstructAttackTree({Pred(I)})
22 end
23 else
24 for i = 1 to d do
25 if label(Ii) ∈ A then
26 Ti=And(label(Ii), ConstructAttackTree({Pred(Ii)}) ;
27 else
28 Ti=ConstructAttackTree({Pred(Ii)})) ;
29 end
30 end
31 Return OR(T1, T2, . . . , Td)
32 end
33 end
34 end
35 end
Algorithm 1: Attack tree construction algorithm for constructing the attack tree
starting from a list of vulnerable states

The attack tree shows that the analysis of the modeled architecture identified three attacks.

• Attack-1: where the attacker connects to the OBD port, eavesdrop on the CAN bus to

66

3.6 Attack tree transformation

Objectif : False− Speed Or And

And

And

Connect−OBD

Eavesdrop− speed−OBD

Connect− cellular

Exploit− Service− S3

Replay − speed− cellular

Exploit− S3− read− speed− cellular

Exploit− S3− write− speed− CAN

}Attack-1
Connect−OBD

Eavesdrop− speed−OBD

Replay − speed−OBD
}Attack-2

Connect− cellular

Exploit− Service− S3

Exploit− S3− read− speed− CAN

Exploit− S3− write− speed− cellular

Eavesdrop− speed− cellular

Replay − speed− cellular

Exploit− S3− read− speed− cellular

Exploit− S3− write− speed− CAN

}Attack-3∗

Figure 3.11: Attack tree automatically produced from the input model Figure 3.3

dump the Speed frame, then connects to the vehicle from the cellular network, exploits
an exposed vulnerable service (S3), that has a "write" access on the CAN-controller then
replays the data.

• Attack-2: where the attacker connects to the OBD port, eavesdrop on the CAN bus to
dump the speed frame then replays it from the OBD port on the same CAN bus.

67

3. RISK ANALYSIS AND ATTACK TREE GENERATION

• Attack-3: where the attacker only operates from the cellular, she connects to the cellular,
exploits the exposed service, and then uses that service to eavesdrop on the CAN
hardware to dump and then replays the speed frame.

3.7 Security analysis and Countermeasure

3.7.1 Security analysis

As mentioned in the beginning of the chapter, attack trees do not only serve to represent
security scenarios that contribute to the realization of a threat in a graphical way. They can
also be used to quantify such scenarios with respect to a given parameter (called an attribute).
Examples of attributes include the likelihood that the attacker’s goal is satisfied, minimal time
or cost of an attack. In this section, we perform a risk analysis of the attack objective based on
the identified attacks and according to the EVITA risk analysis methodology [52], presented
in table 2.3. During this step, the goal is to assign attributes to the leaf nodes (basic attacks)
and then propagate it in a buttom-up fashion in order to compute an overall estimation of
the attribute for the root node of the tree (i.e. the threat). The attribute propagation process
described by Schneier in [114] is based on the definition of two functions (fAnd and fOr) one
for the conjunction composition, the other for a disjunctive composition of nodes. These
functions are used to compute (for each node type) the attribute value based on the attribute
values of its child nodes. Mauw and Oostdijk [93] showed that if we want equivalent attack
trees to yield the same estimated attribute for the overall threat, the algebraic structure
(Dattribute, fAnd, fOr) should define a semiring, where Dattribute is the attribute domain, fAnd
and fOr are the two functions defined to evaluate respectively the conjunctive and disjunctive
compositions. This result was generalized by Kordy et al. [77] to any semantics and attribute
that satisfy a notion of compatibility. In the EVITA approach the estimated attribute is the
attack potential (inverse of the attack probability or likelihood) estimated with a scoring
system that includes multiple attack aspects that are: the time, the expertise, the knowledge,
the window of opportunity and the the equipment needed for the attack. Henniger et al. [52]
used the fOR = Max of the attack probabilities attribute to propagate it through an OR
node and the fAND = Min of the attack probabilities attribute to propagate it through an
AND node.

Remark 5. Note that it is easy to verify that the algebraic structure (R,Min,Max) defines a
semiring, which makes the estimated attack potential defined by the EVITA approach yields the
same estimate for equivalent attack trees. When reasoning about the attack potential (inverse
of attack probability), the operators are inverted i.e, the algebraic structure used to propagate
the attack potential is the semiring defined (R,Max,Min).

We identify a set of eleven basic attacks for which we estimate the attack potential,
presented in the table 3.1. This table can be constructed from the beginning, before the
generation of the attacks. It is independent of the architecture and can be considered as an
input as well.

68

3.7 Security analysis and Countermeasure

Table 3.1: Rating of the basic attacks

Basic Attacks Attack potential

T
im

e

Ex
pe

rt
ise

Sy
st
em

kn
ow

le
dg

e

W
in
do

w
of

op
po

rt
un

ity

Eq
ui
pm

en
t

a Connect-OBD ≤ 1-day Layman Public Moderate Specialized
b Connect-cellular ≤ 3-months Multiple

experts
Sensitive Unlimited Multiple be-

spoke
c Eavesdrop-data-OBD ≤ 1-day Expert Public Unlimited Specialized
d Eavesdrop-data-cellular ≤ 1-day Layman Restricted Unlimited Multiple be-

spoke
e Replay-data-OBD ≤ 1-day Expert Restricted Moderate Specialized
f Replay-data-cellular ≤ 1-day Layman Restricted Unlimited Multiple be-

spoke
g Exploit-Service-S3 ≤ 3-months Multiple

experts
Sensitive Unlimited Bespoke

h Exploit-S3-read-data-CAN ≤ 1-day Layman Public Unlimited Standard
i Exploit-S3-write-data-CAN ≤ 1-day Layman Public Unlimited Standard
j Exploit-S3-read-data-cellular ≤ 1-day Layman Public Unlimited Standard
k Exploit-S3-write-data-cellular ≤ 1-day Layman Public Unlimited Standard

69

3. RISK ANALYSIS AND ATTACK TREE GENERATION

We can now apply the estimate to the attack tree in order to estimate the attack potential
of the identifier attacks. This estimate is presented in table 3.2. Of the three attacks,
two (Attack-1 and Attack-3) were shown to be very unlikely attacks (with rating ”beyond
high“ (P=1)). Those attacks require access to the vehicle from a cellular attack vector and
exploitation of a vulnerable service (S3) which were considered to be complex steps and
require special equipment. The other attack (Attack-2) requires only direct physical access
which makes it easy to perform, but at the same time the window of opportunity of direct
physical access is limited which makes the overall attack scenario probability rather ”moderate“
(P=3). The overall threat probability computed as the maximum of the attack scenarios
probabilities is then ”moderate“. The impact of the threat is estimated independently from the
attack scenarios and attack steps. In this particular case, we can consider that the threat can
generate ”Light or moderate injuries“ (safety=1), with no specific privacy issues (Privacy=0),
can generate ”Low-level loss“ (Financial=1) and has an impact on performance that the
driver can perceive (Operational =2). The Impact vector (also called severity class in EVITA
terminology) is Impact = [1, 0, 1, 3]. Additionally, the threat cannot be influenced by a human
response (i.e., the controllability score C = 4). The combination of these ratings (c.f table 2.4)
yeilds the Risk level presented in table 3.2.

70

3.7 Security analysis and Countermeasure

T
ab

le
3.
2:

Es
tim

at
es

of
at
ta
ck

po
te
nt
ia
lo

ft
he

id
en
tifi

ed
at
ta
ck
s

A
tt
ac
k-
st
ep

s
A
sp
ec
ts

of
A
tt
ac
k

Po
te
nt
ia
l

Time

Expertise

Systemknowledge

Windowofopportunity

Equipment

AttackPotential(Sum)

AttackProbability

AttackScenarioProbability

ThreatProbability

ThreatImpact

AssociatedRisk

Attack-1

a
C
on

ne
ct
-O

B
D

0
0

0
4

4
8

5

Moderate(P=3)

c
Ea

ve
sd
ro
p-
sp
ee
d-
O
B
D

0
6

0
0

4
10

4
b

C
on

ne
ct
-c
el
lu
la
r

10
8

7
0

9
34

1
g

Ex
pl
oi
t-
Se

rv
ic
e-
S3

10
8

7
0

7
32

1
B
ey
on

d
H
ig
h

f
R
ep

la
y-
sp
ee
d-
ce
llu

la
r

0
0

3
0

9
12

4
j

Ex
pl
oi
t-
S3

-r
ea
d-
sp
ee
d-
ce
llu

la
r

0
0

0
0

0
0

5
i

Ex
pl
oi
t-
S3

-w
rit

e-
sp
ee
d-
C
A
N

0
0

0
0

0
0

5

Attack-2

a
C
on

ne
ct
-O

B
D

0
0

0
4

4
8

5
c

Ea
ve
sd
ro
p-
sp
ee
d-
O
B
D

0
6

0
0

4
10

4
M
od

er
at
e

[1
,0
,1
,2
]

[4
,0
,4
,5
]

e
R
ep

la
y-
sp
ee
d-
O
B
D

0
6

3
4

4
17

3

Attack-3

b
C
on

ne
ct
-c
el
lu
la
r

10
8

7
0

9
34

1
g

Ex
pl
oi
t-
Se

rv
ic
e-
S3

10
8

7
0

7
32

1
h

Ex
pl
oi
t-
S3

-r
ea
d-
sp
ee
d-
C
A
N

0
0

0
0

0
0

5
k

Ex
pl
oi
t-
S3

-w
rit

e-
sp
ee
d-
ce
llu

la
r

0
0

0
0

0
0

1
B
ey
on

d
H
ig
h

d
Ea

ve
sd
ro
p-
sp
ee
d-
ce
llu

la
r

0
0

3
0

9
12

4
f

R
ep

la
y-
sp
ee
d-
ce
llu

la
r

0
0

3
0

9
12

4
j

Ex
pl
oi
t-
S3

-r
ea
d-
sp
ee
d-
ce
llu

la
r

0
0

0
0

0
0

5
i

Ex
pl
oi
t-
S3

-w
rit

e-
sp
ee
d-
C
A
N

0
0

0
0

0
0

5

71

3. RISK ANALYSIS AND ATTACK TREE GENERATION

Remark 6. Note that the obtained attacks are relative to an attacker model that has virtually
no knowledge of the system (in terms of data) and is only able to connect to network interfaces.
We can add to the attacker capability to connect to hardware components, in this case, we will
be able to see that for instance, the attacker is also able to tamper with memory content and
sensors.

Remark 7. We draw the reader’s attention to the fact that there should have been four
attacks. There is still a combination of basic attacks that was not returned by the attack
tree generation algorithm. In fact, the fourth attack is where the attack can connect-cellular,
exploit-Service-S3, Exploit-S3-read-speed-CAN, Exploit-S3-write-speed-cellular, Eavesdrop-
speed-cellular, Connect-OBD, Replay-speed-OBD. This is mainly a technical issue, as the
transformation rules associated to ”Eavesdrop-speed-OBD“ and ”Eavesdrop-speed-cellular“ is
actually the same (”Eavesdrop-data-comm“) that copies data from the communication medium
to the attacker knowledge set. The labeled transition system returned by the GROOVE does
not include the type of the node on which the rule is being instantiated.

The expected attack tree would thus be (with basic attack notations from table 3.1:

ATexpected = (a∧c∧b∧g∧f∧j∧k)∨(a∧c∧e)∨(b∧g∧h∧k∧c∧f∧j∧i)∨(b∧g∧h∧k∧c∧a∧e)

We can see that when c = d, the simplification procedure would output the obtained attack tree:

ATobtained = (a ∧ b ∧ c ∧ f ∧ g ∧ j ∧ k) ∨ (a ∧ c ∧ e) ∨ (b ∧ c ∧ f ∧ g ∧ h ∧ i ∧ j ∧ k)

We backtracked the traces generated by the state space exploration in order to understand that
the basic attack ”Eavesdrop-data-comm“ (noted c) in the first term refers to an ”Eavesdrop-
speed-OBD“ and that the basic attack ”Eavesdrop-data-comm“ (noted c) in the third term
refers to an ”Eavesdrop-speed-cellular“

3.7.2 Countermeasures:

In this section, we focus on attack-3 where the attacker only operated from the cellular network
attack vector. This attack seems important as it does not require any physical access to the
vehicle. Analyzing the steps of the attack, if we can prevent at least one of the basic attacks
from happening, we can prevent the whole attack from happening as it is an [AND] node.
It seems possible to either deploy a patch for the vulnerable service or to revoke the read
access right of the service to the CAN controller. As a short term solution, one can opt for
the second choice.

Read(S3,HW-CAN-3) = False

Re-running the attack generation process with the modified architecture produces the attack
graph presented in Figure 3.12 We can see that the newly generated attack tree contains only
two attack options for the attacker since the service does not have a read access right to the
CAN controller, the third attack scenario is no longer valid and hence not reported in the
attack tree. The overall impact of the objective is affected by the architectural changes made,
which were able to block an attack path.

72

3.8 Conclusion

Objectif : False− Speed Or And

And Connect−OBD

Eavesdrop− speed−OBD

Replay − speed−OBD
}Attack-2

Connect−OBD

Eavesdrop− speed−OBD

Connect− cellular

Exploit− Service− S3

Replay − speed− cellular

Exploit− S3− read− speed− cellular

Exploit− S3− write− speed− CAN

}Attack-1
Figure 3.12: Attack tree automatically produced from Architecture-1

3.8 Conclusion
This chapter presents a modeling methodology using graph transformation system able to
produce an attack tree based on vehicle architecture and an attacker model. This attack tree
synthesizes all possible attack paths with respect to the input model. Figure 3.13 sketches
the main steps of the overall approach.

The attack tree then serves as the basis for further analysis. Impact quantification and
sensitivity analysis can be conducted given such attack tree whose goal is to improve the
overall security of an automotive architecture during the design phase. The described
methodology has nevertheless certain limitations due to required input data. In fact, these
input data are:

• A structural and behavioral model of the services.

• A structural and behavioral model for hardware components.

• A behavioral model for the attacker as a set of basic attacks.

From the car manufacturer point of view, the fact that the modeling methodology requires
architectural information of service nodes can be considered as a limitation as some software

73

3. RISK ANALYSIS AND ATTACK TREE GENERATION

Graph model
{S0}

Transformation
rules

{r1, r2, r3, ...}

Query
{threat}

State space
generation

State space

s0

s1

s2

s3

sv

Query=True

r1

r2 r3

r4

r5

Attack paths
extraction

Attack tree
And

r5 Or

And And

r1 r4 r3r2

Figure 3.13: The overall approach to attack tree generation

architecture and implementation tasks are outsourced to other companies. However, certain
architectural approximations based on functional blocks can still be used.
Furthermore, with regards to the attack potential analysis methodology, which is not au-
tomated, the formal model can incorporate further attributes and predicates in order to
automate the assignment of attack potential ratings. For instance, in order to automatically
rate the window of opportunity, we started to incorporate a range-of-access attribute to
communication and hardware nodes, in order to estimate the expertise and time needed, we
can think about adding complexity attributes to the vulnerabilities. Similarly, in order to
estimate the needed equipment, we can add an attribute to communication and hardware
nodes that specify in keywords the types of equipment needed by the attacker to connected to
them. As a result, the estimation process can be improved and can be more precise. Another
potential improvement would be to find a solution to dissociate, for a single attack, the attack
preparation step (mainly reverse-engineering: connecting to the CAN-bus and eavesdropping
on the speed frame or building an exploit for a vulnerable service), and the active deployment
step where the attacker only launches the attack payload. This separation can also improve
the attack potential estimation as the first step can be performed only once and later shared
with less experimented attacker models.

Finally, from the presented use-case, we can notice that the access to the CAN-bus (i.e.,
gaining write and read access to it) is an essential step for all three attacks, without which
none of the attacks would be possible. As a result, disabling this kind of access can effectively
reduce the overall risk. In fact, in general, as in-vehicle communication buses orchestrate
most of the communication inside the vehicle, virtually all the functionalities will at some

74

3.8 Conclusion

point process data that has been communicated through those buses. The security of these
communication mediums constitutes a vital block of every security architecture towards safer
cars. Thus in the next chapters, we will focus on developing mechanisms to secure in-vehicle
networks.

75

3. RISK ANALYSIS AND ATTACK TREE GENERATION

76

CHAPTER 4

Identifier Randomization: an Efficient Protection against CAN-bus Attacks

In this chapter, we investigate one of the prominent family of security protection mechanisms
over the Controller Area Network, namely the identifier protection mechanisms. Results
presented in this chapter has been scientifically valued by an article published as a book
chapter in Cyber-Physical Systems Security [72].

Contents
4.1 Introduction . 77
4.2 General formalism of ID-based protection 78
4.3 Evaluation metrics . 80
4.4 Proposed solutions . 81
4.5 Comparison . 93
4.6 Conclusion . 96

4.1 Introduction
In Chapter 2, we introduced state of the art protection mechanisms that can be applied to
protect the Controller Area Network against possible attacks. One of these mechanisms is the
identifier protection and can be used for an attacker model that has direct physical access to
the CAN bus. Proposed solutions that use this concept, like the work of Han et al. [48, 49],
or the work of Humayed et al. [56], prove that there are various ways of setting up protection
mechanisms based on the identifier field.

Chapter contributions. In this chapter, we make the following contributions,

• First, we define the general formalism of the identifier based protection mechanisms, in
particular, those based on a randomization strategy.

77

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

• Then, we introduce clear information-theoretic metrics in order to evaluate the efficiency
of the applied protection from a security point of view.

• Third, we propose identifier randomization procedures to protect the CAN network from
reverse-engineering, replay and injection attacks, both at software and hardware level.
Amongst the proposed methods, some of them are proved to achieve optimal protection.

• Finally, we evaluate and compare the proposed methods and state of the art methods,
based on the proposed metrics.

In what follows, section 4.2 introduces the general formalism of the identifier protection
mechanism. Section 4.3 defines the evaluation metrics that measure the level of protection
against known attacks. In section 4.4, we propose novel randomization strategies both at
software and hardware level, to enhance the security of the CAN protocol. In section 4.5
we compare the randomization strategies with the state-of-the-art solutions according to the
proposed evaluation metrics. Finally section 6 concludes the chapter.

4.2 General formalism of ID-based protection
This section identifies the main characteristics and constraints of the randomization function
that has to be used for protection.

The way the CAN protocol is used today by car manufacturers is the following: each
information that needs to be communicated from one ECU to the others is sent in a CAN
frame. Each frame has a fixed identifier which is known to the sender and the receivers.
This situation allows for a limited number of message identifiers to be used permanently
throughout the vehicle life-cycle. The set of identifiers used can also be known to the attacker
as it is communicated in clear on the CAN bus. They are fixed during the design phase of the
vehicle and respond to priority criteria imposed by safety requirements. The priority level
defines the criticality of the information and allows the CAN protocol to arbitrates between
concurrent messages. Most of these messages have an update frequency (that also depends on
the criticality of the information) that defines the probability of occurrence of the frame over
the CAN network. Figure 4.1 illustrates a CAN communication network and the histogram of
the identifiers that appear.

ID Payload

CAN-Controller
CAN-Bus Transceiver

(Sender)

CAN-Controller
CAN-Bus Transceiver

(Receiver)CAN-Bus

ID Payload

Figure 4.1: Controller Area Network with original identifier distribution

78

4.2 General formalism of ID-based protection

The fact that the same information is always sent over the same frame identifier enables
the attacker to reverse the protocol and forge frames that can be accepted by the vehicle
ECUs. The attacker first starts with a reverse-engineering step during which the goal is to
identify the messages identifiers being used. Then builds an attack by injecting, or replaying,
one or multiple CAN frames.

In order to protect the CAN network from such attacks, the idea is to change the message
identifiers regularly. Optimally, every time the ECU needs to send information. This should
be done in a way that the receiving ECUs can recover the original identifier and does not
allow the attacker to reverse the protocol, or inject messages that can be accepted by other
ECUs. To do so, an identifier randomization function F is added in such a way that it takes
the original identifier ID and substitutes it with another identifier IDr that changes at every
occurrence m of a new frame on the CAN bus. The index m is the value of a message counter
that has to be kept synchronized between the sender and the receivers. The function F can
be written as in (4.1).

IDr = F (ID,m) (4.1)

At the receiver side, the ID is recovered by using the inverse function of F , F−1, and the
value m of the internal counter of the ECU as given by (4.2).

ID = F−1(IDr,m) (4.2)

The randomization function F has to satisfy certain conditions in order to be useful in this
context:

• First, F has to be injective and efficiently computable in order for the receiver to recover
the original identifier rapidly. Figure 4.2 shows how this function could be integrated.
We can see in this figure the expected histogram of randomized identifier IDr that needs
to be more spread compared to the one in Figure 4.1.

• Second, and for safety reasons, the function F has to be priority-preserving. This
means that the priority of message identifiers ID1 and ID2 has to be the same as their
randomized versions F (ID1) and F (ID2), respectively. This boils down to the condition
expressed in (4.3).

ID1 < ID2 ⇒ F (ID1,m) < F (ID2,m) (4.3)

• Third, the priority condition have to be preserved over time. Indeed, the message can
go through a transmission buffer before being physically sent to the bus. Consequently,
the state of every ECU counter m can be different from the real number of transactions
counter on the physical layer. In order to be consistent, the randomization function has
to guarantee that the identifiers keep their priority even if the transaction counter m is
different. This is expressed by the following constraint (4.4).

ID1 < ID2, m1 6= m2 ⇒ F (ID1,m1) < F (ID2,m2) (4.4)

• Fourth, the output of the randomization function F has to be unpredictable. An attacker
that has some information about previous outputs or identifiers should not be able to

79

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

ID Payload

PRNG

Randomization

IDr Payload

CAN-Controller
CAN-Bus Transceiver

(Sender)

CAN-Controller
CAN-Bus Transceiver

(Receiver)

CAN-Bus

IDr Payload

De-randomization

ID Payload

PRNG

Figure 4.2: CAN-ID randomization principle

predict with high probability the randomized identifier. We achieve this goal by choosing
a randomization function based on a cryptographically secure pseudo-random number
generator.

4.3 Evaluation metrics
Many randomization functions can meet the previous constraints. In order to compare these
functions between them, we need to define security metrics that measure their ability to
protect against reverse-engineering and replay/injection attacks. These metrics are based on
information theory, which links them to optimal attacks, that is attacks which maximize the
likelihood of success [35].

4.3.1 Reverse-engineering attack

In the presence of a randomization scheme, the attacker knows that each original identifier
has multiple substitute identifiers. The reverse-engineering challenge is then to be able to
determine for each original identifier the set of substitute identifiers that it could be randomized
into. A randomization scheme is perfect if the resulting randomized identifiers are identically
distributed over the set of identifiers. From an information theory point of view, the capacity
of the attacker to perform this task is related to the entropy of the resulting randomized
identifiers. The more the identifiers look random, the harder it is for the attacker to reverse
the protocol. Thus we use the entropy as security metrics to evaluate the protection level of

80

4.4 Proposed solutions

the randomization function against reverse-engineering.

H(idr) =
∑

x∈[0,2n−1]
P (idr = x)× log2

(1
P (idr = x)

)
. (4.5)

4.3.2 Replay and injection attacks

In order for the attacker to successfully inject a message on the CAN bus with the presence of
a randomization function, he/she needs to “predict” the next randomized identifier to be sent.
If the attacker successfully conducts a reverse-engineering attack, he/she should be able to
predict the next original identifier to be sent. Knowing the original identifier, the attacker
has to predict its randomized version. Since we suggested to combine the randomization
function with a cryptographically secure pseudo-random number generator that has a uniform
distribution, we suppose that the prediction capability of the attacker is not better than
a simple “guess”. Thus, the conditional entropy of the randomized identifier knowing the
original identifier can be used as a metrics to evaluate the protection level of the randomization
function against replay and injection attacks.

H(idr|ido) =
∑

x∈[0,2n−1]
P (idr = x|ido)× log2

(1
P (idr = x|ido)

)
. (4.6)

4.4 Proposed solutions

4.4.1 The IA-CAN Approach

In [48, 49] Han et al. developed a method for CAN protection called Identity Anonymized
CAN (IA-CAN). More precisely, they used identifier and data randomization. Their approach
is to mix a part of the identifier (LSB part) and a part of the payload with a random variable
generated at sender and receiver sides. In this chapter, we focus only on the randomization
of the CAN identifier. This is motivated by the fact that if the attacker successfully injects
an identifier that gets passed through the CAN filter, even if the rest of the payload is not
correct, it will nevertheless exhaust the receiver ECU.

If we disregard the payload part of the anonymization in the IA-CAN approach, we can
conclude that the randomization function applied to the identifiers can be expressed with
equation- 4.7. We refer the reader to the original paper [48, 49] for further details.

fr : [0, 2a − 1] × [2a, 2n − 1] → [0, 2n − 1]
r id → idMSB(n−a) + idLSB(a) ⊕ r

(4.7)

Where:

• n is the number of bits of the identifier (n = 11 for standard CAN, n = 29 for extended
CAN)

• a is the number of bits that will be used for randomization (a < n)

81

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

0 2nid1 id2 id3

P (id1)

P (id2)

P (id3)

0 2n2a 2a2a

Figure 4.3: Illustration of the IA-CAN identifier transformation approach

• r is a random variable in [0, 2a − 1] generated at both sender and receiver sides.

• id is the original identifier of the message.

• idMSB(α) is the identifier α Most S ignificant Bit.

• idLSB(α) is the identifier α Least S ignificant Bit.

We assume that the random number r is uniformly distributed over the randomization interval
[0, 2a − 1]. Figure 4.3 shows the principle of the transformation applied to the identifiers.
Naturally, the choice of the variable a is bounded by the total number of original identifiers
N , and the minimum of inter-space between all identifiers (equation- 4.8).

1 ≤ a ≤
⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(4.8)

In order to maximize the protection level, directly linked to the randomness of the identifiers,
we need to choose the maximum possible a. For better security performance, this choice
translates to equation-4.9.

a =
⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(4.9)

Particular case:
A particular case arises when the identifiers inter-space is constant between all original
identifiers. The constant is then 2n

N . The upper bound of a is then expressed with equation-
4.10. ⌊

log2(Mini,j∈[1,N]|idi − idj |)
⌋

= n− dlog2(N)e (4.10)

To measure the efficiency of this randomization function against reverse-engineering, we
compute the entropy of the randomized identifiers. This entropy is expressed in equation- 4.11.

HIA−CAN (idr) = H(ido) + a (4.11)

82

4.4 Proposed solutions

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

Figure 4.4: IA-CAN transformation: Original (Left) Randomized (Right)

Moreover, to quantify the level of protection against frame injection and replay attacks, we
compute the conditional entropy of the randomized identifiers knowing the original identifiers.
The results is reported in equation- 4.12.

HIA−CAN (idr|ido) = a =
⌊
log2(Mini,j∈[1,N]|idi − idj |)

⌋
(4.12)

In case the identifiers inter-space is constant, this conditional entropy reaches a maximum
expressed in equation- 4.13.

HIA−CAN (idr|ido) = a = n− dlog2(N)e (4.13)

Proof of equations (4.11) and (4.12) is presented in the Appendix.
Practical analysis:
To test this approach, we made a real acquisition on a vehicle CAN-bus, that we used with
this randomization procedure to assess its efficiency. Figure 4.4 shows the identifier histograms
before and after randomization. On this particular example, the randomization was done over
a = 4 bits which means that for each identifier we allocated 2a = 24 = 16 substitute identifiers.
The computed entropy of the original distribution is H(ido) = 3.05. After randomization,
the computed entropy of the randomized identifiers is HIA−CAN (idr) = 7.05. The computed
conditional entropy is HIA−CAN (idr|ido) = 4. We can observe from the randomized identifier
distribution of figure 4.4 that the attacker can still distinguish frequencies of the messages. It
is also clear from equation (4.11) that the entropy of randomized identifiers depends on the
entropy of the original identifiers. Using this information the attacker can deduce the next
original identifier to be sent, and try to inject a frame within the observed randomization
interval.

4.4.2 Equal Intervals

The first observation that we can make concerning the IA-CAN approach is that there is still
room for amelioration in terms of entropy and conditional entropy. In fact, the randomization
of IA-CAN is done only on the a least significant bits of the identifier, which makes the added

83

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

entropy bounded by a which is also bounded by log2(Mini,j∈[1,N]|idi − idj |)

A possible improvement is first to create a mapping function that assigns to each original
identify a substitute identifier such that the set of substitute identifiers satisfies the equidistance
condition, mentioned in the previous section, that maximizes random space. A second
improvement is to change the randomization function from an XOR function to an arithmetic
addition in order to increase the randomness and thus the entropy. These improvements yield
a randomization procedure that we denote Equal intervals in this thesis.

Suppose we have N identifiers {id1, id2, . . . , idN} such that id1 < id2 < . . . < idN . The
identifiers are ordered from the most prioritary (id1) to the least prioritary (idN). We can
partition the identifier space [0, 2n − 1] over N intervals Ii = [infi, supi] such that:

X inf1 = 0, supN = 2n − 1

X For each i ∈ [1, N − 1] : infi+1 = supi + 1

X For each i ∈ [1, N − 1] : supi − infi = const = 2n

N

Thus, we define an identifier mapping function Map in equation- 4.14.

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(4.14)

The Map function is designed to redefine the distribution of the identifier (by assigning
a substitute identifier to the original one) in such a way that the new identifiers maxi-
mize the identifier inter-space. At the same time, the Map function is priority preserving :
Map(id1) < Map(id2) < . . . < Map(idN).

Given this new distribution of substitute identifiers, in each interval Ii = [infi, supi]
we have only one identifier Map(idi). All the interval can be exploited to randomize that
identifier. Thus the randomization function of equation- 4.15.

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi) + r[0,supi−infi]

(4.15)

Figure 4.5 shows the transformation applied to the identifiers.

In order to compare this proposed solution to the previous one, we compute the security
metrics to assess the level of protection against reverse-engineering and injection and replay
attacks:
Entropy:

HEI(idr) = H(ido) + n− log2(N) (4.16)

Conditional entropy:
HEI(idr|ido) = n− log2(N) (4.17)

Proof of equations (4.16) and (4.17) are presented in the Appendix.

In section 4.5 we show that based on theoretical analysis of the proposed metrics, this
randomization function is more secure than the state-of-the-art solution.

84

4.4 Proposed solutions

0 2nid1 id2 id3

P (id1)

P (id2)

P (id3)

0 2n

0 2n

Map

fr

Figure 4.5: Illustration of the Equal intervals identifier transformation

Practical analysis:
The randomization function is applied to the same identifier distribution used in the previous
section. Figure 4.6 shows the identifier histograms before and after randomization. We can
see that compared to the IA-CAN approach, the equal intervals randomization function
(4.15) exploits all the available identifier space. This is mainly due to the Map function
that re-defines an identifier mapping over all the identifier space. The computed entropy
of this particular example is HEI(idr) = 10, 72. Compared to the IA-CAN randomization
function (HIA−CAN = 7.05), the equal intervals randomization function generates more
entropy. The conditional entropy of the randomized identifier knowing the original identifier is
HEI(idr|ido) = 7.67. We can also observe that compared to IA-CAN (HIA−CAN (idr|ido) = 4)
it has better conditional entropy. In section 4.5, we formally prove that it is always the case.

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

0 500 1000 1500 2000
0

100

200

300

400

500

Figure 4.6: Equal intervals transformation: Original (Left) and Randomized (Right)

85

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

Nevertheless, the attacker can still identify clusters of randomized identifiers that can guide
him in the reverse-engineering process even if the probability of a successful injection is slightly
smaller then the previous solution.

4.4.3 Frequency Intervals

The previous methods are not secure enough against reversing the original identifiers. Indeed,
given the previous histograms of randomized identifiers, even visually the attacker can identify
clusters of identifiers. In fact, since most of these messages are periodic frames, the probability
of occurrence of each identifier is impacted by the sending period and so is all of its randomized
versions. In this section, we design a new randomization function whose aim is to overcome
this limitation. The goal of this function is to make the randomized identifier distribution
[histogram] as uniform as possible to improve the entropy of the randomized identifiers and
still preserve the priority order. In order to do that, a flattening of the peaks has to be done.
We choose the randomization interval of each identifier to be proportional to its frequency of
appearance on the CAN bus. Thus an identifier that has a high frequency (small period) will
appear more frequently on the CAN bus; this identifier will be assigned a large interval of
randomization. Similarly, an identifier that has a small frequency (large period) of appearance
on the CAN bus, will appear less frequently, and thus will be assigned a small interval of
randomization. In order for this strategy to be possible, we also need a priority preserv-
ing mapping function that assigns substitute identifiers to the original identifier. Then we
apply the randomization to the substitute identifiers in their respective randomization intervals.

Suppose we have N identifiers {id1, id2, . . . , idN} such that id1 < id2 < . . . < idN ,
respectively with a sending frequencies of f1, f2, .., fN . The identifiers are ordered from the
most prioritary (id1) to the least prioritary (idN). We can partition the identifier space
[0, 2n − 1] over N intervals Ii = [infi, supi] such that:

X inf1 = 0, supN = 2n − 1

X For each i ∈ [1, N − 1] : infi+1 = supi + 1

X For each i ∈ [1, N − 1] : supi − infi = 2n×fi∑N

j=1 fj

= P (idi)× 2n

Where P (idi) is the probability of the identifier idi to appear on the CAN bus.

We define an identifier mapping function Map (equation- 4.18) that assigns substitute
identifiers to the original ones such that the inter-identifier space is proportional to the
frequency of the smaller identifier.

Map : [0, 2n−1 − 1] → [0, 2n]
idi → infi

(4.18)

The randomization function then assigns a randomized identifier to the substitute identifier.
Each identifier is randomized in an interval proportional to its frequency. The randomization

86

4.4 Proposed solutions

0 2nid1 id2 id3

P (id1)

P (id2)

P (id3)

0 2n

0 2n

Map

fr

Figure 4.7: Illustration of the Frequency Intervals identifier transformation

function thus described is given in equation- 4.19. Figure 4.7 shows the transformation applied
to the identifiers.

fr : [0, 2n−1 − 1] → [0, 2n]
idi → Map(idi) + r[0,supi−infi]

(4.19)

In order to compare this proposed solution to the previous ones, we compute the security
metrics to assess the level of protection against reverse-engineering and injection and replay
attacks:
Entropy:

HFI(idr) = n (4.20)

Conditional entropy:
HFI(idr|ido) = n−H(ido) (4.21)

A first observation is that in terms of theoretical entropy this solution reaches the maximum
entropy which equals to n. Another interesting result is that it gives an enhancement of the
conditional entropy as it is shown in section 4.5. From a theoretical analysis, it is shown in
Appendix 6.2.2 that the Frequency intervals randomization strategy maximizes the conditional
entropy when the mapping is static (i.e. does not change over time). We will see in the next
section that a dynamic mapping can increase even more the conditional entropy.
Practical analysis:
To test this randomization strategy, we apply it to the identifier distribution used for the
previous functions. Figure 4.8 shows the identifier histograms before and after randomization.
The computed entropy for this example is HFI(idr) = 10.99. The computed conditional
entropy is HFI(idr|ido) = 7.94. It is clear from the histogram and the computed entropy that
the randomized identifier distribution is more uniform than the previous solutions. A uniform
distribution of identifiers is a perfect protection against reverse-engineering as it is harder
for the attacker to distinguish clusters of identifiers. We can also observe that there is an

87

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

Figure 4.8: Frequency intervals transformation: Original (Left) and Randomized (Right)

enhancement in terms of conditional entropy compared to the previous solutions. That is to
say, this solution has better security performance against injection and replay attacks.

4.4.4 Dynamic Intervals

In the previous section, we found the optimal randomization solution that can be implemented
with a static partition of the identifier space. This partitioning is designed to maximize the
entropy and conditional entropy for a maximum security level against reverse-engineering and
injection and replay attacks at the same time. In this section, the goal is to keep the same
level of entropy (maximum) but explore new ways to improve the conditional entropy. We
prove that this can be possible if we no longer follow a static partitioning of the identifier space.

A practical observation of the CAN bus behavior shows that there is a strong dependency
between consecutive identifiers. In other words, the order in which the identifiers appear on the
CAN bus is not entirely random. Suppose we have a set of used identifiers {id1, id2, ..., idN},
at an instant t were idi appears on the CAN bus, there is a handful of identifiers that can
appear right after it on the bus. Probabilistically, the majority of identifiers will have zero
probability to appear right after idi. To theoretically consolidate this observation, we can
argue that two identifiers with the same period that are not sent right after each other at the
start of the system, will probably never be seen right after each other as long as the system is
up and running. This observation involves that using a fixed identifier mapping after that
identifier idi has been sent, an essential part of the allocated space for identifiers will not be
used. Hence, if the mapping is changed dynamically after every sending of idi, and according
to the dependency between identifiers, we can exploit more space for randomization, thus
increasing the conditional entropy.

To construct such a randomization function, we model the dependency between consecutive
identifiers with a Markov chain. The associated Markov matrix can be build to give the
probabilities pi,j = P (idt+1

j /idti) of receiving an identifier idj at iteration t+ 1 knowing that

88

4.4 Proposed solutions

we received the identifier idi at iteration t.

M =

. idt+1
1 idt+1

2 . . . idt+1
j . . . idt+1

n

idt1 p(idt+1
1 /idt1) p(idt+1

2 /idt1) . . p(idt+1
n /idt1)

idt2 p(idt+1
1 /idt2) p(idt+1

2 /idt2) . . p(idt+1
n /idt2)

idt3
...

idi . . . p(idt+1
j /idti) .

...
idtn

(4.22)

p(idt+1
j /idti): is the probability of receiving the identifier idj at iteration t+ 1 knowing that

at iteration t we received the identifier idi. Thus, we have equation- 4.23.∑
idt+1

j

p(idt+1
j /idti) =

∑
j∈[1,N]

pi,j = 1 (4.23)

Each time an identifier idi is received, immediately after, there is p(idt+1
j /idti) probability

to receive idj .With this in mind, the idea is to opt for the Frequency Intervals strategy to
randomize the upcoming identifiers since it is the optimal strategy that guarantees the maximal
entropy. The interval partition is updated according to Frequency intervals strategy that
depends on the received identifier at instant t and the probabilities in the Markov transition
matrix. It yields a dynamic identifier mapping function defined in equation- 4.24.

Mapt+1 : [0, 2n − 1] → [0, 2n − 1]
idi+1 → idi + 2n × pk,i

(4.24)

The Map function has to be updated every received identifier according to the Frequency
Interval strategy. At an instant t+ 1, knowing that the previous sent identifier is idk, identifier
idi have an assigned randomization interval of Ii of width W (Ii) = 2n × pk,i. The resulting
randomization function is expressed in equation- 4.25.

f t+1
r : [0, 2n − 1] → [0, 2n − 1]

idi → Mapt+1(idi) + r[0,2n×pk,i]
(4.25)

Illustrative example:
As an example, consider the following sequence of identifiers appearing on the CAN bus:

[id2, id3, id1, id2, id3, id1, id2, id3, id2, id1, id2, id3, id2, id1, id2].
After analyzing the sequence, the following transition matrix can be established:

M =

. idt+1

1 idt+1
2 idt+1

3
idt1 0 1 0
idt2

1
3 0 2

3
idt3

1
2

1
2 0

 (4.26)

This transition matrix is used to define new mapping upon reception of a new identifier.
Figure 4.9 shows the transformation applied to the identifiers after reception of id2, then id3.

89

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

At instant t + 1, upon reception of
id2, we can receive either id1 with
probability 1

3 or id3 with probability
2
3 .

0 2nid1 id3

P (id1/id2)

P (id3/id2)

0 2n

0 2n

Mapt+1

f t+1
r

At instant t + 2, upon reception of
id3, we can receive either id1 with
probability 1

2 or id2 with probability
1
2 .

0 2nid1 id2

P (id1/id3) P (id2/id3)

0 2n

0 2n

Mapt+2

f t+2
r

Figure 4.9: Illustration of the Dynamic intervals identifier transformation at t+ 1 (Left) and
t+ 2 (Right)

The security metrics obtained with the Dynamic Intervals strategy is the following:
Entropy:

HDI(idr) = n (4.27)

Conditional entropy:

HDI(idt+1
r |idt+1

o) =
∑

x∈[0,2n]

∑
idt+1

j

∑
idt

i

1
W (Ii,j)

P (idi) log2(1∑
idt

k

1
W (Ik,j)P (idk)

) (4.28)

Practical analysis:
To test this randomization strategy, we apply it to the identifier distribution used for the
previous functions. Figure 4.10 gives the resulting randomized distribution.

The computed entropy for this example is HDI(idr) = 11. The computed conditional entropy
is HDI(idr|ido) = 10.24. It is clear from the histogram and the computed entropy that the
randomized identifier distribution is as uniform as the Frequency-intervals randomization
strategy. Moreover, this method provides a significant enhancement in terms of conditional
entropy, compared to the previous solutions.

4.4.5 Arithmetic Masking

All of the above-proposed solutions can be applied at the software level (Layer 3). In this
section, we consider a hardware solution which can involve some change in the CAN controllers.

90

4.4 Proposed solutions

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

Figure 4.10: Dynamic intervals transformation: Original (Left) and Randomized (Right)

The payoff of this choice is to eliminate the third constraint imposed on section 4.2 that states
that the randomization function has to preserve priority over time. Here we consider that
the new hardware at the physical layer does not have any frame buffer. Hence all the CAN
controllers can share the same random variable in a consistent manner. The internal changes
of this random variable could be done by a Pseudo Random Number Generator (PRNG)
which is initialized identically in every CAN controller at start-up.

The hardware randomization proposal is based on Arithmetic Masking, meaning that the
random variable is added arithmetically to the original identifier. The operations are the
following :

– First a mapping function is defined. It assigns new substitute identifiers to the original
identifiers.

– Then the randomization is performed by adding the random variable to the substitute
identifier.

– The random variable is such that it is shared with all CAN controllers and the randomized
identifier does not exceed 211. This allows preserving the priority between identifiers.

Suppose there are N identifiers id1 < id2 < . . . < idN , with a sending frequencies of
f1, f2, .., fN . A substitute and random identifier is assigned for each original identifier. The
identifier mapping function is defined with equation- 4.29:

Map : [0, 2n−1 − 1] → [0, 2n]
idi → i− 1 (4.29)

The mapping function substitutes the original identifiers with the N first lowest identifiers.
The rest of the interval [N, 2n] is used for randomization. Hence the randomization function
expressed in equation- 4.30.

fr : [0, 2n −N] × [0, 2n−1 − 1] → [0, 2n]
r idi → Map(idi) + r

(4.30)

91

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

0 2nid1 id2 id3

P (id1)

P (id2)

P (id3)

0 2n

0 2n

Map

fr

Figure 4.11: Illustration of the Arithmetic masking identifier transformation

Figure 4.11 shows the transformation applied to the identifiers.
The security metrics applied to the Arithmetic Masking solution give the following results:

Entropy:

HAM (idr) = log2(2n −N + 1) + 1
2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P (idi)× log2(1∑x
i=0 P (idi)

)

+
N−1∑
i=x+1

P (idi)× log2(1∑N−1
i=x+1 P (idi)

)
(4.31)

Conditional entropy:
HAM (idr|ido) = log2(2n −N + 1) (4.32)

Practical analysis:
To test this randomization strategy, we apply it to the identifier distribution used for the
previous functions. The computed entropy for this example is HAM (idr) = 10.99. The
computed conditional entropy is HAM (idr|ido) = 10.99. The histogram and the computed
entropy show that the randomized identifier distribution is approximately uniform. Moreover,
we observe a significant enhancement in terms of conditional entropy compared to the previous
solutions.

92

4.5 Comparison

0 500 1000 1500 2000
0

2000

4000

6000

8000

10000

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

Figure 4.12: Arithmetic masking transformation: Original (Left) and Randomized (Right)

4.5 Comparison
In the previous section, we introduced the state-of-the-art solution for CAN identifier random-
ization, and we proposed solutions both at software and hardware layers. These solutions were
tested on a real identifier trace captured from a real vehicle. In this section, we compare the
proposed solutions applied to multiple identifier distributions based on the proposed security
metrics.
Four reference identifier distributions are considered. Table 4.1 summarizes the obtained
results.

93

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

T
ab

le
4.
1:

C
om

pa
ris

on
be

tw
ee
n
di
ffe

re
nt

ra
nd

om
iz
at
io
n
st
ra
te
gi
es

R
ef
er
en

ce
di
st
rib

ut
io
n

IA
-C

A
N

Eq
ua

li
nt
er
va
ls

Fr
eq
ue

nc
y

in
te
rv
al
s

D
yn

am
ic

in
te
rv
al
s

A
rit

hm
et
ic

m
as
k-

in
g

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

0
50

0
10

00
15

00
20

00
0

10
0

20
0

30
0

40
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

40
0

H
(i
d
o
)=

2.
80

H
(i
d
r
)=

7.
80

H
(i
d
r
)=

10
.9

99
7

H
(i
d
r
)=

10
.9

9
H

(i
d
r
)=

10
.9

9
H

(i
d
r
)=

10
.9

94
8

0
50

0
10

00
15

00
20

00
0

10
00

20
00

30
00

40
00

50
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

H
(i
d
o
)=

2.
68

H
(i
d
r
)=

7.
68

H
(i
d
r
)=

10
.8

6
H

(i
d
r
)=

10
.9

9
H

(i
d
r
)=

11
H

(i
d
r
)=

10
.9

9

0
50

0
10

00
15

00
20

00
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

12
00

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

12
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

12
00

0
50

0
10

00
15

00
20

00
0

20
0

40
0

60
0

80
0

10
00

12
00

H
(i
d
o
)=

3.
35

H
(i
d
r
)=

8.
35

H
(i
d
r
)=

10
.8

8
H

(i
d
r
)=

10
.9

9
H

(i
d
r
)=

11
H

(i
d
r
)=

10
.9

9

0
50

0
10

00
15

00
20

00
0

20
00

40
00

60
00

80
00

10
00

0

0
50

0
10

00
15

00
20

00
0

10
00

20
00

30
00

40
00

50
00

60
00

0
50

0
10

00
15

00
20

00
0

10
0

20
0

30
0

40
0

50
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

0
50

0
10

00
15

00
20

00
05010
0

15
0

20
0

25
0

30
0

35
0

H
(i
d
o
)=

3.
05

H
(i
d
r
)=

7.
05

H
(i
d
r
)=

10
.7

2
H

(i
d
r
)=

10
.9

9
H

(i
d
r
)=

11
H

(i
d
r
)=

10
.9

9

94

4.5 Comparison

The visual inspection of the histograms indicates that Frequency-intervals and Dynamic-
intervals randomization strategies have more uniform distribution then Equal-intervals and
IA-CAN. Hence, these solutions should better protection against reverse-engineering attack,
at first glance. This observation can be theoretically proven. By comparing the closed-form
expressions of the respective entropies, we can establish the following:

HIA−CAN (idr) ≤ HEI(idr) ≤ HFI(idr) = HDI(idr) (4.33)

Proof.
H(ido) ≤ log2(N)

And we can establish from equations (4.8) and (4.10) that:

a ≤ n− dlog2(N)e ≤ n− log2(N)

⇒ H(ido) + a ≤ H(ido) + n− log2(N)

⇒ HIA−CAN (idr) ≤ HEI(idr)

Since
HDI(idr) = HFI(idr) = n

Then:
HIA−CAN (idr) ≤ HEI(idr) ≤ HFI(idr) = HDI(idr)

It is clear that compared to Arithmetic Masking, Dynamic Intervals and Frequency Inter-
vals have better performance in terms of entropy, involving high robustness against reverse
engineering. Comparing the Arithmetic Masking to IA-CAN and Equal Intervals is not
trivial. This is mainly because established entropy expressions depend on the entropy of
the original identifier distribution. If we consider that the original identifiers have equal
probabilities (example of the first distribution), the Equal Intervals solution has better entropy
(HEI(idr) = 10.9997, HAM (idr) = 10.9948). Theoretically, the entropy of Equal intervals
for this example is maximal. On the other side, concerning the second distribution, we can
observe that the Arithmetic Masking performs better.

To compare the protection level against replay and injection attacks, the conditional
entropy metric is used. Based on the closed form expressions established in the previous
sections, we draw the curve showing the evolution of the conditional entropy as a function
of the total number of identifiers. Figure 4.13 show the results. From this graph, we can
conclude that all the proposed solutions outperform the IA-CAN strategy. Second, it appears
that the hardware-based solution, namely Arithmetic Masking is the best against replay and
injection attacks. However, As discussed previously, the Arithmetic Masking needs to be
implemented in the CAN controller between the physical and data link layer, which makes it
not easy to deploy. At the software level, the Frequency Intervals strategy performs the best,
both against replay, injection attacks and reverse-engineering.

95

4. IDENTIFIER RANDOMIZATION: AN EFFICIENT PROTECTION
AGAINST CAN-BUS ATTACKS

0 500 1000 1500 2000 2500
Number of identifiers

0

2

4

6

8

10

12
Th

eo
re

tic
 C

on
di

tio
na

l E
nt

ro
py

IA-CAN [State-of-the-art]
Arithmetic Masking
Equal intervals
Frequency intervals
Dynamic intervals

Figure 4.13: Conditional entropy H(idr|ido) = f(N)

4.6 Conclusion
For an attacker model that has direct physical access to the in-vehicle communication networks,
it appears that one of the most efficient class of protection is based on the randomization
of the CAN identifiers. Starting from the existing Identity-Anonymized CAN (IA-CAN),
three significant enhancements based on randomization have been proposed: with Equal
Intervals, Frequency Intervals, and Dynamic Intervals. In case it is possible to change the
CAN hardware, randomization based on Arithmetic Masking has also been introduced. The
security assessment has been carried out by using security metrics coming from the information
theory: entropy (for the reverse engineering attack) and conditional entropy (for the replay
and injection attacks). It has been shown that the enhanced protections provide a significant
gain compared to the IA-CAN approach. The entropy obtained from the new randomization
solutions is very near the optimum (11 bits), thus presenting high robustness against Reverse
Engineering Attacks. The conditional entropy is better achieved with the Arithmetic Masking
and the Dynamic Intervals. This last solution has the interest not to modify the hardware of
the CAN interface. Overall, the proposed solutions are much better than the existing IA-CAN,
as proven by the resulting security gain formally expressed by means of information theory
metrics. In the next chapter, we investigate a protection solution against an attacker that has
indirect and remote access to one of the legitimate ECUs inside the vehicle cyber-physical
architecture.

96

CHAPTER 5

On-board Intrusion Detection and Prevention system

In this chapter, we introduce a novel intrusion detection technique over the in-vehicle network.
Results presented in this chapter has been scientifically valued by an article published in the
proceedings of the Workshop on information security theory and practice [73].

Contents
5.1 Introduction . 97
5.2 Machine learning algorithms . 99
5.3 Principle and problem formulation 100
5.4 Validation metrics . 105
5.5 Supervised learning algorithms . 108
5.6 Data collection and feature engineering 116
5.7 Experimental validation and discussion 119
5.8 Evaluation against attacks . 131
5.9 Alerts handling . 136
5.10 Conclusion and discussion . 138

5.1 Introduction

In Chapter 2, we introduced in-vehicle intrusion detection and prevention systems (IDS/IDPS)
as one of the prominent protection mechanisms that can be applied to protect the connected
vehicle. The advantage of these systems with regards to other protection mechanisms, namely
payload protection and identifier protection, is that they can protect not only against an
attacker that has physical access to the CAN bus but also against an attacker that has indirect
access and remote access to a legitimate ECU.

Recall from Section 2.5.3 and Figure 2.9 that an attacker that has direct physical access
to in-vehicle communication buses can inject and replay messages to other ECUs which

97

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

can potentially be detected by Rule-based intrusion detection mechanisms that monitor the
syntax and periodicity of the messages. On the other hand, an attacker that has indirect or
remote access to the in-vehicle communication bus through one of the legitimate ECUs can
inject malicious content directly inside the payload without disrupting the defined protocol.
Although this type of access is technically more challenging for an attacker as it involves taking
control over a legitimate ECU leveraging hardware or software vulnerability, it nevertheless
represents a higher risk as the accessibility and range of the attack vector is more important.
Detection systems able to counter these kinds of attacks have to be able to detect bad behavior
inside the payload. They are called deep-packet-inspection.

Section 2.5.3.3 already introduced the state of the art intrusion detection techniques used
for the CAN network. Rule-based detection mechanisms are very effective as they allow only
for compliant packets to be accepted. Nevertheless, they are adapted to an attacker model
that has direct physical access to the communication bus. Intrusion detection mechanisms
that are adapted to an attacker model with indirect and remote access to a legitimate ECU
include outlier detection techniques (based a statistical measure like entropy or hamming
distance) and classification techniques that use machine learning algorithms to recognize
attacked frames. Outlier detection mechanisms generally rely on a statistical measure and do
not allow to know the precise CAN frames that carry the attack payload. In fact, they report
misbehavior detected on a relatively large time window (like entropy) Classification-based
intrusion detection mechanisms address this particular limitation and are able to point out
the frame with anomalous content. In fact, they are trained with examples of attacked frames
and normal frames. This is also a limitation because in order to produce this kind of data one
need to select and perform multiple attacks on the vehicle. Thus it is challenging to generate
the data for a large range of attacks. Besides, the intrusion detection system learns only to
recognize performed attacks included in the training set.

Chapter contributions. This chapter introduces a novel intrusion detection system devel-
oped in order to monitor vehicle state from information collected on internal buses. We tackle
the problem of deep packet inspection of in-vehicle networks from a practical viewpoint. In
order to overcome the limitations of state of the art methods, the problem is formulated using
supervised machine learning techniques, in a way that allows learning the normal behavior of
the system in terms of message payload content. The principle is to learn how to predict the
next state of the vehicle based on information and sensor values sent over communication
buses. The normal behavior is then used as a reference to detect deviations. Bad behavior
and bad payload content is flagged with outlier detection techniques.

The method thus described can be adopted not only as an intrusion detection mechanism
but also as an online monitoring failure detection and a Sensor rationality check safety
mechanisms as described by the “Road vehicles – Functional safety” standard ISO-26262 [63].
We validate in practice the model with real CAN traces collected from drive tests. We show
that the approach is able to learn the nominal behavior with high accuracy and low false
positives, for three different driving behaviors separately. Then we show that it is also able
to learn a unified nominal behavior with high accuracy and low false positives, that can
accommodate different driving behaviors. Finally, we run an attack campaign in order to test

98

5.2 Machine learning algorithms

the robustness of the detection rules and demonstrate its ability to predict attacks with a low
false negative rate.

The remainder of the chapter is structured as follows. Section 5.2 gives some background
on machine learning techniques, the problem formulation and a presentation of the algorithms
used during evaluation and validation. Section 5.3 presents the principle and theoretical
foundation underlying the intrusion detection techniques using supervised learning algorithms
as well as an introduction to the specific learning algorithms used in the remainder of the
chapter for evaluation. Section 5.6 gives details about data collection and feature engineering.
Section 5.7 presents practical validation results on real CAN traces. Section 6 concludes.

5.2 Machine learning algorithms
This section introduces state of the art CAN intrusion detection methods, and their limitations.
Then it introduces machine learning techniques and how they can be applied to intrusion
detection applications.

5.2.1 Learning strategy

In practice there are multiple application domains where machine learning algorithms excelled
in prediction tasks. They are generally used to study correlation/dependencies between
different inputs (also called features) and used to approximate an output function and/or to
discover interesting data structures.

Machine learning algorithms can be divided into two main categories depending on the
learning strategy (Figure 5.1):

• Supervised learning: a machine learning algorithm is said to be using supervised learning
strategy when the training set includes both the input data and the output data of the
algorithm. In that sense, the machine algorithm is training to learn a mapping function
by minimizing a pre-defined cost function. The trained algorithm is then tested on some
other examples that were not included in the training set. It is said to be generalizing
well if the performance of the trained algorithm on the test set is comparable to its
performance on the training set.

• Un-supervised learning: a machine learning algorithm is said to be using unsupervised
learning strategy if the training only includes the input data but not the expected
output. In that sense, the machine learning algorithm is trying to discover interesting
data structures.

5.2.2 Parametric and non-parametric models

In machine learning, an important step is choosing a model for the data. In general, we can
distinguish between two types of models:

99

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Machine-learning

Supervised Learning

Regression

Classfication

Ranking

Unsupervised Learning

Anomaly Detection

Clustering

Dimensionality Reduction

Figure 5.1: Machine learning taxonomy

• Models where some hypothesis about the data distribution is made resulting in a fixed
number of parameters. These are called parametric models.

• Models where the number of parameters grows with the amount of training data. These
are called non-parametric models.

Using a parametric model with a fixed number of parameters can significantly simplify the
learning process, but can also limit what can be learned. Thus parametric models have
the advantage of being faster and simpler to use, but the disadvantage of making strong
assumptions on data distributions which can sometimes result in bad approximations and
a poor fit of the data. On the other hand, non-parametric models are more flexible in the
sense that they do not impose strong assumptions, but often consume a lot of computational
and/or memory resources for large datasets.

5.3 Principle and problem formulation
In order to overcome the limitations identified in state of the art deep packet inspection
techniques, the goal of this section is to present and formulate the problem in a way that
allows learning a nominal behavioral model of the frames of in-vehicle communication buses.

As explained Chapter 2, the vehicle cyber-physical system architecture is composed of
multiple ECUs, holding sensors and actuators and sharing communication buses used to send
sensor information and actuator commands. In this chapter, we refer to them as signals.

5.3.1 Signal types

In general we can identify two types of signals (Figure 5.2 gives examples of these signal
types):

1. Real-valued signal: is a piece of information that can take multiple values generally sent
over more than one data byte. This type encompasses in general multiple sensors mea-
surements like vehicle engine rotational speed, vehicle acceleration, engine torque . . . An
example of a real-valued signal is the vehicle speed of the vehicle (Figure 5.2a). It is
sent over 2 bytes of payload information. The received value is then an integer between

100

5.3 Principle and problem formulation

0 and 65535. A multiplication by 0.01 is necessary to recover the actual measurement of
the sensor to make speed range in [0, 655.35] km/h.

2. Categorical signals: is a piece of information that can take a finite and relatively small
set of values (also called categories or classes). It is generally sent over a small number
of bits. This type encompasses in general multiple sensors states and commands like
open/closed door command, gear-box position sensor . . . An example of a categorical
signal is the brake lights command signal (Figure 5.2b). It is sent over 1 bit of payload
data. The received value is binary information (0/1) indicating whether to activate the
brake lights (1) or not (0).

(a) Vehicle speed signal (b) Brake lights command signal

Figure 5.2: Example of real-valued and categorical signals

5.3.2 Intrusion detection principle

The ECUs use the sensed information in order to elaborate and take decisions that ultimately
produce commands issued for the actuators. Produced commands can in return have an effect
on sensed information. Safety-critical attacks are intentional signal manipulations whose goal is
to cause undesired physical effects. When signals are manipulated before being handed to other
ECUs and actuators, the security property of integrity and authentication is violated. If there
is no canonical security solution guaranteeing that the communicated information from a sensor
or a command from an ECU is authentic, dependencies between signals may help the defender
to detect impossible or implausible sensor/command information. It becomes then possible to
build an approach to detect when communicated information is being maliciously manipulated.

The set of signals composed of sensor information and actuator commands define a par-
ticular state of the vehicle. There are certain dependencies and correlations between these
signals in the sense that they obey to causal relationships and/or are tied together to the
overall state of the vehicle. To grasp the concept of dependency, consider the following simple
examples: if the brake-lights-commands is activated, it usually means that the driver has

101

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

xu P (starget|xu, Dtrain,Mθ)

ML-Algo
Predictor

S1 ∼
S2 ∼
S3 ∼

Sd ∼

Spredicted
target ∼

Starget ∼

Attacker

CMP

Alarm (0/1)

Figure 5.3: Prediction principle

activated the brake pedal which in return means that if the vehicle is moving, it must be
decelerating. Similarly, if the gear-box position is on “Reverse” or the first speed, then its a
high indication that the vehicle speed is relatively small, but if it is on the fifth position, the
speed should be relatively high. Using these simple examples, we can already predict values
or confidence intervals of some signals depending on other signals and vehicle state.

However, we can find dependencies that are clear and intuitive, but also others that the
human mind cannot quite predict. This is where it is highly interesting to use machine learning
techniques. First because of their ability to catch linear as well as non-linear and complex
dependencies. Second, because they are able to build a model simply from a set of data inputs.
Thus the idea is to train machine learning algorithms to exploit these dependencies in order
to build a signal predictor (Spredictedtarget in Figure 5.3) for a target sensitive signal (Starget in
Figure 5.3) solely based on other signals ({S1, S2, . . . , Sd} in Figure 5.3). The principle is to
break down the payload information into signals according to the manufacturer proprietary
protocol and then to train a machine learning algorithm (“ML-Algo Predictor“ in Figure 5.3)
to predict the next signal value. We can then compare the predicted signal and the received
signal. Under the assumption that the predictor is accurate enough, we assume the following
as a security metric: if the difference between the prediction and the received value is large
enough, then, with a high probability, the signal is being maliciously manipulated. This means
that the vehicle is being attacked and that the predicted signal is the potential cause of the
attack. Figure 5.3 shows the principle of the proposed intrusion detection mechanisms.

The advantage compared to previous work is that during the training process the proposed
approach does not need data representing attacked and non-attacked states in order to learn
to recognize attacks. It needs only data representing the normal functioning of the vehicle in
order to build a nominal behavior. Deviations from this nominal behavior during monitoring
phase will then the considered as attacks.

102

5.3 Principle and problem formulation

Supervised Learning
Algorithm

Regression
Model

Classification
Model

Supervised
Signal

Real-valued
Signal

Categorical
Signal

Learns

Predicts

Figure 5.4: Model choice depending on the target signal type.

5.3.3 Mathematical formulation

In what follows we formulate our problem as a supervised machine learning problem. Let
D = {(xi, yi)}i∈[1,N] be the set of input-output pairs. Here D is the collected Data set, and N
is the number of observed examples. Each training input (xi)i∈[1,N] is a d-dimensional vector
of components representing signal values/states (s(1)

i , s
(2)
i , ..., s

(d)
i). These are called features

and are stored in an (N × d) matrix X. The output (yi)i∈[1,N] is stored in a 1-dimensional
vector y and represents the target signal that we want to predict. It can be either real-valued
(in this case we will talk about regression) or a categorical value (in which case we will talk
about classification), depending on the signal type (Figure 5.4).

The object of supervised machine learning is to assume the existence of some unknown
function < f > that maps the inputs to the outputs, as in (5.1).

f(x) = y, ∀(x, y) ∈ D (5.1)

During the learning process, the goal is to estimate the function < f > given a labeled
training set and then to make predictions on unseen data xu using the estimated function.
We denote by < f̂ > the estimate of the mapping function < f >.

Predicting the output yu given the input vector xu can be established with (5.2).

yu = f(xu) (5.2)

Since the mapping function < f > is not known, and we have an estimated mapping
function < f̂ >, an estimated output prediction ŷu with (5.3).

ŷu = f̂(xu) (5.3)

103

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

We denote the probability distribution over possible labels, given the input vector xu and
the training data set Dtrain by P (y|xu,Dtrain). This probability is conditional on the (unseen)
input vector xu and the training set Dtrain. Approximating the mapping function < f >
using a machine learning algorithm assumes the use of a machine learning model Mθ, where
M denotes the model, and optionally < θ > denotes the parameters of the model. Thus, the
probability distribution over possible labels becomes also conditioned by the chosen model,
P (y = ŷ|xu,Dtrain,Mθ).

5.3.4 Real-valued signal

Machine learning models that are adapted to predicting real-valued output are called regression
models. When using regression models, the estimated mapping function used for the prediction
introduces a residual error ε between the predictions and the ground truth (5.4), (5.5).

yu = ŷu + ε. (5.4)

f(xu) = f̂(xu) + ε. (5.5)

We make the hypothesis that the residual error term ε has a Gaussian normal distribu-
tion (5.6).

ε ∼ N(µ, σ2). (5.6)

More explicitly we will assume that the probability distribution over possible labels is as
follows (5.7):

P (y|xu,Dtrain,Mθ) = N(µθ(xu), σ2). (5.7)

In this context, building an estimate < f̂ > of the mapping function < f > boils down
to estimating the model parameters < θ >. Given a set of training data, model parameters
< θ > are estimated using the maximum likelihood estimator (MLE). MLE maximizes the
the probability of training data set Dtrain given the model parameters < θ > (5.8).

P (Dtrain|θ) =
N∏
i=1

P (yi|xi, θ) (5.8)

It is equivalent to finding the estimated model parameters θ̂ that minimizes the negative
log-likelihood which is the sum of residual errors

∑N
i=1(yi − ŷi)2 =

∑N
i=1 ε

2
i (5.9).

θ̂ = Argmin
θ

N∑
i=1

(yi − f̂θ(xi))2. (5.9)

Once optimal parameters θ̂ are estimated, the prediction model outputs a predicted signal
estimation ŷu = f̂θ̂(xu) for an unseen input vector xu. The received signal value yu is then
compared to the estimated signal value. An alert is raised if the two signals are not similar
i.e the difference is greater then a pre-defined threshold tp as in(5.10).

Alert = 1 ⇐⇒ |ŷu − yu| ≥ tp. (5.10)

104

5.4 Validation metrics

5.3.5 Categorical signal

Machine learning models that are adapted to predicting categorical output are called classifi-
cation models. When using classification models, where the output is one out of C classes, we
model the probability over possible labels with a categorical distribution. Let yij = I(yi = j)
be the one-hot encoding of yi. This probability is given by (5.11).

P (y|xu,Dtrain,Mθ) =
C∏
j=1

µθ,j(xu)I(y=j) (5.11)

Similarly, in order to estimate the classification model parameters < θ >, we use the
maximum likelihood estimator that maximizes the probability of training data set Dtrain

given the model parameters < θ > (5.12)

P (Dtrain|θ) =
N∏
i=1

P (yi|xi, θ) =
N∏
i=1

C∏
j=1

µθ,j(xi)I(yi=j) (5.12)

This is equivalent to minimizing the negative log-likelihood which is the cross entropy
function (5.13)

θ̂ = Argmin
θ

−
N∑
i=1

C∑
j=1

yij log(µθ,j(xi)). (5.13)

Once we have the optimal model parameters θ̂, for each unseen input vector xu, we make
a prediction in favor of the class where the probability distribution is the highest (5.14)

yu = Argmax
j∈[1,C]

(µθ̂,j(xu)) (5.14)

The received signal value yu is then compared to the estimated signal value. An alert is
raised if the two signals are not similar :

Alert = 1 ⇐⇒ ŷu 6= yu. (5.15)

5.4 Validation metrics
During the training process, the training data set is used to estimate model parameters as
explained in the previous section. Nevertheless, the optimal model parameters are computed
with respect to the training set. In order to see if the built model generalizes well, the goal is
to test it on a set of unseen data. Let Dtest = {(xui , yui)}i∈[1,Ntest] be the set of unseen data
used to test. Hereafter we introduce the metrics used in order to validate the nominal model
of a monitored signal < y >.

5.4.1 Regression metrics for real-valued signals:

Measuring how well a regression machine learning algorithm fits the training data is called
the regression accuracy of the algorithm (denoted as Accreg). For regression problems,
it is generally measured using the coefficient of determination R2. The R2 coefficient of

105

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

determination is a statistical measure of how well the regression predictions approximate the
observed target values. The closer it is to 1, the more accurate the prediction is. A coefficient
of determination of 1 indicates that the regression predictions perfectly fit the data. Values
of R2 outside the range [0, 1] can occur for instance when the wrong model was chosen, and
the model fits the data worse than a horizontal hyper-plane. We can express the prediction
accuracy with (5.16)

Definition 5.1. The accuracy of a regression learning algorithm is defined by (5.16).

Accreg = R2

= 1−
∑

(ŷi − yi)2∑
(yi − µy)2

= 1− σ2
ε + µ2

ε

σ2
y

(5.16)

Where:

• yi: is the ith ground truth target signal input,

• ŷi: is the estimated target signal given by f̂(xi),

• µy: is the mean of the ground truth signal y,

•
∑

(ŷi − yi)2: is the residual sum of squares between the ground truth target signal y
and the estimated signal ŷ.

•
∑

(yi − µy)2: is the total sum of squares,

• σ2
ε : is the standard deviation of the error term ε,

• µ2
ε: is the mean of the error term,

• σ2
y : is the standard deviation of ground truth signal y.

The accuracy will serve in order to compare between different machine learning models.
That is to say in order to pick and choose the best model adapted to the data. Intuitively,
comparing the quality of the predictors can be based on the mean and variance of the predic-
tion error ε. Ideally, the error has to be centered around zero (unbiased predictor) with the
smallest possible variance. In fact, the more precise the prediction, the smaller should be the
variance of the prediction error. The advantage of the coefficient of determination is that it
can accommodate the effect of both mean and variance of the error term (eq: 5.16).

Defining an intrusion detection system based on the predictor of a real-valued target signal
needs to set-up an acceptable deviation of the prediction that can be tolerated. The need
arises from the fact that it is basically impossible to make an exact prediction < ŷ > on the
target signal < y >. Nevertheless, we might consider that the prediction if good enough if it
is close enough to the target signal. It can be interpreted as a confidence interval on the error
term ε = (y − ŷ) (Figure 5.5). Beyond this acceptable deviation, the received signal can be

106

5.4 Validation metrics

Figure 5.5: Gaussian shaped prediction error

considered way off compared to the prediction, and an alarm should be raised. This acceptable
deviation or detection threshold tp for the predictor defines the false positives statistically
generated by the predictor (red bars in Figure 5.5). More formally we can define the false
prediction, as in (5.17).

Definition 5.2. A received signal yi is compared to the corresponding prediction value ŷi
generated by the predictor P . We say that ŷi is a false prediction of the signal yi if the
absolute value of the error term |εi| = |yi− ŷi| is greater then a predefined detection threshold
tp.

FPtp(yi, ŷi) =
{

1 if |yi − ŷi| ≥ tp,
0 if |yi − ŷi| < tp

(5.17)

Tweaking this parameter tp helps increase/decrease the false positives probability of the
intrusion detection rule that will be defined based on this predictor. The new accuracy
measure with respect to tp is given by (5.18).

Accregtp = P (|ε| < tp) (5.18)

Computing the accuracy Accregtp gives the false positive rate statistically generated by the
detection.

5.4.2 Classification metrics for categorical signals:

When the target signal is a categorical signal (y ∈ [1, C]), we formulated the problem as a
classification problem, and we can build a predictor using a classification machine learning
algorithm. Measuring how well a classification machine learning algorithm fits the training

107

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

data is called the classification accuracy of the algorithm (denoted as Acccls). The default
accuracy metrics used in machine learning classification tasks is the correct classification ratio.

Definition 5.3. The classification ratio of a classification machine learning algorithm is
defined by (5.19).

Acccls = # correct predictions
use-cases (5.19)

Where:

• # correct predictions : is the the number of correctly predicted signals ŷi = yi.

• # use-cases : is the number of test vectors included in the test set Dtest.

Unlike regression, for classification, it is straightforward to define a false prediction which
in this case is simply a misclassification. More formally we can define the misclassification
function as the following:

Definition 5.4. A received signal yi is compared to the corresponding prediction value ŷi
generated by the predictor P . We say that ŷi is a false prediction of the signal yi if the
predicted and the ground truth signal are not of the same signal class (5.20).

MC(yi, ŷi) =
{

1 if class(yi) 6= class(ŷi),
0 if class(yi) = class(ŷi).

(5.20)

5.5 Supervised learning algorithms
In this section, we introduce the supervised machine learning algorithms that were tested in
our work.

5.5.1 K-Nearest Neighbor

Supervised neighbors-based learning is a non-parametric machine learning technique. This
algorithm does not have a training step. It has only a prediction step (i.e. online monitoring).
The principle that underlies this technique is to make predictions of new observations based
on a number of training inputs closest in distance to the observation for some predefined
distance measure. In principle, the number of training inputs can be predefined (in this case
we talk about k-nearest neighbor learning) or vary based on the local density of points (in
which case we talk about radius-based neighbor learning). In addition, the distance can be
any metric measure, which opens the door to an infinity of possibilities although the Euclidean
distance is the most common choice and will be used in our experiments. Neighbors-based
methods are not memory efficient methods since they simply “remember” all of the training
data (that can be transformed into a fast indexing structure). Nevertheless, they have been
successful in a number of classification and regression tasks.

More formally, given training vectors xi ∈ Rn, i = 1, ..., l, and a label vector y ∈ Rl. Let
dist() be the selected distance function on Rn. As mentioned before, it is common to choose the
Euclidean distance, but depending on the task other distance functions may be more adequate.

108

5.5 Supervised learning algorithms

During prediction, given an unseen input vector xu, let {(xσ(1), yσ(1)), ..., (xσ(n), yσ(n))} be a
reordering of the training data such that condition (5.21) is satisfied for some permutation
function σ.

dist(xσ(1) − xu) ≤ ... ≤ dist(xσ(n) − xu) (5.21)

5.5.1.1 KNN for regression

Neighbors-based regression can be used in cases where the data labels are continuous rather
than discrete variables. The label assigned to an unseen input vector is computed based the
mean of the labels of its nearest neighbors. We can identify two different neighbors regressors
based on how to define the neighborhood of an unseen input:

• k-nearest neighbors, where the prediction is based on the k nearest neighbors of each
unseen input, where k is an integer value specified by the user. In this case, the label is
computed with the following (5.22).

yu = 1
k

k∑
j=1

yσ(j) (5.22)

• radius nearest neighbors, where the prediction is based on the neighbors within a
fixed radius r of the unseen input, where r is a floating-point value specified by the
user and is used to compute the set of neighbors training vectors Neighbors(xu) =
{xσ(j), dist(xσ(j)−xu) ≤ r}. In this case, the label is computed with the following (5.23).

yu = 1
card(Neighbors(xu))

card(Neighbors(xu))∑
j=1

yσ(j) (5.23)

5.5.1.2 KNN for classification

Neighbors-based classification can be used in cases where the target variable is discrete.
Classification of an unseen vector xu is computed from a simple majority vote of the nearest
neighbors of each point: an unseen input vector is assigned the data class which has the
most representatives within the nearest neighbors of the vector. Similar to regression, we
can identify two different neighbors classifiers based on how to define the neighborhood of an
unseen vector:

• k-nearest neighbors classification, where the prediction is based on the k nearest neighbors
of each unseen point, where k is an integer value specified by the user. In this case, the
label is computed with the following (5.24).

yu = Argmax
c

(
card{yσ(j) = c, j ≤ k}

k
) (5.24)

• radius nearest neighbors classification, where the prediction is based on the neighbors
within a fixed radius r of the unseen input vector, where r is a floating-point value
specified by the user and is used to compute the set of neighbors training vectors

109

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Neighbors(xu) = {xσ(j), dist(xσ(j) − xu) ≤ r} In this case the label is computed with
the following (5.25).

yu = Argmax
c

(
card{yσ(j) = c, j ≤ card(Neighbors(xu))}

card(Neighbors(xu))) (5.25)

Remark 8. Note that for both classification and regression, we introduced the KNN with
uniform weights. It can be advantageous, under some circumstances, to weight vectors such
that nearby points contribute more to the regression/classification than faraway points. This
may have a positive impact on the overall accuracy of the learning algorithm although the
weights will constitute hyper-parameters that will have to be tweaked.

Remark 9. In this thesis, we used k-nearest neighbor learning technique although the approach
would be the same for radius-based KNN.

Remark 10. Note that the goal is to build a detection rule that captures the nominal behavior
of a target signal with regards to the other input signals. The goal is also to build a rule that
can be implemented in an embedded system. The KNN algorithm needs to have access to the
training set Dtrain at the prediction time (i.e. online monitoring) which makes it not adapted
to be implemented in an embedded system as it will need significant memory resources in
order to store the training set. Nevertheless, we used the KNN algorithm in order to have a
reference accuracy to which we can compare other algorithms, as it gives very precise local
approximations.

5.5.2 Decision tree

Decision Trees are a non-parametric supervised learning method used for classification and
regression tasks. During the learning phase, the algorithm generates a set of if-then-else
decision rules through a recursive space partitioning procedure inferred from data features.
These rules are organized in a tree-like structure and then used to predict the value of a
target variable. This tree is then used during the prediction phase in order to assign a label
for an unseen input vector. The Tree is composed of interior nodes and leaf nodes. Each
interior node corresponds to one of the data features. Edges to children nodes represent each
of the possible values of the feature values. Each leaf node represents a value of the target
variable given the values of the features of the input vector from the root node to the leaf
node. Figure5.6 illustrates an example of a decision tree.

Constructing a decision tree (during training phase) consists in recursively partitioning
the training data space (until requested tree depth is reached) such that the samples with the
same labels are grouped. Decision tree algorithms usually work in a top-down fashion, by
choosing a feature at each step that best splits the set of input data.

Given training vectors xi ∈ Rn, i = 1, ..., l, and a label vector y ∈ Rl. Let the set of data
samples at node m be represented by Dm. The goal is to split the data Dm into two subsets
Dleft
m and Dright

m by building a split rule Φm = (j, tm) such as (5.26).{
Dleft
m (Φm) = (x, y)|xj ≤ tm

Dright
m (Φm) = Dm \Dleft

m (Φm) (5.26)

110

5.5 Supervised learning algorithms

RPM <= 9028.0
mse = 14580717.091

samples = 280000
value = 4266.155

RPM <= 8164.0
mse = 495353.338
samples = 109605
value = 296.838

True

Sifter <= 4.688
mse = 6987469.807
samples = 170395
value = 6819.381

False

Acceleration <= 174.5
mse = 182725.176
samples = 105050
value = 197.108

Sifter <= 1.688
mse = 2185850.984

samples = 4555
value = 2596.866

Torque <= 41.5
mse = 507754.087
samples = 17913
value = 715.06

Brakes <= 0.5
mse = 49420.94
samples = 87137
value = 90.632

(...) (...) (...) (...)

Acceleration <= 175.5
mse = 66790.952

samples = 841
value = 203.392

Sifter <= 7.156
mse = 1074736.7
samples = 3714

value = 3138.846

(...) (...) (...) (...)

Sifter <= 3.688
mse = 3184643.308

samples = 93364
value = 4897.26

RPM <= 11892.0
mse = 1691340.969

samples = 77031
value = 9149.052

Sifter <= 2.688
mse = 1682935.81
samples = 50533
value = 3732.035

RPM <= 14400.0
mse = 1464525.245

samples = 42831
value = 6272.02

(...) (...) (...) (...)

Sifter <= 5.688
mse = 1415074.011

samples = 34846
value = 8278.913

RPM <= 15572.0
mse = 777508.978
samples = 42185
value = 9867.811

(...) (...) (...) (...)

Figure 5.6: Example of a decision tree

For each node, we then compute an impurity function H(Dm) that indicates how pure or
impure the subset Dm is. It measures the homogeneity of the target variable within the subsets.
The choice of the impurity function H depends on the type of target variable (Regression or
classification) and will be detailed in section 5.5.2.1 and section 5.5.2.2. Finding the optimal
split rule Φm consists in maximizing the information gain Gain after the split ((5.27)).

Gain(Dm,Φm) = H(Dm)− (N
left
m

Nm
H(Dleft

m (Φm)) + N right
m

Nm
H(Dright

m (Φm))) (5.27)

Or minimizing The function G (5.28).

G(Dm,Φm) = N left
m

Nm
H(Dleft

m (Φm)) + N right
m

Nm
H(Dright

m (Φm)) (5.28)

The optimal split rule is then given by (5.29).

Φ∗m = Argmin
Φm

(G(Dm,Φm)) (5.29)

Thus, building a decision tree from a set of training data Dtrain consists in finding the
best split for subsets Dleft

m (Φ∗m) and Dright
m (Φ∗m) in a recursive fashion until the requested tree

depth is reached, the sets are pure or the size of the set is Nm = 1 or Nm < Nmin.

5.5.2.1 Regression Trees

Decision trees where the target variable y can take continuous values (typically real numbers)
are called regression trees. In this case, a common criteria to minimize used for determining
the best split rule is the Mean-Squared-Error, which minimizes the L2 error using mean values
at leaf nodes. Let Dm be the set of Nm observations at node m. We denote by cm the mean
of the target value computed over the input vectors of node m (5.30).

cm = 1
Nm

∑
(xi,yi)∈Dm

yi (5.30)

111

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

The impurity function used is the mean squared error (5.31).

H(Dm) = 1
Nm

∑
(xi,yi)∈Dm

(yi − cm)2 (5.31)

5.5.2.2 Classification Trees

Tree models where the target variable y can take a discrete set of values are called classification
trees. In these tree structures, leaves represent class labels. When dealing with a classification
task with K classes, the target variable takes values in [1,K]. Let Dm be the set of Nm

observations at node m. We denote pm,k the proportion of class k observations in node
m (5.32).

pm,k = 1
Nm

∑
xi∈Dm

I(yi = k) (5.32)

A common impurity function used is the cross-entropy defined as follows (5.33).

H(Dm) = −
∑
k

pm,k log(pm,k) (5.33)

Remark 11. Note that Dm is a subset of the training data set D, that can be the result of a
previous data partitioning Dleft/right

parent(m) at parent node level for some optimal partitioning rule
Φ∗parent(m).

Remark 12. The decision tree algorithm is very efficient in making predictions (i.e. during
monitoring) once the tree structure has been constructed. In fact, given the decision rules
structured in a tree structure, it can quickly go through the tree in order to assign a label to
the unseen input vector.

5.5.3 Artificial Neural Network

Unlike previously introduced machine learning algorithms, Artificial Neural Network is a
parametric supervised learning technique inspired by the biological neural network. These
types of algorithms are usually modeled as an interconnected group of artificial neurons with
a graph where nodes represent neurons and arcs represent connections between neurons.

The mathematical model of the neuron is an activation function also called perceptron.
Each perceptron has multiple inputs and one output. The output is a non-linear function of a
weighted sum of the inputs. A special sub-class of ANN is the feed-forward neural networks.
In this sub-class, connections between the nodes do not form a cycle. Under this assumption,
the information moves in only one direction, forward, from the input nodes, through the
hidden nodes (if any) and to the output nodes. Figure 5.7 is an example of a feed-forward
neural network. The leftmost layer, known as the input layer, consists of a set of neurons
{si|s1, s2, ..., sm} representing the input features. Each neuron in the hidden layer transforms
the values from the previous layer with a weighted linear summation w1s1 +w2s2 + ...+wmsm,
followed by a non-linear activation function g(·) : R→ R. The output layer receives the values
from the last hidden layer and transforms them into output values.

112

5.5 Supervised learning algorithms

Figure 5.7: Illustration of a feed-forward artificial neural network structure with an input layer,
one hidden layer, and an output layer.

Multi-layer Perceptron (MLP) is a feed-forward neural network with at least one hidden
layer of perceptrons. Given training vectors xi ∈ Rn, i = 1, ..., l, and a label vector y ∈ Rl, it
can learn to approximate a non-linear mapping function f(xi)→ yi for either classification or
regression task.

Multiple non-linear activation functions were used in different applications of neural
networks. The most popular ones are:

• Logistic activation function
g(x) = 1

1 + e−x
(5.34)

• Rectified linear unit (Relu):

g(x) =
{

0 for x < 0
x for x ≥ 0 (5.35)

• Hyperbolic tangent (tanh):

g(x) = ex − e−x

ex + e−x
(5.36)

Given a set of training vectors Dtrain = {(x1, y1), (x2, y2), ..., (xl, yl)} where xi ∈ Rn and
yi ∈ R, a one hidden layer one hidden neuron MLP (Figure 5.8) learns the function (5.37).

f(xi) = g(W T
1 xi + b1) = yi (5.37)

Where W1 ∈ Rn and b1 ∈ R are model parameters. W1 represent the weights of the input
layer, and b1 represent a bias term added to the hidden layer. g : R → R is the activation
function, typically one of the functions introduced previously in this section.

Putting all together, suppose we have a complex MLP structure (Figure 5.9) with n input
feature, and k hidden layers. Each hidden layer j has pj (j ∈ [1, k]) neurons and computes a

113

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

xi W1

1

xi,1

...

xi,n

b1

w1
1

w1
n

g g(WT
1 .X + b1)

Figure 5.8: One hidden neuron

Xi W1 H1 Hj Hk O yi

1

xi,1

xi,2

.

.

.

xi,n

1

g

g

.

.

.

g

1

g

g

.

.

.

g

1

g

g

.

.

.

g

o() f(x)

Figure 5.9: Multilayer perceptron structure

vector of values Hj = [hj,1, ..., hj,pj]T . Values of layer (j) are computed based on values of
layer (j − 1). We denote Wj the matrix of weights between layer (j − 1) and layer (j) . Wj

is a (pj−1 by pj) matrix, and we denote Bj the vector of bias terms (Bj = [bj,1, ..., bj,pj−1]).
The following set of equations holds (5.38)

H1 = g(B1 + (W1)TX)
Hj = g(Bj + (Wj)THj−1) for 2 ≤ j ≤ k
f(x) = o(Bk +W T

k Hk)
(5.38)

The MLP structure with the non-linear activation function as perceptron and the weights
yields a set of mathematical functions. The hypothesis when using a particular MLP structure
is that the ground-truth mapping function will be approximated in the set of functions that
can be represented by the MLP structure.

114

5.5 Supervised learning algorithms

5.5.3.1 MLP for Regression

Multi-layer Perceptron can be used for regression when the target variable y can take continuous
values (typically real numbers). In this case, the activation function of the output layer is the
identity function. Moreover, it is customary to make the hypothesis that the error function
follows a Gaussian distribution. Which leads us (a explained in section 5.4) to define the
squared error as the error function to be minimized (5.39) in order to find the optimal weights.

Ŵ =Argmin
W

(
N∑
i=1

(yi − ŷi)2)

=Argmin
W

(
N∑
i=1

ε2
i)

(5.39)

where: ŷi = fW (xi)

Starting from initial random weights, multi-layer perceptron (MLP) minimizes the error
function by repeatedly updating these weights. After computing the error, a backward pass
propagates it from the output layer to the previous layers, providing each weight parameter
with an update value meant to decrease the error.

5.5.3.2 MLP for Classification

Multi-layer Perceptron can be used for classification tasks when the target variable y takes
discrete/categorical values. For instance, the target variable y can take binary values in {0, 1}.
In this case the output fW (x) is passed through the logistic function g(z) = 1/(1 + e−z)
that outputs values between zero and one. These values are interpreted as probabilities
for the corresponding class. A threshold (set to 0.5 for instance), would assign samples
of outputs larger or equal 0.5 to the positive class (1), and the rest to the negative class
(0). On the other hand, if the target variable represents more than two classes, typically
in [1,K],with K ≥ 3, then the output fW (x) should be a vector [z1, ...zK] of size K, where
each component represents one of the K classes of the target variable. In order to make a
prediction in favor of one of the classes, it is passed through the Softmax function which is
expressed as (5.40).

Softmax(fW (x))i = exp(zi)∑K
l=1 exp(zl)

(5.40)

The Softmax function transforms the input vector into a probability vector which com-
ponents sum up to one (5.41). The ith component represents the probability that the input
vector x results in a target variable y in class i ∈ [1,K]. The predicted class is then the one
with the highest probability.

K∑
i=1

Softmax(fW (x))i = 1 (5.41)

115

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

The error function for classification is the Cross-Entropy, which in the binary case is given
by (5.42).

Ŵ =Argmin
W

(−y ln ŷ − (1− y) ln (1− ŷ)) (5.42)

Remark 13. Note that the activation functions introduced previously and that constitute the
perceptron are non-convex functions. It follows that MLP with hidden layers has a non-convex
error function defined as the difference between the desired output of the MLP structure
and the actual output. This holds both for regression and classification MLP structures.
The optimization process uses the learning procedure called back-propagation [111] with a
minimization algorithm such as stochastic gradient descent (SGD). This is a limitation, as
during the minimization process SGD can run into a local minimum. However, in practice
gradient descent usually works reasonably well. For this reason, MLP approximation requires
multiple runs with random initialization. The advantage nevertheless is that the MLP structure
based on the non-linear functions as defined previously can learn non-linear dependencies.

5.6 Data collection and feature engineering

5.6.1 Experimental set-up

In order to provide training vectors, the best way is to collect data directly from a real
vehicle. For this purpose, we prepared a CAN acquisition device. The device is composed
of a Raspberry-Pi1 with additional CAN-Bus hardware module running a Linux kernel with
SocketCAN [75] drivers. The CAN hardware communicates with the Raspberry-Pi over SPI2
communications. We made sure that the Raspberry-Pi has enough storage space in order to
save the logs locally.

We equipped a vehicle with the acquisition device connected directly to different CAN
buses in order to have direct access to all sensor information, although not all of them will be
used during the training phase. Figure 5.10 gives an overview of the prepared experimental
set-up.

Remark 14. Note that one of the issues that may arise with regards to our set-up is that
receiving data with a Raspberry-Pi through SPI may lead to issues in receiving the total data
transmitted over the CAN network if the band usage of the CAN network is too high. In our
case, the throughput of the CAN network configuration allows 500 kbit/s. The CAN Hardware
uses the MCP2515 [8] Stand-Alone CAN Controller With High-speed SPI Interface (configured
at 10 MHz). The raspberry-Pi board also implements a high-speed SPI interface, which means
that the SPI interface in our case allows much more data throughput than the CAN interface.

5.6.2 Data collection

Data collection procedure is quite complicated. It is essential to have data representing all
situations of the vehicle in order to be able to capture the nominal behavior in all those
use-cases. We identified two factors that could potentially influence the collected data.

1Raspberry-Pi: https://www.raspberrypi.org/
2SPI: The Serial Peripheral Interface is a synchronous Master/Slave serial communication interface

specification used for short distance communication, primarily in embedded systems.

116

5.6 Data collection and feature engineering

Drive Test

Acquisition Device

User-1 User-2 User-3 Log-1 Log-2 Log-3

Figure 5.10: Illustration of the data acquisition plateforme

1. The Driving circuit: this includes for instance if the vehicle is on a highway, city circuit,
parking lot, This nature of the circuit can put the vehicle into multiple different
legitimate states that need to be captured.

2. The driving behavior: this can include different driving styles and different states and
moods of the driver that naturally influence the input sensors and commands triggered
by the driver.

We collected CAN traces from one vehicle for three different drivers, driving in different
circuits for about 90 minutes each. Circuits consisted of multiple driving conditions including
city driving, vehicle parking, highway driving, During those data collections, drivers were
asked to drive normally but also to perform rare but legitimate scenarios like activating cruise
control, activating lane keep assist, activating emergency breaking, For safety reasons, no
attacks were performed during data collections step.

The total amount of data collected is about 106 CAN messages for each driver. Moreover,
when receiving the CAN messages, for each received frame, we log the reception time-stamp,
identifier, and payload content. In order to verify the integrity of the collected data and
make sure that messages were not lost, we run some integrity verification tests. Integrity
verification tests are designed to make sure that the manufacturer protocol with regards to
message syntax (mainly Identifiers and DLCs) are respected as well as the periodicity of the
messages is also respected.

117

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

5.6.3 Feature engineering

After raw data acquisition, the second step consists in preparing the data for processing. In
this step, the goal is to select and arrange the features in a form that would be useful during
the training step. Each CAN identifier sent over the CAN bus has a payload that is composed
of one or multiple signals. Recall that a signal is a piece of information (sensor value, ECU
state, counter, checksum, . . .) that can occupy one or multiple bits or bytes depending on the
nature of the information. Extraction of signals requires the knowledge of the proprietary
protocol of the car manufacturer. Signals included in the payload for safety reasons, like
checksums, process counters, duplicated signals, are checked by safety functions and problems
with those signals, if any, would be handled by appropriate safety mechanisms. Thus, they
are not relevant for this task and therefore are not selected. Typically we are interested in
physical sensor values like speed, acceleration, RPM, etc. . . .

The set of those signals defines the state of the vehicle and constitutes the input features
that are relevant for learning the normal behavior and evolution of the car states. The second
selection criterion is the relevance with respect to the target signal. In fact, the dimensionality
of the training vectors equals the number of selected signals. However, in general, machine
learning algorithms do not work well with high dimensional inputs. Indeed, as input vectors
dimensions grow, the performance deteriorates, due to the curse of dimensionality. As a result,
we choose to select only a signal with a high correlation with the target signal. For instance,
the engine oil temperature does not influence the vehicle speed, thus would not be selected
when building a predictor for the speed signal. On the other hand, the acceleration of the
vehicle is highly correlated to the speed of the vehicle. Thus it will be selected as an input
to predict the speed. Using this selection criterion, we can guarantee that signals that can
explain the most the target signal are used for prediction.

Signals are featured in the form of a matrix where columns represent signals and lines
represent signal values evolution over time. For each received CAN message that holds selected
signal, a new line is added to the matrix where all signals keep their previous values/states
except the one that has just been received. Figure 5.11 gives more details about how to
construct the features matrix.

Log File

0X0B9 - S1 xx xx xx xx xx

0X0FA - xx S2 xx xx xx xx

0X320 - S3 S4 xx xx xx xx

0X0B9 - S1 xx xx xx xx xx

0X48A - xx xx xx xx xx S5

Log File Parser Feature Matrix

S2 S3 S4 S5

S2 S3 S4 S5

S2 S3 S4 S5

S2 S3 S4 S5

S2 S3 S4 S5

Target signal

S1

S1

S1

S1

S1

Update S1

Update S2

Update S3 & S4

Update S1

Update S5

Figure 5.11: Parsing the log file and building the training data.

118

5.7 Experimental validation and discussion

5.7 Experimental validation and discussion
In order to validate the approach, we conduct some experiments to predict two target signals,
one of each type (categorical and real-valued), using five selected input signals. To this end, a
total of six signals were extracted from the CAN logs. For each target signal, the remaining
five were used as input features.

• Speed, is a real-valued signal sent from the Electronic Stability Program (ESP) and
that is generated by an embedded speed sensor. Hereafter denoted < SSpeed >.

• Acceleration, is a real-valued signal that is sent from the Electronic Stability Program
(ESP) and generated by an acceleration sensor. Hereafter denoted < SAcceleration >.

• Engine rotational speed expressed in revolutions per minute (RPM), is a real-valued
signal sent by the Engine Control Module (ECM). Hereafter denoted < SRPM >.

• Torque, is a real-valued signal sent by the Engine Control Module (ECM) that contains
the engine torque. Hereafter denoted < STorque >.

• Shifter position, is a categorical signal sent by the Electronic Shifter Module (ESM),
that indicates the gear lever position. Hereafter denoted < SShifter >.

• Brake lights command is a categorical signal that is sent from the Electronic Stability
Program (ESP) module to control brake lights. Hereafter denoted S<Brake−lights>.

Experimental validation is conducted in two steps:

1. First we train and evaluate the detection rules using collected data and without perform-
ing any attacks. In terms of intrusion detection, this step gives us the True Negative
rate. The True Negative rate is defined hereafter as the accuracy (Acc) of the supervised
learning algorithm, which was formally introduced in the section 5.4. The False Positive
rate is then derived from the accuracy and equals (1−Acc).

2. Then we conduct an attack campaign and measure how many of the performed attacks
are detected. This step gives us the True Positive rate and the False Negative rate.

Table 5.1 defines the metrics that will be used in the sequel.

Table 5.1: Detection metrics

Detected Not-detected
No-attack FP = 1−Acc TN = Acc
Attack TP FN

5.7.1 Predicting a real-valued signal

5.7.1.1 Speed signal

For regression problems, we chose to validate the approach we described in previous sections
on a signal that is important from a safety standpoint. The speed information is sent by the

119

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Electronic Stability Program (ESP) over the CAN bus for the other ECUs to be used in other
functions. Besides being displayed for user-information, it is used to compute the effort to be
applied on brakes when emergency brakes are activated, to decide when to activate airbags in
case of an accident, also to decide if the car doors should be open or closed, and whether or
not to accept diagnostics commands and a lot of other safety-critical functions.

5.7.1.2 Capturing nominal behavior of the speed signal

We use the previously introduced supervised learning algorithms in order to capture the
nominal behavior of the speed signal. We use five different input signals featured in an input
vector as in (5.43).

(SAcceleration, SRPM , STorque, SShifter, SBrake−lights) (5.43)

In order to be able to predict the label of the speed signal < SSpeed > of an unseen input
vector, the problem is to estimate the probability expressed in (5.44).

P (Sspeed|(SAcceleration, SRPM , STorque, SShifter, SBrake−lights)) (5.44)

In the performed experiments, the goal is to compare between different machine learning
algorithms, as each algorithm has a different way of capturing dependencies between input
features and the target signal. We used a data set of 106 input vectors from each drive test.
The data set was split into a training set and a test set of 0.7 and 0.3 size ratio respectively.
All experiments are done with the Scikit-learn library [105].

In the first experiment, we train and evaluate detection rules for each driver separately.
We used four types of machine learning algorithms: k-nearest neighbors (KNN), Decision
Tree, Neural-Network with logistic perceptron and Neural-Network with rectified linear unit
(Relu) perceptron.

Remark 15. Note that for each type of machine learning algorithms, there are some tuning
parameters to be set. For example, when using KNN, we have to choose the number of
neighbors to be considered, for Decision Tree, we have to choose the depth of the tree, and for
Neural-Network we have to choose the number of hidden layers and neurons in each layer.
These parameters have an effect on the complexity of the prediction and give the algorithms
more capability to capture more complex dependencies.

Remark 16. In order to set-up the learning algorithms parameters, we adopt the following
approach: First, we start with the less complex configuration, and then we change the parame-
ters progressively and compare the evolution of the accuracy. For instance, this consists in
increasing the depth of a decision tree or in increasing the number of neurons and layers for
neural networks and capture the accuracy then pick and choose the best configuration.

KNN: As mentioned before, the KNN algorithm is used in this context in order to establish
a reference accuracy to compare other algorithms as it is expected to give precise predictions
based on local approximations. It cannot be implemented in an embedded system because of
its memory needs. We tested different instances of the algorithm by progressively increasing

120

5.7 Experimental validation and discussion

the number of neighbors to be used for the prediction. The goal is to find the optimal number
of neighbors for which the accuracy is maximized. Figure 5.12 and Figure 5.13 report the
evolution of the accuracy of the prediction model and the True Negative rate respectively.
Figure 5.14 and Figure 5.15 report the evolution of the prediction error mean and standard
deviation respectively.

Figure 5.12: Accuracy (Accreg %) of KNN
algorithm as a function of the number of neigh-
bors

Figure 5.13: Accuracy (Accreg
tp

%) of KNN
algorithm as a function of the number of neigh-
bors

Figure 5.14: Mean of the prediction error µε

of KNN algorithm as a function of the number
of neighbors

Figure 5.15: Standard deviation of the pre-
diction error σε of KNN algorithm as a func-
tion of the number of neighbors

These results show that as the number of considered neighbors increases, the accuracy
(respectively the True Negative rate) decrease. The tendency is reflected in the mean and
standard deviation evolution. As the number of neighbors increases, the predictor becomes
biased and imprecise.

Linear Regression: Training a detection rule to monitor the speed signal SSpeed with linear
regression is straight-forward. There are no hyper-parameters to change that can increase the
algorithm capacity to capture more dependencies. The dependencies that can be captured

121

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

with Linear-Regression are linear regressions. Results are given in Table 5.2 for the one driver.
These results are averaged over ten runs each time with a random selection of training and
test vectors.

Table 5.2: Linear Regression detection rule [results are averaged over 10 runs]

Algorithm Accreg[%] Accregtp [%] Error Mean Error Standard deviation
µε σε

Linear Regression 85.51 36.38 −0.0055 14.53

Results show that the linear regression completely fails at predicting with high accuracy
the speed signal. Even though the statistical accuracy (Accreg) of the algorithm exceeds 85%,
we can see that within the interval [−5, 5] km/h, the True positive rate is about 36% which is
very low. This can be explained by the fact that the standard deviation is high (14 km/h).
We conclude that the set of input features and the target signal do not have strong linear
dependencies that allow to make a precise prediction on the target signal given the input
vector.

Decision Tree: We evaluate the decision tree algorithm against data collected from the
first driver. Gradually increasing the tree depth allows the tree structure to capture more
data dependencies. The Accuracy (Accreg) of the prediction algorithms are represented in
figure 5.16. The accuracy in the interval [−5, 5] km/h is given in figure 5.17. The error mean
< µε > and standard deviation < σε > are given respectively in figure 5.18 and figure 5.19.

The first observation that we can make is that as the tree depth increases, the accuracy
Accreg of the machine learning algorithm improves. With a tree depth of only 2 we already
have 88% accuracy. It exceeds 99% accuracy for a tree depth of 10 and 99.9 for a tree depth
of 40. The accuracy Accregtp at [−5, 5] km/h which is the True Negative rate of the detection
rule, also improves as the tree depth increases. It is nevertheless always below the accuracy
of the machine learning algorithm. For instance, the accuracy of a tree with a tree depth
of only 2 equals to 53%. This can be explained by the evolution of the mean and standard
deviation of the prediction error. In fact, in figure 5.19 we can see that the standard deviation
at the start is quite significant (12 km/h), this explains the low True Negative rate (high
False Positive) as a high number of predictions lie outside the acceptable deviation interval
([−5, 5] km/h). The standard deviation nevertheless converges to 0.4 km/h as the tree depth
reaches 40. At the same time, the mean also stabilizes at around zero.

Neural Network with Logistic perceptron: Similar to the previous supervised learning
algorithms, we use Neural-Network with logistic perceptron to capture dependencies between
input features and evaluate how well it can predict the speed signal. However, setting up the
structure of the neural network is not intuitive. We have to specify the number of hidden
layers as well as the number of neurons in each layer. To the best of our knowledge, there
are no specific guidelines to follow in order to define the structure. Our approach is purely
empirical. We start with the simplest possible structure which is a neural network with one
hidden layer that contains one neuron. Then at first, we start to progressively increase the

122

5.7 Experimental validation and discussion

Figure 5.16: Accuracy (Accreg %) of deci-
sion tree algorithm as a function of the tree
depth

Figure 5.17: Accuracy (Accreg
tp

%) of deci-
sion tree algorithm as a function of the tree
depth (tp = ±5 km/h): True Negative.

Figure 5.18: Mean of the prediction error
µε of decision tree algorithm as a function of
the tree depth

Figure 5.19: Standard deviation of the pre-
diction error σε of decision tree algorithm as
a function of the tree depth

number of neurons in the layer until we reach optimal accuracy. Then we proceed with the
same strategy in defining the number of layers.

Remark 17. Recall that the error function to be minimized by during the training of a neural
network structure is non-convex. This means that the optimization algorithm may run into a
local minimum. In order for the optimization process to come to an end at some point, we
need to set-up a tolerance parameter against which we check the relative error improvement.
If the prediction error does not improve more than the tolerance, then the convergence is
considered to be reached, and the training stops. In our experiments we set-up this parameter
to 10−4.

Figure 5.20 and figure 5.21 show the accuracy of the learning algorithm and the true
negative rate evolution as the number of neurons in the first layer increase respectively.
These results show that as the number of neurons in the first layer increases, the accuracy
(respectively the True Negative rate) increases. The accuracy reaches 99%, and the true

123

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Figure 5.20: Accuracy (Accreg %) of Neural-
Network with logistic perceptron algorithm
as a function of the number of neurons in the
first layer.

Figure 5.21: Accuracy (Accreg
tp

%) of Neural-
Network with logistic perceptron algorithm
as a function of the number of neurons in the
first layer.

Figure 5.22: Mean of the prediction error
µε of Neural-Network with logistic perceptron
algorithm as a function of the number of neu-
rons in the first layer.

Figure 5.23: Standard deviation of the pre-
diction error σε of Neural-Network with logis-
tic perceptron algorithm as a function of the
number of neurons in the first layer.

positive rate reaches 95%. These accuracies stabilize at nearly ten neurons. The tendency is
reflected in the mean and standard deviation evolution represented respectively in figure 5.22
and figure 5.23. The mean error stabilizes around 0 km/h, and the standard deviation around
2.5 km/h. Thus, if the structure holds more than ten neurons in the first layer, the complexity
of the algorithm is increased, but the accuracy does not get better.

Neural Network with Relu perceptron: In this test, we use Neural-Networks with
rectified linear units (Relu) perceptron to capture dependencies between input features and
evaluate how well it can predict the speed signal. Similarly, the goal is to see how the accuracy
evolves when the structure (number of layers and neurons) is modified.

Figure 5.24 and figure 5.25 show the accuracy of the learning algorithm and the true

124

5.7 Experimental validation and discussion

Figure 5.24: Accuracy (Accreg %) of Neural-
Network with Relu perceptron algorithm as a
function of the number of neurons in the first
layer.

Figure 5.25: Accuracy (Accreg
tp

%) of Neural-
Network with Relu perceptron algorithm as
a function as a function of the number of
neurons in the first layer.

Figure 5.26: Mean of the prediction error µε

of Neural-Network with Relu perceptron algo-
rithm as a function of the number of neurons
in the first layer.

Figure 5.27: Standard deviation of the pre-
diction error σε of Neural-Network with Relu
perceptron algorithm as a function of the num-
ber of neurons in the first layer.

negative rate evolution as the number of neurons in the first layer increase respectively. Similar
to the logistic perceptron structure, these results show that as the number of neurons in
the first layer increases, the accuracy (respectively the True Negative rate) increases. The
accuracy reaches 99.5% and the true positive reaches 95.5%. The accuracy of the learning
algorithm starts stabilizing at nearly three neurons, but the true positive rate continues to
grow and stabilizes at nearly ten neurons. It can be explained by the fact that the standard
deviation (figure 5.27) stabilizes also at nearly 10 neurons by reaching 2.6 km/h while the
mean (figure 5.26) stabilizes at 3 neurons around 0 km/h It seems that similar to logistic
perceptron if the structure holds more then ten neurons in the first layer, the complexity of
the algorithm is increased, but the accuracy does not get better.

Remark 18. The effect of using multiple layers in the neural network structure is reported

125

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

in table 5.3.

Overall results for three drivers: Table 5.3 reports accuracy and true negative rate
results of the different tested algorithm for three different drivers. The goal of testing the
learning algorithms on different data sets captured from different drivers is to establish if they
have similar performances or if the performances depend on the driving behavior.

Table 5.3: Prediction accuracy of detection rules for tp = ±5 km/h trained and tested with data
captures from three different drive tests

ML-Algorithm Tuning Driver 1 Driver 2 Driver 3
Accreg Accregtp Accreg Accregtp Accreg Accregtp

KNN regression k = 1 99.97 99.66 99.97 99.77 99.66 99.22
KNN regression k = 2 99.97 99.78 99.97 99.82 99.71 99.40
KNN Reg k = 3 99.97 99.76 99.97 99.78 99.71 99.40
Linear Reg Null 85.51 36.38 83.47 22.61 74.42 59.89
Decision Tree depth = 10 99.71 98.19 99.67 98.39 98.58 96.17
Decision Tree depth = 20 99.97 99.89 99.97 99.93 99.67 99.29
Decision Tree depth = 40 99.97 99.92 99.97 99.96 99.77 99.59
NN (Logistic) 1 Layer, 30 neurons 98.97 94.74 98.22 88.52 75.67 84.94
NN (Logistic) 1 Layer, 35 neurons 98.96 94.90 98.35 88.95 80.38 83.02
NN (Logistic) 1 Layer, 40 neurons 99.01 94.76 98.62 88.66 82.10 84.97
NN (Logistic) 1 Layer, 80 neurons 99.15 94.74 99.07 92.58 97.54 94.20
NN (Relu) 1 Layer, 10 neurons 99.31 92.82 99.11 87.91 97.26 92.52
NN (Relu) 1 Layer, 20 neurons 99.25 92.44 99.35 93.58 97.32 92.55
NN (Relu) 1 Layer, 40 neurons 99.36 93.75 99.29 92.42 97.61 93.65
NN (Relu) 5 Layer, 10 neurons 99.53 95.19 99.46 94.52 97.67 94.11
NN (Relu) 10 Layers, 10 neurons 99.55 95.36 99.55 95.37 98.37 95.90

First, we recall that the results of KNN are merely provided as a baseline. In fact, using
KNN is advantageous as it gives a very precise local approximation for dense and uniform
distribution of the training set. It is nevertheless not useful in the context of embedded
systems as it needs all the training data in memory in order to make a prediction. Second,
we note that each algorithm performs approximately similarly on the three drivers. Third,
we confirm the previous observation that for a given algorithm, we note that as we increase
the complexity (tuning parameters) of the learning algorithm, the accuracy improves for
all the drivers. The rule becomes progressively able to capture more dependencies. As a
result, it becomes necessary to take into consideration the added complexity compared to
the gain in accuracy. For the decision tree algorithm, changing the tree depth from 20 to 40
does not improve the accuracy significantly. Similarly increasing the number of neurons in
the Logistic-Neural-Network up to 80 neurons, and increasing the number of layers in the
Relu-Neural-Network up to 10 layers does not have a significant effect on the accuracy for
all three drivers. We conclude that as the complexity of the algorithm increases, its ability
to capture more dependencies also increases, but reaches a certain limit beyond which it is
no longer advantageous to increase the complexity. Overall, and for all three drivers, we can
establish that the best results were reported for the decision tree algorithm tuned with a

126

5.7 Experimental validation and discussion

depth parameter equals 40.

5.7.2 Predicting a categorical signal

5.7.2.1 Brake lights command signal

For classification problem, we choose to validate the approach on the brake-lights-command
categorical signals. This signal is sent from the Electronic Stability Program (ESP) module
to control brake lights (actuator). It is encoded on only 1 bit and sent over a periodic frame
to the actuator. When the driver is pushing the brake pedal, the ESP module sends the
brake− lights− command = 1 command. Otherwise it send brake− lights− command = 0.
On reception, the actuator knows if yes or not it should activate the brake lights.

Statistically, the occurrence of the commands throughout a circuit is not balanced, the
reason behind that the brakes are activated occasionally. However, in general, the probability
depends on the circuit itself. For instance, on a highway, it is less likely to activate the brakes.
In city driving this probability increases. In order for the accuracy metric to make sense, test
data should be balanced, i.e., the number of test vectors should be roughly the same for each
class. Otherwise, the results can be misinterpreted and do not reflect real performances of the
used algorithms [107].

5.7.2.2 Capturing nominal behavior of the brake-lights-command signal

We use the previously introduced supervised learning algorithms in order to capture the
nominal behavior of the brake-lights-command signal. We use five different input signals
featured in an input vector as in (5.45).

(SSpeed, SAcceleration, SRPM , STorque, SShifter) (5.45)

The goal is to estimate the label distribution of the brake-lights-command signal <
SBrake−lights > given the input vector, i.e., the problem is to estimate the probability expressed
in (5.46).

P (SBrake−lights|(Sspeed, SAcceleration, SRPM , STorque, SShifter)) (5.46)

In the performed experiments, the goal is to compare different classification machine
learning algorithms. We used a data set of 106 input vectors from each drive test that we
balance first. The resulting data set was split into a training set and a test set of 0.7 and 0.3
size ratio respectively. All experiments are done with the scikit-learn library [105].

KNN: We test the KNN algorithm with multiple values of the number of neighbors consid-
ered (k) increased progressively in order to establish a reference accuracy. The goal is to find
the optimal number of neighbors for which the accuracy is maximized. Figure 5.28 reports the
evolution of the accuracy of the prediction model that also corresponds to the True negative
rate. These results show that as the number of considered neighbors increases, the accuracy
decrease. Even though the difference between using one neighbor and ten neighbors is only
0.04%, the tendency is clear, and we establish that there is no need to increase the number of
neighbors.

127

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Figure 5.28: Accuracy Acc of the KNN classification algorithm as a function of the number of
neighbors

Logistic regression: When testing the logistic regression algorithm, there are no hyper-
parameters to optimize. Table 5.4 reports the resulting accuracy of the logistic regression
algorithm tested on the first driver. Given an accuracy of only 93%, we can establish that this
algorithm is not adapted to predicting the brake-lights-command signal from the given input.

Table 5.4: Logistic Regression detection rule

Algorithm Acc[%]
Logistic Regression 93.68

Decision Tree: We use the classification Decision Tree algorithm in order to predict the
brake-lights-command signal. Similar to the previous test, we evaluate the evolution of the
prediction accuracy as the tree depth increases. Figure 5.29 show the obtained results. We can
see that as the allowed tree depth increases, the accuracy improves. The algorithm becomes
progressively able to capture more dependencies between input data that makes it able to
predict better the target signal. This accuracy reaches a limit of 99.3%. Starting from a tree
depth of about 20, the accuracy does not seem to improve anymore. In this case, only the
complexity of the tree increases but not the performance. Nevertheless, as it is showed later
in Table 5.5 may depend on the driver’s behavior.

Neural network with logistic perceptron: Similar to regression tests, we use the classi-
fication Neural-Networks with logistic perceptron to predict the brakes-lights-command signal.
For the first test, we start with only one layer, and we increase the number of neurons in
the first layer progressively and evaluate the evolution of the prediction accuracy on the first
driver. Figure 5.30 shows that the accuracy improves as the number of neurons in the first
layer increase. It seems to reach a limit between 96% and 96.5% accuracy for a number of
neurons of 10 neurons. When increasing the number of neurons beyond 10 this accuracy does
not improve any more. Note that the curve is wiggly. It is due to the fact that the final result

128

5.7 Experimental validation and discussion

Figure 5.29: Accuracy Acc of the decision tree classification algorithm as a function of the tree
depth

for each test depends on the start parameters (weights) of the neurons structure and the fact
that the minimization solver can run into local minima. Note also that for only one neuron
we get the same result obtained in logistic regression (i.e. 93%). In fact, a neural network
with one layer one neuron is equivalent to the logistic regression algorithm.

Figure 5.30: Accuracy Acc of the Neural network with logistic perceptron classification algorithm
as a function of the number of neurons in the first layer

Neural Network with Relu perceptron: Performance results of the classification neural
network with rectified linear unit (Relu) perceptron are reported in figure 5.31 The same
observations also apply here. We note an improvement of the accuracy as the number of
neurons increase. Starting from 10 neurons the accuracy reaches a limit between 96% and
96.5%.

Remark 19. The effect of using multiple layers in the neural network structure is reported

129

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Figure 5.31: Accuracy Acc of the Neural network with Relu perceptron classification algorithm
as a function of the number of neurons in the first layer

in table 5.5.

Overall results for three drivers: Results for the three drivers are summarized in
Table 5.5. We notice that there are small differences in the accuracy for the same rule

Table 5.5: Prediction Accuracy of detection rules for the brake-lights-command signal

ML-Algorithm Tuning Driver 1 Driver 2 Driver 3
Acc(%) Acc(%) Acc(%)

KNN classification k = 1 98.96 98.45 97.27
KNN classification k = 2 98.70 98.11 96.14
KNN classification k = 3 98.89 98.34 97.22
Logistic Regression Null 93.68 93.01 90.62
Decision Tree depth = 10 96.72 95.80 94.65
Decision Tree depth = 20 99.10 98.63 97.12
Decision Tree depth = 40 99.36 99.00 97.77
Neural Net (Logistic) 1 Layer, 30 neurons 95.86 94.23 94.56
Neural Net (Logistic) 1 Layer, 35 neurons 95.82 94.11 94.48
Neural Net (Logistic) 1 Layer, 40 neurons 96.01 93.88 94.57
Neural Net (Logistic) 1 Layer, 80 neurons 95.97 94.15 94.55
Neural Net (Logistic) 5 Layer, 30 neurons 95.22 93.43 94.80
Neural Net (Relu) 1 Layer, 10 neurons 96.25 94.59 94.23
Neural Net (Relu) 1 Layer, 20 neurons 96.56 95.26 94.33
Neural Net (Relu) 1 Layer, 40 neurons 96.70 95.38 94.48
Neural Net (Relu) 5 Layer, 10 neurons 96.70 95.49 94.49
Neural Net (Relu) 10 Layers, 10 neurons 96.72 95.67 94.70

when comparing between different drivers. In fact, practically all the tested rules perform
better on the first and second driver than on the third driver. An explanation of this result

130

5.8 Evaluation against attacks

might be that the third drive test contained singular use-cases that did not appear frequently
enough. Thus the rules did not train well enough in order to recognize them. An easy solution
to overcome this limitation is to collect more data for these specific use-cases. We also notice
that the decision tree algorithm tuned with depth parameter equals to 40, reported the best
performance for all three drivers.

5.7.3 Unification of detection rule

In the previous section, we reported results on the accuracy of the predictors trained and
evaluated for each driver separately. The resulting detection rules could be influenced by
the driving behavior of the driver. In this section, we investigate the possibility of building
one single detection rule that can accommodate all three drivers. According to the previous
results, the Decision Tree algorithm outperforms the rest of the algorithms for both predicted
signals. Thus, we use the Decision Tree algorithm to build the detection rules in this section.
In order to train the algorithm, we combine the data sets collected during the three drive
tests, and we split the resulting data set into 0.7 and 0.3 ratio training set and test sets. We
report results of the accuracy on the test set as well as on the three data sets separately for
the speed signal in Table 5.6 and for brake-lights-command in Table 5.7.

Table 5.6: Prediction Accuracy of the unified detection rules for the speed (Decision Tree with
Tree depth= 40)

ML-Algorithm All Driver 1 Driver 2 Driver 3
Accreg Accregtp Accreg Accregtp Accreg Accregtp Accreg Accregtp

Decision Tree 99.95 99.66 99.97 99.77 99.98 99.77 99.76 99.43

Table 5.7: Prediction Accuracy of the unified detection rules for the brake-lights-command
(Decision Tree with Tree depth= 40)

ML-Algorithm All Driver 1 Driver 2 Driver 3
Acc(%) Acc(%) Acc(%) Acc(%)

Decision Tree 98.16 99.37 98.16 97.97

Results show that, for both signals, the resulting detection rules have a high accuracy level
on the combined data set as well as on data from each driver. This shows that it is possible
to build a single detection rule that can accommodate the three drivers.

5.8 Evaluation against attacks
The robustness evaluation against attacks measures the detection capability of a given rule
in case of an attack on the target signal. Thus we need to conduct an attack campaign
and measure the True Negative rate defined as the ratio between the number of alerts
raised and the number of attacked frames, and the False Negative rate defined as the ratio
between the number of alerts not raised and the number of attacked frames, against each type
of attack(Table5.1). For safety reasons, this attack campaign should not be done on a real
vehicle.

131

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

5.8.1 Simulation of attacks

In order to evaluate the effectiveness of the detection rule, we conduct a test campaign against
simulated attacks. Since we claim that our model can detect attacker that has full control
over one of the ECUs (Figure 2.9b), we assume an attacker aiming to cause a tangible impact
on the vehicle and to hide real sensor values or commands. The simulated attacks consist in
replacing the data content of the messages with an attacked content. Thus the attacker is
showcasing a Man-in-the-middle attack between the signal generator (sensor) and the receiver
ECU on which we install the intrusion detection system.

5.8.2 Attacks against real-valued signal

For the speed signal monitoring we perform three types of attacks:

• Random speed injection: in this attack, the attacker substitutes the real sensor value
with a random value.

• Speed offset injection: in this attack, the attacker adds to the real speed sensor value an
offset value.

• Speed Denial of service (signal drop): in this attack, the attacker interrupts the sending
of the frame causing the speed signal to freeze at the last sent value.

ESP

CAN-Bus

IDS

Attacker

speed

speed[attacked]

Torque RPM Acceleration Shifter brake-light-cmd

1-Random speed
2-Offset speed
3-DoS

Figure 5.32: Illustration of Man-in-the-middle attack principle on the Speed signal

Remark 20. Note that the intrusion detection system is set to raise an Alert as long as the
received speed value (injected by the attacker) is outside the acceptance interval of ±5 km/h
of the predicted speed value. Thus we consider that an attack is happening if the injected speed
signal is outside of this acceptance interval.

5.8.2.1 Random speed injection attack

Figure 5.33 shows the random speed injection attack use-case and Figure 5.34 shows alerts
raised by the decision tree detection rule against this attacks. The results show that as long

132

5.8 Evaluation against attacks

Figure 5.33: Evolution of the original speed
signal (blue) and random speed signal (red)
over time.

Figure 5.34: Alerts raised by the decision
tree (depth=40) detection rule against random
speed injection attack

as the injected speed value is outside the acceptance window of ±5 km/h, alerts are raised.
The alert is not raised when the injected speed value is close to the ground truth value (values
around t = 220s, 280s, 400s, 510s). We obtained 0.13% of false negatives when performing
this attack.

5.8.2.2 Speed offset injection attack

Figure 5.35 shows the speed offset injection attack use-case and Figure 5.36 shows alerts raised
by the decision tree detection rule against this attacks. For this attack, we can see that the

Figure 5.35: Evolution of the original speed
signal (blue) and offset speed signal (red) over
time.

Figure 5.36: Alerts raised by the decision
tree (depth=40) detection rule against speed
offset injection attack

alert is raised as soon as the attack started (around t = 210s) and was sustained as long as
the attack was running. In fact, since the speed offset of the attack is set to +40 km/h, the
received signal is always outside the acceptance window of ±5 km/h. The detection in this

133

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

case is perfect and we obtained 5.810−5% of false negatives.

5.8.2.3 Speed Denial of service (signal drop) attack

Figure 5.37 shows the speed DoS attack use-case and Figure 5.38 shows alerts raised by the
decision tree detection rule against this attacks. Similar to the previous attacks, the same

Figure 5.37: Evolution of the original speed
signal (blue) and frozen speed signal (red) over
time.

Figure 5.38: Alerts raised by the decision
tree (depth=40) detection rule against random
speed injection attack

reasoning applies. The injected speed is frozen at around 20 km/h, which means that most of
the time the alarm is raised as the received speed is outside the acceptance window. However,
as soon as the ground truth speed value approaches the injected value (around t = 280s, 350s),
the alarm turns off. We obtained 0.19% of false negatives on this attack.

Table 5.8: False Negative rate of simulated attacks on the Speed signal

Attack type False Negative(%)
Random speed injection 0.13%
Offset speed injection 5.810−5%
Denial of service (signal drop) 0.19%

5.8.3 Attacks against categorical signal

Similar to the speed signal and in order to test the intrusion detection rule set-up in the
previous section for thebrake-lights-command signal monitoring we perform three types of
test:

• Random command injection: in this the attack, the attacker, substitutes the real
command with a (0/1) random command.

• Inverse command injection: in this attack, the attacker inverts to the real command.

134

5.8 Evaluation against attacks

Table 5.9: False Negative rate of simulated attacks on the brake-lights-command signal

Attack type False Negative(%)
Random command injection 0.98%
Inverse command injection 1.67%
Denial of service (force to 0) 0.4%

• Denial of service (force to 0): in this attack, the attacker always sends the 0 command
value.

For convenience we grouped all the attacks in Figure 5.39.

Remark 21. Note that the detection rule is set to raise an Alert as long as the received
command value (injected by the attacker) differs from the predicted command. Thus we
consider that an attack is happening if the injected command signal is different from the real
brake-lights-command signal.

5.8.3.1 Random command injection attack

The first column of Figure 5.39 shows the random command injection attack use-cases on
the brake-lights-command signal. We can see from the Alerts raised by the detection rule for
this attack that as long as the injected command differs from the ground truth command,
alerts are raised. The alert is not raised when the injected and ground truth commands are
the same. We obtained a false negative rate of 0.98% .

5.8.3.2 Inverse command injection attack

The second column of Figure 5.39 shows the inverse command injection attack use-cases on
the brake-lights-command signal. For this attack, we can see that the alert is raised as soon as
the attack started. In fact, since the injected command is always the opposite of the ground
truth command, the predicted signal is always different from the received signal. Thus an
attack is detected from the start, and we obtained a false negative rate of 1.67% .

5.8.3.3 Denial of service (force to 0) attack

The third column of Figure 5.39 shows the Denial of service attack use-cases on the brake-
lights-command signal. In this attack, the injected command is set to 0. The ground truth
brake-lights-command have occurrences of about 70% and 30% for 0 and 1 respectively. Thus,
we consider that there is an attack only 30% of the time. Similarly, the alerts were raised
when the injected command differs from the ground truth command. We obtained a false
negative rate of 0.4% .

135

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

Si
gn

al
A
tt
ac
k

A
le
rt
s

Random command

FN = 0.98%

Inverse command

FN = 1.67%

Denial-of-Service

FN = 0.4%

Figure 5.39: Alerts raised by the decision tree (depth=40) detection rule tested on three different
attacks on the brake-lights-command signal. On top is the ground truth command, in the middle
is the attack command and on the bottom is the Alerts raised by the detection rule when receiving
the attack signal.

5.9 Alerts handling

5.9.1 Prevention mechanism

As explained in previous sections, the proposed intrusion detection system makes the signal
prediction based solely on other signals and does not take the monitored signal as input in
the prediction process. We have also presented in section5.8 an evaluation against attacks
and demonstrated how the intrusion detection rule could catch the attacks with a low false
negative rate for an attacker that has full control over a legitimate ECU. This capability
comes from the fact that the predictor can make very accurate signal predictions even when
the ground truth signal is not received (i.e. based only on the other signals). In figure 5.40
we depicted the ground truth as well as the prediction of the speed signal. It shows that the
prediction is almost always superposed to the real signal. As a result, the formulation that
we proposed allows for a prevention strategy. Even when the signal has not been received
the system can still make correct predictions given that the other signals are not maliciously
manipulated. Thus, the predicted signal can serve as a replacement when an attack is detected,
which can be considered as fail-safe mode for the vehicle.

136

5.9 Alerts handling

Ground truth speed signal
sent by the ECU

Predicted speed signal calcu-
lated by the detection rule

Superposition of ground
truth and predicted speed

Figure 5.40: Comparison between the ground truth signal and the predicted signal (signal
predicted with decision tree (depth=40) regression algorithm

5.9.2 False positives reduction strategy

One may consider the false positive rate of 3% or even 1% not low enough given the high
number of frames used within the communication buses. For this purpose in this section we
propose to account for successive alerts as a remedy. In fact, in order to effectively influence
the behavior of the car, the attacker needs to send successive attack frames. Thus, the idea is
to consider that an isolated detection alert could be ignored, and focus on successive alerts.
In case there are no attacks taking place, these alerts are in fact false positives. Thus it is
crucial also to characterize the intrusion detection rules with regards to the successive false
positives. The strategy is to set-up an acceptable number of successive false positives k and to
effectively raise an alert only after k false predictions. In figure 5.41 we draw the probability
(in percentage) of raising a false alarm as a function of the successive false predictions k for
the decision tree detection rule applied to the speed signal.

Figure 5.41: Characterization of the ratio of false alerts (in percentage%) raised as a function of
the number of successive false positives.

137

5. ON-BOARD INTRUSION DETECTION AND PREVENTION SYSTEM

This technique can tremendously reduce the number of false positives. We can see from
figure 5.41 that simply by looking for two successive false predictions, we can already reduce
the number of false alarms from 0.5% to less than 0.15%. We also set a requirement for the
acceptable false alarms that can be tolerated by the IDS then find the number of successive
false predictions that can be accepted in order to comply with the requirement.

Remark 22. Note that the bigger the number of successive false positive allowed, the more
leverage the attacker has. For instance, imagine we allow the IDS to raise alerts only after
10 successive false positives. The attacker may use this in order to send 9 attack frames and
then pauses, waits for the counter to reset and re-start with another 9 attack frames.

5.10 Conclusion and discussion
In this chapter, we introduced a novel in-vehicle intrusion detection system capable of de-
tecting an attacker with full control over an ECU. This intrusion detection system is based
on detection rules built with supervised machine learning techniques. The rules learn the
nominal behavior of the system and make predictions for individual signal value. Alarms are
raised when the predicted signal value is not similar to the received value. We showed first
the effectiveness of the detection rules for separate drivers, then for a set of drivers. We also
showed the effectiveness of the detection rules against examples of attacks. The advantage of
the proposed method compared to the previous work is that it only needs collected data to
learn nominal behavior, and does not need examples of attacks in order to recognize them.
Plus, it gives the ability to target individual signals (for instance most safety critical). Since
the detection rules are actually signal predictors, theoretically the approach could be used for
prevention as well.

In order for this intrusion detection system to be effective, the training data has to be
representative of all legitimate states of the vehicle. If some of the legitimate scenarios are
not included in the training set and the test set, the detection rules may not learn the normal
behavior corresponding to it, thus resulting in a lousy performance during online monitoring.
Similarly, it is important to account for all the driving behaviors. This is clearly more complex
to take into consideration as it involves collecting training data from a large set of drivers
exhibiting different but legitimate behaviors. In the context of autonomous driving, this
task can be more manageable as the driver behavior does not influence the signals that
are mostly controlled by electronic control units. The data acquisition step can be much
easier as the self-driving car can be simulated (for instance in Hardware In the Loop equipment).

Another important angle to address the effectiveness of the IDS is the complexity and
resources. The final objective of the proposed intrusion detection system should be implemented
inside the vehicle. Therefore, it is essential to consider the prediction complexity as well
as resources needed of the algorithms. In fact, depending on the target embedded system
environment on which the detection rule has to be implemented we may have resource
constraints to cope with as well as safety constraint that can indicate how much delay the
signal validation process can take.

138

CHAPTER 6

Conclusion

6.1 Summary
Throughout this theses, we begin by investigating the state of the art of automotive security.
Multiple attacks that have been performed during the last years against different automotive
systems were reported and categorized with regards to their access vector. We emphasized
the fact that security of automotive systems has to begin from the design phase as many
decisions that are taken then have a substantial impact on the level of security. In this context,
we reported some of the threat analysis and risk assessment methodologies that play an
essential role in defining the security objectives and setting up a security strategy from which
security requirements are established and pushed to the product development phase. We iden-
tified a gap with regards to the identification of different attack scenarios for a particular threat.

In chapter 3 we addressed this gap and proposed a formal model that allows, given a
cyber-physical architecture of a vehicle and an attacker model along with its objectives (the
defined threats), to generate different attack scenarios (attack paths) in the form of an attack
tree. This attack tree serves later in the risk analysis step in order to prioritize the scenar-
ios and propose adequate architectural solutions in order to build protection against the attacks.

We noticed however that in-vehicle communication networks constitute the last line of
defense against the automotive cyber-physical attacks. In chapter 4 we proposed different
solutions to protect against an attacker with direct physical access to the CAN network. These
protection solutions are based on randomization strategies of the CAN identifier and turn out
to be very effective against injection and replay attacks as well as reverse-engineering.

Considering a more complex attacker model that has indirect physical access and even
remote access to one of the legitimate ECUs inside the vehicle, in chapter 5 we develop a
protection mechanism for in-vehicle communication networks. The protection mechanism is
an intrusion detection system that uses machine learning algorithms to extract a dependency

139

6. CONCLUSION

model between data collected from the shared communication buses. The proposed approach
relies on the training and evaluation of multiple learning algorithms in order to select the one
that performs the best.

6.2 Perspectives and future research directions
Some additional questions with regards to the general issues of automotive security are still
to be answered and others can be raised through the findings of this thesis.

6.2.1 On risk assessment

First, we note that the attributes associated with the assets in the formal model were used
in order to offer additional possibilities in the formulation of the security property (attack
goal) to be verified and the resulting state space generation. Those attributes (and others
that could be added) can be used to partly automate the attack rating process in the risk
assessment step based on the attack tree. An obvious example of this approach could be to use
the “Accessibility” attribute of the communication mediums in order to indicate the “window
of opportunity” score. Additional attributes relative to the difficulty of exploitation of certain
vulnerabilities can help indicate the “Expertise” score and “Time” needed. Furthermore,
adding attributes to indicate for each attack the “ Equipment” needed can help better asses
for an attack scenario the set of equipment needed. The latter can solve the problem wherein
a single attack (i.e. a conjunction combination) two attack steps may be enabled by the same
equipment or require the same expertise.

Other improvements could be to enhance the vulnerability model. In the actual formal
model, exploiting a vulnerability in a service from the attacker point of view would allow
him to take control over that service and have the same access rights. In the real world, this
is true, but we have other types of vulnerabilities that would allow the attacker to perform
“privilege escalation” type of exploits. The latter is not included in the formal model yet and
will help to discover additional attack paths and possibilities.

6.2.2 On in-vehicle secure communications

Following the promising results obtained in chapter 5 further improvements also can be
considered. First, we note that during the evaluation against attacks, only the target signal
(signal to be monitored) was attacked. As a perspective, we can investigate the effectiveness of
the intrusion detection system against attacks on multiple signals simultaneously. Furthermore,
it is interesting to combine multiple monitoring algorithms used for multiple target signals
with each other in order to improve their respective performances. We can also investigate the
effectiveness of an intrusion detection system that uses different machine learning algorithms
on the same target signal during monitoring.

Additionally, the intrusion detection system as presented in chapter 5 is designed to output
a binary output indicating if there is an intrusion or not. However, the prediction algorithm is
built with machine learning algorithms training on collected use-cases. An important issue is
when we encounter a use-case for which the algorithm is not trained well. It becomes necessary

140

6.2 Perspectives and future research directions

to output some further information on the confidence of the prediction. In other words, for
each prediction, the prediction algorithm should output a prediction and say whether it is
confident enough in the output.

Interestingly, as reported in chapter 5, one of the concerns when training the intrusion
detection system is the driving behavior. This concern disappears entirely in the context
of self-driving cars. At the same time, the need for intrusion detection systems in order to
protect against cyber-physical attacks become more critical. However, it is still necessary to
evaluate the intrusion detection system based on data collected from a self-driving car.

141

6. CONCLUSION

142

List of Publications

Book chapters:

• Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Attack
Tree Construction and Its Application to the Connected Vehicle. Cyber-Physical Systems
Security, 2018, p. 175.

• Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Identifier
Randomization: An Efficient Protection Against CAN-Bus Attacks. Cyber-Physical
Systems Security, 2018, p. 219.

Confrence papers:

• Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Prediction-
based Intrusion Detection System for In-vehicle Networks using Supervised Learning and
Outlier-detection. Internation workshop on information security theory and practice,
2018.

Patent Applications:

• Khaled Karray, M Abdelaziz Elaabid. “PROCEDE, SUR UN RESEAU DE COMMU-
NICATION EMBARQUE D’UN VEHICULE DE TRANSMISSION SECURISEE D’UN
MESSAGE”

• Khaled Karray, M Abdelaziz Elaabid, Sylvain Guilley, Jean-Luc Danger.“PRECEDE DE
SUPERVISION DE SIGNAUX SENSIBLES SUR RESEAU DE COMMUNICATION
EMBARQUE D’UN VEHICULE PAR APPRENTISSAGE” SUPERVISE

Conference presentation and Posters:

• Khaled Karray, Sylvain Guilley, Jean-Luc Danger, and M Abdelaziz Elaabid. A model
for attack path generation in automotive domain (Poster). Workshop on Practical
Hardware Innovations in Security Implementation and Characterization, PHISIC, 3-4
october, 2016.

143

6. CONCLUSION

• Khaled Karray, Sylvain Guilley, Jean-Luc Danger, and M Abdelaziz Elaabid. Protections
against the automotive CAN bus attacks (Poster). IMT Cybersecurity Seminar, 2017.

• Khaled karray, Jean-luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Attack
tree generation: an application to the connected vehicle. International Workshops on
Cryptographic architectures embedded in logic devices, CryptArchi, 2017. https://labh-
curien.univ-st-etienne.fr/cryptarchi/workshop17/abstracts/karray.pdf

• Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Attack
Tree Construction and Its Application to the Connected Vehicle. CPSEd, 17-19 July
2017. http://koclab.cs.ucsb.edu/cpsed/files/Karray.pdf

144

Transformation rules

In this appendix we report the modeling of the transformation rules as implemented in
the GROOVE tool for the use-case introduced in chapter 3. The transformation rules are
presented in the form of graphs. However, unlike in chapter 3, these transformation rules are
not presented with their LHS1, RHS2 and NAC3, but rather as a single color-coded graph,
where colors are interpreted (according to the GROOVE manual) as follows:

• Black elements are nodes and edges that should be present in the host graph for the
rule to be applied.

• Green elements are nodes and edges created in the resulting graph if the rule matches.

• Blue elements are nodes and edges removed in the resulting graph if the rule matches.

• Red elements should not exist in the host graph for the rule to be applied.

1Left Hand Side
2Right Hand Side
3Negative Application Condition

145

6. CONCLUSION

Attacker basic actions

Att Commatat Att HW

"Pysical−access"

Accessibility

atat

Connect-Comm: This rule gives the attacker the
ability to connect to any “Comm” component (i.e.
a communication medium). Optionally, we can
add the type of the communication component
or the accessibility if we want to restrict the at-
tacker’s abilities.

Connect-HW :This rule gives the attacker the abil-
ity to connect to Hardware components “HW”
that are physically accessible.

Attacker basic actions

Att Comm

Data string

∀

type

on

at

onon

@

on

Att HW

Service
vul

atat r|rw

at

Eavesdrop-Comm: This rule gives the attacker
the ability that gained access to a communication
medium “Comm“ to read the data that is being
communicated on that communication medium
(i.e transfer the data component to the attacker’s
knowledge database.

Exploit-Service: For an attacker that has access to
a Hardware component ”HW “, if there is a service
with a vulnerability that has at least read access to
the hardware component, the attacker can exploit
the vulnerability which grants the attacker control
over the service.

146

6.2 Perspectives and future research directions

Attacker basic actions

Att
Service

vul

HW

Dataon

ononw|rw

at Att
Service

vul

HWData on

at

r|rwonon

Exploit-write: This rule gives the attacker the
ability to exploit the ”write“ access right of service
over which they gained control.

Exploit-Read: This rule gives the attacker the
ability to exploit the ”read“ access right of service
over which they gained control.

Attacker basic actions

Att Comm

HW

at

rw|ratat

Data

CommAtt

true

onon

at

on

modified

Comm-to-HW : This rule gives the attacker the
ability interact with a Hardware component ”HW “
that has at least ”read“ access to a communica-
tion medium ”Comm“ to which the attacker has
access.

Replay-Data: This rule gives the attacker the
ability to replay a ”Data“ component initially
in the attacker’s knowledge database on a com-
munication medium ”Comm“ to which the at-
tacker has access. The rule automatically puts
the ”modified“ predicate to ”true“.

147

6. CONCLUSION

Hardware behavior

HW
CAN

Comm
CAN

Data

∀

onon

@

r|rw

on

HW
CAN

Comm

Data

ononw|rw

on

HW-CAN-Read-From-Comm: This rule states
that any CAN-controller hardware connected to
the CAN communication bus can read data from
the bus.

HW-CAN-Write-To-comm: This rule states that
any CAN-controller hardware connected to the
CAN communication bus can write data to the
bus.

Hardware behavior

Comm
cellular

Data

HW
cellular

onon on

r|rw Comm
cellular

HW
cellular

Data

w|rw

ononon

HW-Cellular-Read-From-comm: This rule states
that any Cellular-controller hardware connected
to the Cellular network can read data from the
network.

HW-Cellular-Write-To-comm: This rule states
that any Cellular-controller hardware connected
to the Cellular network can write data to the
network.

148

6.2 Perspectives and future research directions

Hardware behavior

HW
speed_sensor DataData "speed"

data_count

false

bool int

int

110

π1

onon typetype

π1

count

bound

π0le count

bound

π0 add

HW-Speed-Sensor : This rule states that the speed sensor hardware component can create new data
component of type speed. The overall number of data component is bounded. In this particular
example we took the bound equals to ten

Service behavior (S1)

HW
speed_sensor

Service
speed

Data "speed"

r onon

on type

Service
speed

Data

HW
CAN

"speed" type

w

on onon

Speed-Acquisition: This behavioral rule states that
the speed − Service can read the speed − Data
from the speed− sensor hardware

Speed-Acquisition: This behavioral rule states that
the speed− Service can write the speed−Data
to the CAN − controller hardware

149

6. CONCLUSION

Service behavior (S2)

Service
HMI

HW
CAN

Data"speed"

r

type on

onon

Service
HMI

HW
screen

Data"speed" onontype

on

HMI-Speed-Read: This behavioral rule states that
the HMI − Service can read the speed − Data
from the CAN − controller hardware

HMI-Speed-Write: This behavioral rule states that
the HMI − Service can write the speed−Data
to the Screen hardware

Generic Service behavior

Service

Data"input−type−2"

∀

"output−type−2"

Data"input−type−1"

DataData

bool

bool

bool

DataData "output−type−1"

∀

on

on
onon

π0

modified

typetype

modifiedmodified

or

modifiedmodified

onon

π1

type

modified

@

type

on

typetype

@

on

Generic-service-behavior : This behavioral rule states a service with <n> inputs (n=2 in the example)
are processed by the service to produce <p> outputs (p=2 in the example). The behavioral rule
keeps track of the ”modified“ property

150

Entropy computations

In this appendix we report the proofs of entropy and conditional entropy computations
presented in chapter 4.

Let ido be a random variable representing original identifiers whose outcome is id1, id2, ..., idN
with probabilities P (id1), P (id2), ..., P (idN). We consider a second random variable idr repre-
senting randomized identifiers whose outcome is in [0, 2n − 1].

Entropy of Fixed mapping

The entropy of the fixed mapping solutions (IA-CAN, Equal-intervals, Frequency-intervals) is
the following:

– IA-CAN: HIA−CAN (idr) = H(ido) + a

– Equal Intervals: HEI(idr) = H(ido) + n− log2(N)

– Frequency Intervals: HFI(idr) = n

Proof. According to the fixed mapping randomization functions (IA-CAN, Equal-intervals,
Frequency-intervals) each identifier idi is randomized over a fixed interval Ii of width W (Ii).
We begin by computing the probability that the random variable idr takes the value x ∈ [0, 2n]

P (idr = x) =
N∑
i=1

P (idr = x|idi)× P (idi)

The conditional probability of idr knowing the original identifier ido = idi.

P (idr = x|idi) = 1Ii(x)
W (Ii)

151

6. CONCLUSION

H(idr) =
∑

x∈[0,2n−1]
P (idr = x)× log2(1

P (idr = x))

=
∑

x∈[0,2n−1]
[
N∑
i=1

P (idi)
1Ii(x)
W (Ii)

]× log2(1

[
∑N
j=1 P (idj)

1Ij
(x)

W (Ij)]
)

=
N∑
i=1

∑
x∈[0,2n−1]

P (idi)
1Ii(x)
W (Ii)

× log2(1

[
∑N
j=1 P (idj)

1Ij
(x)

W (Ij)]
)

H(idr) =
N∑
i=1

∑
x∈Ii

P (idi)
1Ii(x)
W (Ii)

× log2(1

[
∑N
j=1 P (idj)

1Ij
(x)

W (Ij)]
)

Since the intervals Ii are non overlapping : ∀x ∈ Ii,∀j 6= i→ 1Ij (x) = 0
We can thus simplify the expression: ∀x ∈ Ii,∀j 6= i→

∑N
j=1 P (idj)

1Ij
(x)

W (Ij) = P (idi)
1Ii

(x)
W (Ii)

H(idr) =
N∑
i=1

∑
x∈Ii

P (idi)
1Ii(x)
W (Ii)

× log2(1
P (idi)

1Ii
(x)

W (Ii)

)

=
N∑
i=1

∑
x∈Ii

P (idi)
1

W (Ii)
× log2(1

P (idi) 1
W (Ii)

)

– IA-CAN entropy: ∀i ∈ [1, N], W (Ii) = 2a

H(idr) =
N∑
i=1

∑
x∈Ii

P (idi)
1
2a × log2(1

P (idi) 1
2a

) = H(ido) + a

– Equal intervals entropy: ∀i ∈ [1, N], W (Ii) = 2n

N

H(idr) =
N∑
i=1

∑
x∈Ii

P (idi)
1
2n

N

× log2(1
P (idi) 1

2n

N

) = H(ido) + n− log2(N)

– Frequency intervals entropy: ∀i ∈ [1, N], W (Ii) = 2n × P (idi)

H(idr) =
N∑
i=1

∑
x∈Ii

P (idi)
1

2n × P (idi)
× log2(1

P (idi) 1
2n×P (idi)

) = n

152

6.2 Perspectives and future research directions

Conditional entropy of Fixed mapping
The conditional entropy of randomized identifiers knowing the original identifiers of the fixed
mapping solutions (IA-CAN, Equal-intervals, Frequency-intervals) is the following:

– IA-CAN: HIA−CAN (idr|ido) = a

– Equal Intervals: HEI(idr|ido) = n− log2(N)

– Frequency Intervals: HFI(idr|ido) = n−H(ido)

Proof.

H(idr|ido) = H(idr, ido)−H(ido)

H(idr, ido) =
∑

x∈[0,2n−1]

N∑
i=0

P (idr = x, ido = idi) log2(1
P (idr = x, ido = idi)

)

P (idr = x, ido = idi) =
{
P (idi)× 1

w(Ii) , x ∈ Ii
0 , elsewhere

H(idr, ido) =
N∑
i=0

∑
x∈Ii

P (idi)
w(Ii)

log2(1
P (idi) 1

w(Ii)
)

H(idr, ido) = H(idr)
H(idr|ido) = H(idr)−H(ido)

- IA-CAN conditional entropy : H(idr|ido) = a
- Equal intervals conditional entropy : H(idr|ido) = n− log2(N)
- Frequency intervals conditional entropy : H(idr|ido) = n−H(ido)

Entropy of Dynamic intervals

Let idto be a Markov chain over the space of original identifiers (id1, id2, ...idN). And the
matrix M presented in equation (4.26) be its transition matrix. Let idr be the random variable
over [0, 2n − 1], generated using the dynamic interval randomization strategy applied to idto.
we have: HDI(idr) = n

153

6. CONCLUSION

Proof.

H(idr) =
∑

x∈[0,2n−1]
P (idr = x)× log2(1

P (idr = x))

P (idr = x) =
N∑
i

P (idr = x|idto = idi)× P (idto = idi)

P (idr = x) =
N∑
i

N∑
j

P (idr = x|idti, idt+1
j)× P (idt+1

j |id
t
i)× P (idti)

P (idr = x|idti, idt+1
j) =

1Ii,j (x)
W (Ii,j)

Where W (Ii,j) = P (idt+1
j |idti)× 2nis the width of the interval Ii,j

P (idr = x) =
N∑
i

N∑
j

1Ii,j (x)
W (Ii,j)

× P (idt+1
j |id

t
i)× P (idti)

=
N∑
i

N∑
j

1Ii,j (x)
P (idt+1

j |idti)× 2n
× P (idt+1

j |id
t
i)× P (idti)

=
N∑
i

N∑
j

1Ii,j (x)
2n × P (idti)

∀x ∈ [0, 2n − 1],
∑N
j 1Ii,j (x) = 1

P (idr = x) =
N∑
i

1
2n × P (idti) = 1

2n

H(idr) =
∑

x∈[0,2n−1]

1
2n × log2(1

2n)

H(idr) = n

Entropy of Arithmetic masking
Proof.

H(idr) =
∑

x∈[0,2n−1]
P (idr = x) log2(1

P (idr = x))

P (idr = x) =

∑x
i=0

P (idi)
2n−N+1 , x ∈ [0, N − 2]

1
2n−N+1 , x ∈ [N − 1, 2n −N]∑N−1
i=x−2n+N

P (idi)
2n−N+1 , x ∈ [2n −N + 1, 2n − 1]

154

6.2 Perspectives and future research directions

H(idr) =
∑

x∈[N−1,2n−N]

1
2n −N + 1 × log2(2n −N + 1)

+
∑

x∈[0,N−2]
[
x∑
i=0

P (idi)
2n −N + 1]× log2(1∑x

i=0
P (idi)

2n−N+1
)

+
∑

x∈[2n−N+1,2n−1]
[

N−1∑
i=x−2n+N

P (idi)
2n −N + 1]× log2(1∑N−1

i=x−2n+N
P (idi)

2n−N+1
)

H(idr) = 2n − 2(N − 1)
2n −N + 1 log2(2n −N + 1)

+
∑

x∈[0,N−2]
[
x∑
i=0

P (idi)
2n −N + 1]× log2(1∑x

i=0
P (idi)

2n−N+1
)

+ [
N−1∑
i=x+1

P (idi)
2n −N + 1]× log2(1∑N−1

i=x+1
P (idi)

2n−N+1
)

H(idr) = 2n − 2(N − 1)
2n −N + 1 log2(2n −N + 1) +

∑
x∈[0,N−2]

1
2n −N + 1 log2(2n −N + 1)

+
∑

x∈[0,N−2]

x∑
i=0

P (idi)
2n −N + 1 × log2(1∑x

i=0 P (idi)
)

+
N−1∑
i=x+1

P (idi)
2n −N + 1 × log2(1∑N−1

i=x+1 P (idi)
)

H(idr) = 2n − 2(N − 1)
2n −N + 1 log2(2n −N + 1) + N − 1

2n −N + 1 log2(2n −N + 1)

+ 1
2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P (idi)× log2(1∑x
i=0 P (idi)

)

+
N−1∑
i=x+1

P (idi)× log2(1∑N−1
i=x+1 P (idi)

)

H(idr) = 2n −N + 1
2n −N + 1 log2(2n −N + 1)

+ 1
2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P (idi)× log2(1∑x
i=0 P (idi)

)

+
N−1∑
i=x+1

P (idi)× log2(1∑N−1
i=x+1 P (idi)

)

155

6. CONCLUSION

H(idr) = log2(2n −N + 1) + 1
2n −N + 1

∑
x∈[0,N−2]

x∑
i=0

P (idi)× log2(1∑x
i=0 P (idi)

)

+
N−1∑
i=x+1

P (idi)× log2(1∑N−1
i=x+1 P (idi)

)

Conditional entropy of Arithmetic masking
The Arithmetic masking conditional entropy is:

HAM (idr|ido) = log2(2n −N + 1)

Proof.

P (idr = x|ido = idi) =
1[i−1,2n−N+i−1]

2n −N + 1

HAM (idr|ido) =
N∑
i=0

P (idi)H(idr|ido = idi)

HAM (idr|ido) =
N∑
i=0

P (idi)
∑

x∈[i−1,2n−N+i−1]
P (idr = x|ido = idi) log2(1

P (idr = x|ido = idi)
)

HAM (idr|ido) =
N∑
i=0

P (idi)
∑

x∈[i−1,2n−N+i−1]

1
2n −N + 1 log2(1

1
2n−N+1

)

HAM (idr|ido) =
N∑
i=0

P (idi) log2(2n −N + 1)

HAM (idr|ido) = log2(2n −N + 1)

Fixed mapping optimality proof
If we adopt a fixed mapping randomization strategy, the optimal solution in terms of conditional
entropy is the Frequency-intervals solutions.

Proof. In the context of fixed mapping, we want to find the best decomposition of intervals
that maximizes the conditional entropy. We previously showed that the conditional entropy
of all fixed mapping solutions can be expressed as: H(idr|ido) =

∑
i∈[1,N] P (idi)× log2(Wi),

where Ii is the randomization interval of idi of width W (Ii). For the fixed mapping solutions

156

6.2 Perspectives and future research directions

the intervals are non overlapping. Besides the width of each interval Ii is positive (W (Ii) ≥ 0)
and their sum equals 2n. Thus we define the following problem:

Argmax
{Ii},i∈[1,N]

H(idr|ido) =
∑
i

P (idi)× log2(Wi)

Subject to the following constraints:
h0 :

∑
i∈[1,N]Wi − 2n = 0

hi : ∀i ∈ [1, N],−Wi ≤ 0
To find the solution to this problem we use the Lagrangian multiplier:

L(W1, ..,WN , λ1, ..λN , λ0) = H(idr|ido) +
N∑
j=0

λjhj

and solve the equation system: ∂L
∂Wi

= 0, ∀i ∈ [1, N]

∂L

∂Wi
(W1, ..,WN , λ1, ..λN , λ0) = ∂H

∂Wi
+

N∑
j=0

λj
∂hj
∂Wi

∀i ∈ [0, N] : λi × hi = 0

h0 :
∑
i∈[1,N]Wi − 2n = 0

hi : ∀i ∈ [1, N],−Wi ≤ 0

We have: ∂H
∂Wi

= P (idi)× 1
Wi

and ∂h0
∂Wi

= 1 and ∂hj

∂Wi
= −1 if (i = j), 0 otherwise

∀i ∈ [1, N] : P (idi)×
1
Wi

+ λ0 − λi = 0

∀i ∈ [1, N] : λi × hi = 0

Resolving this system of equations gives:

λi = 0, ∀i ∈ [1, N]

λ0 = −1
2n

Hence:
⇒ ∀i ∈ [1, N] : Wi = P (idi)× 2n

157

6. CONCLUSION

158

Bibliography

[1] Automotive electronic systems. https://cecas.clemson.edu/cvel/auto/systems/
auto-systems.html. Accessed: 2018-09-01. xv, 10

[2] E-safety vehicle intrusion protected applications (evita). https://www.evita-project.org/.
5, 20, 22

[3] Ebios-2010 expression des besoins et identification des ob-
jectifs de securité. https://www.ssi.gouv.fr/guide/
ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/.
5, 22

[4] Experimental security assessment of bmw cars: A summary report. https:
//keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_
by_KeenLab.pdf. 4

[5] “groove: Graphs for object-oriented verification”. http://groove.cs.utwente.nl/. 60, 64

[6] Healing vulnerabilities to enhance software security and safety (heavens).
https://research.chalmers.se/en/project/5809. 22

[7] Iso/sae-21434: Road vehicles – cybersecurity engineering. https://www.iso.org/
standard/70918.html. 21

[8] Mcp2515: Stand-alone can controller with spi inter-
face. http://ww1.microchip.com/downloads/en/DeviceDoc/
MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf. 116

[9] Oversee: Open vehicular secure platform. https://www.oversee-project.com/. 19

[10] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In Proceedings of the 12th ACM conference on Computer and communications security,
pages 340–353. ACM, 2005. 21

[11] Mike Adler. An algebra for data flow diagram process decomposition. IEEE Transactions
on Software Engineering, 14(2):169–183, 1988. 52

159

https://cecas.clemson.edu/cvel/auto/systems/auto-systems.html
https://cecas.clemson.edu/cvel/auto/systems/auto-systems.html
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
https://keenlab.tencent.com/en/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.oversee-project.com/

BIBLIOGRAPHY

[12] Amer Aijaz, Bernd Bochow, Florian Dötzer, Andreas Festag, Matthias Gerlach, Rainer
Kroh, and Tim Leinmüller. Attacks on inter vehicle communication systems-an analysis.
Proc. WIT, pages 189–194, 2006. 46

[13] Christopher J Alberts, Sandra G Behrens, Richard D Pethia, and William R Wilson. Op-
erationally critical threat, asset, and vulnerability evaluation (octave) framework, version
1.0. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 1999. 22

[14] Sintsov Alexey. Testing CAN Network with help of CANtoolz. https://www.
slideshare.net/AlexeySintsov/testing-can-network-with-help-of-cantoolz,
2016. Accessed: 2018-01-01. 15, 32, 33, 34

[15] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network
vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 217–224. ACM, 2002. 46, 48

[16] Daniel Angermeier, Alexander Nieding, and Jörn Eichler. Supporting risk assessment
with the systematic identification, merging, and validation of security goals. In Interna-
tional Workshop on Risk Assessment and Risk-driven Testing, pages 82–95. Springer,
2016. 44

[17] Ludovic Apvrille, Letitia Li, and Yves Roudier. Model-driven engineering for designing
safe and secure embedded systems. In Architecture-Centric Virtual Integration (ACVI),
2016, pages 4–7. IEEE, 2016. 48

[18] Ludovic Apvrille and Yves Roudier. Sysml-sec attack graphs: compact representations
for complex attacks. In International Workshop on Graphical Models for Security, pages
35–49. Springer, 2015. 48

[19] William A Arbaugh, David J Farber, and Jonathan M Smith. A secure and reliable boot-
strap architecture. In Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium
on, pages 65–71. IEEE, 1997. 20

[20] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Up-
paalâĂŤa tool suite for automatic verification of real-time systems. In International
Hybrid Systems Workshop, pages 232–243. Springer, 1995. 48

[21] Bruno Blanchet, Ben Smyth, and Vincent Cheval. Proverif 1.93: Automatic crypto-
graphic protocol verifier, user manual and tutorial. Internet][cited June 2016], Available
from: https://www. bensmyth. com/publications/2010-ProVerif-manualversion-1.93,
2016. 48

[22] P Borazjani, C Everett, and Damon McCoy. Octane: An extensible open source car
security testbed. In Proceedings of the Embedded Security in Cars Conference, 2014. 40

[23] Alexandre Bouard, Hendrik Schweppe, Benjamin Weyl, and Claudia Eckert. Leveraging
in-car security by combining information flow monitoring techniques. VEHICULAR
2013, page 6, 2013. 21

160

https://www.slideshare.net/AlexeySintsov/testing-can-network-with-help-of-cantoolz
https://www.slideshare.net/AlexeySintsov/testing-can-network-with-help-of-cantoolz

BIBLIOGRAPHY

[24] Manfred Broy. Automotive software and systems engineering. In Proceedings of the 2nd
ACM/IEEE International Conference on Formal Methods and Models for Co-Design,
pages 143–149. IEEE Computer Society, 2005. 10

[25] Eric J Byres, Matthew Franz, and Darrin Miller. The use of attack trees in assessing
vulnerabilities in scada systems. In Proceedings of the international infrastructure
survivability workshop, pages 3–10. Citeseer, 2004. 46

[26] Robert N Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009. 9

[27] Madeline Cheah, Hoang Nga Nguyen, Jeremy Bryans, and Siraj A Shaikh. Formalising
systematic security evaluations using attack trees for automotive applications. In IFIP
International Conference on Information Security Theory and Practice, pages 113–129.
Springer, 2017. 45, 46, 48

[28] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno,
et al. Comprehensive experimental analyses of automotive attack surfaces. In USENIX
Security Symposium. San Francisco, 2011. 15, 16, 33

[29] Kyong-Tak Cho and Kang G Shin. Fingerprinting electronic control units for vehicle
intrusion detection. In 25th USENIX Security Symposium (USENIX Security 16), pages
911–927. USENIX Association, 2016. 31, 33, 34, 39, 41

[30] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on software engineering,
28(8):735–746, 2002. 20

[31] SAE Vehicle Electrical System Security Committee et al. Sae j3061-cybersecurity
guidebook for cyber-physical automotive systems. SAE-Society of Automotive Engineers,
2016. 44

[32] Vehicle Electrical System Security Committee. Sae j3061-cybersecurity guidebook for
cyber-physical automotive systems. 2016. xv, 21, 22

[33] Barbara J Czerny. System security and system safety engineering: Differences and
similarities and a system security engineering process based on the iso 26262 process
framework. SAE International Journal of Passenger Cars-Electronic and Electrical
Systems, 6(2013-01-1419):349–359, 2013. 44

[34] Stabili Dario, Marchetti Mirco, and Colajanni Michele. Detecting attacks to internal
vehicle networks through hamming distance. In IEEE 2017 AEIT International Annual
Conference-Infrastructures for Energy and ICT (AEIT 2017), 2017. 40, 41

[35] Eloi de Chérisey, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. On the optimality
and practicability of mutual information analysis in some scenarios. Cryptography and
Communications, 10(1):101–121, 2018. 80

[36] Trajce Dimkov, Wolter Pieters, and Pieter Hartel. Portunes: representing attack
scenarios spanning through the physical, digital and social domain. In Joint Workshop

161

BIBLIOGRAPHY

on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security, pages 112–129. Springer, 2010. 46, 49, 60

[37] Morris J Dworkin. Recommendation for block cipher modes of operation: The cmac
mode for authentication. Technical report, 2016. 36

[38] Jung-Ho Eom, Min-Woo Park, Seon-Ho Park, and Tai-Myoung Chung. A framework of
defense system for prevention of insider’s malicious behaviors. In Advanced Commu-
nication Technology (ICACT), 2011 13th International Conference on, pages 982–987.
IEEE, 2011. 46

[39] TS ETSI. 102 165-1:" telecommunications and internet converged services and protocols
for advanced networking (tispan). Methods and protocols, pages 2011–03. 5, 22

[40] ETSI/SAGE. KASUMI specification, version: 1.0. 3GPP Confidentiality and Integrity
Algorithms, 1999. 35

[41] PUB FIPS. 198 (federal information processing standards publication) the keyed hash
message authentication code (hmac). Information Technology Labratory, National
Institute of Standards and Technology, Gaithersburg, MD, pages 20899–8900. 36

[42] Ian D Foster, Andrew Prudhomme, Karl Koscher, and Stefan Savage. Fast and vulnerable:
A story of telematic failures. In WOOT, 2015. 16

[43] Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis, Sjouke Mauw, and Rolando
Trujillo-Rasua. Attack trees for practical security assessment: ranking of attack scenarios
with adtool 2.0. In International Conference on Quantitative Evaluation of Systems,
pages 159–162. Springer, 2016. 47

[44] Olga Gadyatskaya, Ravi Jhawar, Sjouke Mauw, Rolando Trujillo-Rasua, and Tim AC
Willemse. Refinement-aware generation of attack trees. In International Workshop on
Security and Trust Management, pages 164–179. Springer, 2017. 45

[45] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and
Maria Zimakova. Modelling and analysis using groove. International journal on software
tools for technology transfer, 14(1):15–40, 2012. 59, 60

[46] André Groll, Jan Holle, Christoph Ruland, Marko Wolf, Thomas Wollinger, and Frank
Zweers. Oversee a secure and open communication and runtime platform for innovative
automotive applications. In 7th Embedded Security in Cars Conf.(ESCAR), 2009. 19

[47] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede. Libra-
can: a lightweight broadcast authentication protocol for controller area networks. In
International Conference on Cryptology and Network Security, pages 185–200. Springer,
2012. 36

[48] Kyusuk Han, André Weimerskirch, and Kang G Shin. Automotive cybersecurity for
in-vehicle communication. In IQT QUARTERLY, volume 6, pages 22–25, 2014. 37, 77,
81

162

BIBLIOGRAPHY

[49] Kyusuk Han, André Weimerskirch, and Kang G Shin. A practical solution to achieve
real-time performance in the automotive network by randomizing frame identifier. In
Proc. Eur. Embedded Secur. Cars (ESCAR), pages 13–29, 2015. 37, 77, 81

[50] Oliver Hartkopp, Cornel Reuber, and Roland Schilling. MaCAN - Message Authenticated
CAN. In Escar Conference, Berlin, Germany, 2012. 35, 36

[51] Reiko Heckel. Graph transformation in a nutshell. Electronic notes in theoretical
computer science, 148(1):187–198, 2006. 59

[52] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Ruddle, and
Benjamin Weyl. Security requirements for automotive on-board networks. In Intelligent
Transport Systems Telecommunications,(ITST), 2009 9th International Conference on,
pages 641–646. IEEE, 2009. xv, xix, 22, 24, 46, 47, 68

[53] Steven A Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using
sequences of system calls. Journal of computer security, 6(3):151–180, 1998. 21

[54] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive can
networks–practical examples and selected short-term countermeasures. In International
Conference on Computer Safety, Reliability, and Security, pages 235–248. Springer, 2008.
15, 31, 34, 39

[55] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive can
networksâĂŤpractical examples and selected short-term countermeasures. Reliability
Engineering & System Safety, 96(1):11–25, 2011. 33

[56] Abdulmalik Humayed and Bo Luo. Using ID-Hopping to Defend Against Targeted DoS
on CAN. In Proceedings of the 1st International Workshop on Safe Control of Connected
and Autonomous Vehicles, pages 19–26. ACM, 2017. 37, 77

[57] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph generation
for network defense. In Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual, pages 121–130. IEEE, 2006. 48

[58] Rob Millerb Ishtiaq Roufa, Hossen Mustafaa, Sangho Ohb Travis Taylora, Wenyuan Xua,
Marco Gruteserb, Wade Trappeb, and Ivan Seskarb. Security and privacy vulnerabilities
of in-car wireless networks: A tire pressure monitoring system case study. In 19th
USENIX Security Symposium, Washington DC, pages 11–13, 2010. 16

[59] Mafijul Md Islam, Aljoscha Lautenbach, Christian Sandberg, and Tomas Olovsson. A
risk assessment framework for automotive embedded systems. In Proceedings of the 2nd
ACM International Workshop on Cyber-Physical System Security, pages 3–14. ACM,
2016. 44

[60] ISO. 11898-1–Road vehicles–Controller area network (CAN)–Part 1: Data link layer
and physical signalling. International Organization for Standardization, 2003. 27

[61] ISO. 11898-2–Road vehicles–Controller area network (CAN)–Part 2: High-speed medium
access unit. International Organization for Standardization, 2003. 27

163

BIBLIOGRAPHY

[62] ISO. 11898-3–Road vehicles–Controller area network (CAN)–Part 2: Fault tolerant
medium access unit. International Organization for Standardization, 2003. 27

[63] ISO. ISO 26262-5:Road vehicles – Functional safety – Part 5: Product development at
the hardware level. International Organization for Standardization, 2011. 98

[64] ISO/IEC. ISO/IEC 18045–Information technology – Security techniques – Methodology
for IT security evaluation. International Organization for Standardization, 2008. 47

[65] ISO/IEC. ISO/IEC 15408–Information technology – Security techniques – Evaluation
criteria for IT security. International Organization for Standardization, 2009. 47

[66] Marieta Georgieva Ivanova, Christian W Probst, René Rydhof Hansen, and Florian
Kammüller. Transforming graphical system models to graphical attack models. In
International Workshop on Graphical Models for Security, pages 82–96. Springer, 2015.
49

[67] Sushil Jajodia and Steven Noel. Topological vulnerability analysis. In Cyber situational
awareness, pages 139–154. Springer, 2010. 46, 48, 49

[68] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Rolando Trujillo-
Rasua. Attack trees with sequential conjunction. In IFIP International Information
Security Conference, pages 339–353. Springer, 2015. 46

[69] David Joyner, Ondřej Čertík, Aaron Meurer, and Brian E Granger. Open source com-
puter algebra systems: Sympy. ACM Communications in Computer Algebra, 45(3/4):225–
234, 2012. 65

[70] Min-Joo Kang and Je-Won Kang. Intrusion detection system using deep neural network
for in-vehicle network security. PloS one, 11(6):e0155781, 2016. 40, 41

[71] Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Attack
tree construction and its application to the connected vehicle. Cyber-Physical Systems
Security, page 175, 2018. 43

[72] Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Identifier
randomization: An efficient protection against can-bus attacks. Cyber-Physical Systems
Security, page 219, 2018. 77

[73] Khaled Karray, Jean-Luc Danger, Sylvain Guilley, and M Abdelaziz Elaabid. Prediction-
based intrusion detection system for in-vehicle networks using supervised learning and
outlier-detection. In IFIP International Workshop on Information Security Theory and
Practice, 2018. 97

[74] Pierre Kleberger, Tomas Olovsson, and Erland Jonsson. Security aspects of the in-vehicle
network in the connected car. In Intelligent Vehicles Symposium (IV), 2011 IEEE,
pages 528–533. IEEE, 2011. 20

[75] M Kleine-Budde et al. Socketcan–the official can api of the linux kernel. In Proceedings
of the 13th International CAN Conference (iCC 2012), Hambach Castle, Germany CiA,
pages 05–17, 2012. 116

164

BIBLIOGRAPHY

[76] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. Adtool: secu-
rity analysis with attack–defense trees. In International Conference on Quantitative
Evaluation of Systems, pages 173–176. Springer, 2013. 47

[77] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schweitzer. Foundations
of attack–defense trees. In International Workshop on Formal Aspects in Security and
Trust, pages 80–95. Springer, 2010. 45, 68

[78] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. Dag-based attack
and defense modeling: DonâĂŹt miss the forest for the attack trees. Computer science
review, 13:1–38, 2014. 47

[79] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
et al. Experimental security analysis of a modern automobile. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 447–462. IEEE, 2010. 15

[80] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for message
authentication. Technical report, 1997. 36

[81] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative attack tree analysis
via priced timed automata. In International Conference on Formal Modeling and
Analysis of Timed Systems, pages 156–171. Springer, 2015. 47

[82] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. Otids: A novel intrusion
detection system for in-vehicle network by using remote frame. In 2017 15th Annual
Conference on Privacy, Security and Trust (PST), pages 57–5709. IEEE, 2017. 39, 41

[83] Gabriele Lenzini, Sjouke Mauw, and Samir Ouchani. Security analysis of socio-technical
physical systems. Computers & electrical engineering, 47:258–274, 2015. 46, 49

[84] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 290–299. ACM, 2003. 20

[85] Isograph LTD. AttackTree. https://www.isograph.com/software/attacktree/,
2019. Accessed: 2019-01-01. 47

[86] Florian Lugou, Letitia W Li, Ludovic Apvrille, and Rabéa Ameur-Boulifa. Sysml models
and model transformation for security. In Conferénce on Model-Driven Engineering and
Software Development (Modelsward’2016), 2016. 48

[87] Tobias Madl, Jasmin Brückmann, and Hans-Joachim Hof. Can obfuscation by random-
ization (canora). 2017. 37

[88] Kevin Mahaffey. Hacking a tesla model s: What we found and what we learned, 2015. 4

[89] Mirco Marchetti and Dario Stabili. Anomaly detection of CAN bus messages through
analysis of ID sequences. In Intelligent Vehicles Symposium (IV), 2017 IEEE, pages
1577–1583. IEEE, 2017. 39, 41

165

https://www.isograph.com/software/attacktree/

BIBLIOGRAPHY

[90] Edward J Markey. Tracking & hacking: Security & privacy gaps put american drivers
at risk. US Senate, 2015. 4

[91] Fabio Martinelli, Francesco Mercaldo, Vittoria Nardone, Albina Orlando, and Antonella
Santone. WhoâĂŹs driving my car? a machine learning based approach to driver
identification, 2018. 15, 32

[92] Fabio Martinelli, Francesco Mercaldo, Albina Orlando, Vittoria Nardone, Antonella
Santone, and Arun Kumar Sangaiah. Human behavior characterization for driving style
recognition in vehicle system. Computers & Electrical Engineering, 2018. 15, 32

[93] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In International
Conference on Information Security and Cryptology, pages 186–198. Springer, 2005. 45,
46, 47, 68

[94] Charlie Miller and Chris Valasek. Adventures in automotive networks and control units.
DEF CON, 21:260–264, 2013. 15, 31, 33, 34, 39

[95] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015, 2015. xv, 4, 13, 14, 15, 16, 17, 39, 41

[96] Kai-Uwe Müller, Robin Ulrich, Alexander Stanitzki, and Rainer Kokozinski. Enabling
secure boot functionality by using physical unclonable functions. In 2018 14th Conference
on Ph. D. Research in Microelectronics and Electronics (PRIME), pages 81–84. IEEE,
2018. 20

[97] Philipp Mundhenk, Artur Mrowca, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib A
Fahmy, and Samarjit Chakraborty. Open source model and simulator for real-time
performance analysis of automotive network security. Acm Sigbed Review, 13(3):8–13,
2016. 36

[98] Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst, Martin
Lukasiewycz, Suhaib A Fahmy, and Samarjit Chakraborty. Security in automotive
networks: Lightweight authentication and authorization. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 22(2):25, 2017. 36

[99] Michael Müter and Naim Asaj. Entropy-based anomaly detection for in-vehicle networks.
In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 1110–1115. IEEE, 2011. 40,
41

[100] Michael Müter, André Groll, and Felix C Freiling. A structured approach to anomaly
detection for in-vehicle networks. In Information Assurance and Security (IAS), 2010
Sixth International Conference on, pages 92–98. IEEE, 2010. 39, 40, 41

[101] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. OBDSecureAlert: An
Anomaly Detection System for Vehicles. In Smart Computing (SMARTCOMP), 2016
IEEE International Conference on, pages 1–6. IEEE, 2016. 40, 41

[102] Dennis K Nilsson, Ulf E. Larson, and Erland Jonsson. Efficient in-vehicle delayed
data authentication based on compound message authentication codes. In Vehicular
Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, pages 1–5. IEEE, 2008. 35

166

BIBLIOGRAPHY

[103] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A logic-based
network security analyzer. In USENIX security, 2005. 48

[104] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. A stealth,
selective, link-layer denial-of-service attack against automotive networks. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages
185–206. Springer, 2017. 32, 33, 34

[105] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011. 120, 127

[106] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-
vulnerability analysis. In Proceedings of the 1998 workshop on New security paradigms,
pages 71–79. ACM, 1998. 48

[107] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni.
The curse of class imbalance and conflicting metrics with machine learning for side-
channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):209–237,
2019. 127

[108] Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. Towards synthesis of attack trees
for supporting computer-aided risk analysis. In International Conference on Software
Engineering and Formal Methods, pages 363–375. Springer, 2014. 45

[109] Arend Rensink. The groove simulator: A tool for state space generation. In International
Workshop on Applications of Graph Transformations with Industrial Relevance, pages
479–485. Springer, 2003. 60

[110] Ronald W Ritchey and Paul Ammann. Using model checking to analyze network
vulnerabilities. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE
Symposium on, pages 156–165. IEEE, 2000. 48

[111] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. nature, 323(6088):533, 1986. 116

[112] Martin Salfer and Claudia Eckert. Attack surface and vulnerability assessment of
automotive electronic control units. In e-Business and Telecommunications (ICETE),
2015 12th International Joint Conference on, volume 4, pages 317–326. IEEE, 2015. 46,
48, 52

[113] Martin Salfer, Hendrik Schweppe, and Claudia Eckert. Efficient attack forest construction
for automotive on-board networks. In International Conference on Information Security,
pages 442–453. Springer, 2014. 46, 48

[114] Bruce Schneier. Attack trees. Dr. DobbâĂŹs journal, 24(12):21–29, 1999. 22, 45, 68

[115] Hendrik Schweppe and Yves Roudier. Security and privacy for in-vehicle networks. In Ve-
hicular Communications, Sensing, and Computing (VCSC), 2012 IEEE 1st International
Workshop on, pages 12–17. IEEE, 2012. 21

167

BIBLIOGRAPHY

[116] Hendrik Schweppe, Yves Roudier, Benjamin Weyl, Ludovic Apvrille, and Dirk Scheuer-
mann. Car2x communication: securing the last meter-a cost-effective approach for
ensuring trust in car2x applications using in-vehicle symmetric cryptography. In Vehic-
ular Technology Conference (VTC Fall), 2011 IEEE, pages 1–5. IEEE, 2011. 36

[117] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing.
Automated generation and analysis of attack graphs. In Security and privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 273–284. IEEE, 2002. 46, 48

[118] Craig Smith. The Car Hacker’s Handbook: A Guide for the Penetration Tester. No
Starch Press, 2016. 15, 32, 34

[119] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle network. In 2016
international conference on information networking (ICOIN), pages 63–68. IEEE, 2016.
39, 41

[120] CAN Specification. Version 2.0. Robert Bosch GmbH, 1991. 27

[121] Ivan Studnia, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, and Youssef Laarouchi.
A language-based intrusion detection approach for automotive embedded networks. In
The 21st IEEE Pacific Rim International Symposium on Dependable Computing (PRDC
2015), 2014. 39, 41

[122] Ivan Studnia, Eric Alata, Vincent Nicomette, Mohamed Kaâniche, and Youssef Laarouchi.
A language-based intrusion detection approach for automotive embedded networks.
International Journal of Embedded Systems, 10(1), 2018. 39, 41

[123] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed Kaaniche, and
Youssef Laarouchi. Survey on security threats and protection mechanisms in embedded
automotive networks. In 2013 43rd Annual IEEE/IFIP Conference on Dependable
Systems and Networks Workshop (DSN-W), pages 1–12. IEEE, 2013. 20

[124] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc. Frequency-based anomaly
detection for the automotive CAN bus. In Industrial Control Systems Security (WCICSS),
2015 World Congress on, pages 45–49. IEEE, 2015. 39, 41

[125] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection in automo-
bile control network data with long short-term memory networks. In Data Science and
Advanced Analytics (DSAA), 2016 IEEE International Conference on, pages 130–139.
IEEE, 2016. 39, 41

[126] Amenaza Technologies. SecurITree. https://www.amenaza.com//, 2001-2018. Accessed:
2019-01-01. 47

[127] Chee-Wooi Ten, Chen-Ching Liu, and Manimaran Govindarasu. Vulnerability assessment
of cybersecurity for scada systems using attack trees. In Power Engineering Society
General Meeting, 2007. IEEE, pages 1–8. IEEE, 2007. 46

168

https://www.amenaza.com//

BIBLIOGRAPHY

[128] C Valasek and C Miller. A survey of remote automotive attack surfaces. Scribd,
Washington, USA, 2014. 18

[129] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. Canauth-a simple,
backward compatible broadcast authentication protocol for can bus. In ECRYPT
Workshop on Lightweight Cryptography, volume 2011, 2011. 35, 36

[130] David Wagner and R Dean. Intrusion detection via static analysis. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 156–168. IEEE,
2001. 21

[131] Marko Wolf, André Weimerskirch, and Thomas Wollinger. State of the art: Embedding
security in vehicles. EURASIP Journal on Embedded Systems, 2007(1):074706, 2007. 20

169

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Context: security of connected vehicles
	1.2 The automotive industry challenges
	1.3 Motivation and goals
	1.4 Contributions
	1.4.1 Formal modeling approach for automatic attack tree generation
	1.4.2 CAN identifier randomization strategy
	1.4.3 Prediction-based intrusion detection system

	1.5 Outline

	2 State of the Art
	2.1 Introduction
	2.2 Cyber-physical architecture of connected cars
	2.2.1 Sensors
	2.2.2 Actuators
	2.2.3 Electronic Control Units
	2.2.4 Communication interfaces
	2.2.4.1 In-vehicle shared communication buses
	2.2.4.2 Diagnostics interface
	2.2.4.3 Communication with the outside world

	2.2.5 Overall architecture
	2.2.6 Aftermarket and diagnostics Devices

	2.3 Vulnerabilities and threats survey
	2.3.1 Vulnerabilities and attack vectors
	2.3.1.1 Direct physical access
	2.3.1.2 Indirect physical access
	2.3.1.3 Wireless access

	2.3.2 Threats
	2.3.2.1 Security violations
	2.3.2.2 Attacker motivation

	2.4 Countermeasures and Security methodologies
	2.4.1 Countermeasures
	2.4.1.1 Architecture
	2.4.1.2 Asset protection and data security
	2.4.1.3 Policy enforcement and run-time protections

	2.4.2 Threat Analysis and Risk Assessment

	2.5 In-Vehicule Secure Communication survey
	2.5.1 Controller Area Network Overview
	2.5.2 CAN Weaknesses
	2.5.2.1 Denial-of-Service
	2.5.2.2 Reverse engineering
	2.5.2.3 Fuzzing attack
	2.5.2.4 Impersonation attack
	2.5.2.5 Exhaustion attack

	2.5.3 Protection mechanisms
	2.5.3.1 Payload protection
	2.5.3.2 Identifier protection
	2.5.3.3 Intrusion Detection and Prevention Systems

	2.5.4 Advantages and disadvantages

	2.6 Conclusion

	3 Risk analysis and Attack tree generation
	3.1 Introduction
	3.2 Attack trees
	3.2.1 Presentation and formal definition
	3.2.2 Attack tree generation problem
	3.2.2.1 Attack trees in the automotive domain
	3.2.2.2 Attack tree generation in other application domains

	3.3 A case study: speed acquisition and display system
	3.3.1 Description
	3.3.2 Goal of the attacker: forge displayed vehicle speed

	3.4 Cyber-physical architecture formal model
	3.4.1 Data
	3.4.2 Communication mediums
	3.4.3 Hardware components
	3.4.4 Service components
	3.4.5 Attacker
	3.4.6 Architecture
	3.4.7 Security properties
	3.4.8 Case-study formal model

	3.5 Graph transformation system
	3.5.1 Definition
	3.5.2 Labeled transition system
	3.5.3 Tool support: GROOVE
	3.5.4 Case-study graph transformation system

	3.6 Attack tree transformation
	3.6.1 Attack graph generation
	3.6.2 Attack tree generation:
	3.6.3 Case-study generation of attacks

	3.7 Security analysis and Countermeasure
	3.7.1 Security analysis
	3.7.2 Countermeasures:

	3.8 Conclusion

	4 Identifier Randomization: an Efficient Protection against CAN-bus Attacks
	4.1 Introduction
	4.2 General formalism of ID-based protection
	4.3 Evaluation metrics
	4.3.1 Reverse-engineering attack
	4.3.2 Replay and injection attacks

	4.4 Proposed solutions
	4.4.1 The IA-CAN Approach
	4.4.2 Equal Intervals
	4.4.3 Frequency Intervals
	4.4.4 Dynamic Intervals
	4.4.5 Arithmetic Masking

	4.5 Comparison
	4.6 Conclusion

	5 On-board Intrusion Detection and Prevention system
	5.1 Introduction
	5.2 Machine learning algorithms
	5.2.1 Learning strategy
	5.2.2 Parametric and non-parametric models

	5.3 Principle and problem formulation
	5.3.1 Signal types
	5.3.2 Intrusion detection principle
	5.3.3 Mathematical formulation
	5.3.4 Real-valued signal
	5.3.5 Categorical signal

	5.4 Validation metrics
	5.4.1 Regression metrics for real-valued signals:
	5.4.2 Classification metrics for categorical signals:

	5.5 Supervised learning algorithms
	5.5.1 K-Nearest Neighbor
	5.5.1.1 KNN for regression
	5.5.1.2 KNN for classification

	5.5.2 Decision tree
	5.5.2.1 Regression Trees
	5.5.2.2 Classification Trees

	5.5.3 Artificial Neural Network
	5.5.3.1 MLP for Regression
	5.5.3.2 MLP for Classification

	5.6 Data collection and feature engineering
	5.6.1 Experimental set-up
	5.6.2 Data collection
	5.6.3 Feature engineering

	5.7 Experimental validation and discussion
	5.7.1 Predicting a real-valued signal
	5.7.1.1 Speed signal
	5.7.1.2 Capturing nominal behavior of the speed signal

	5.7.2 Predicting a categorical signal
	5.7.2.1 Brake lights command signal
	5.7.2.2 Capturing nominal behavior of the brake-lights-command signal

	5.7.3 Unification of detection rule

	5.8 Evaluation against attacks
	5.8.1 Simulation of attacks
	5.8.2 Attacks against real-valued signal
	5.8.2.1 Random speed injection attack
	5.8.2.2 Speed offset injection attack
	5.8.2.3 Speed Denial of service (signal drop) attack

	5.8.3 Attacks against categorical signal
	5.8.3.1 Random command injection attack
	5.8.3.2 Inverse command injection attack
	5.8.3.3 Denial of service (force to 0) attack

	5.9 Alerts handling
	5.9.1 Prevention mechanism
	5.9.2 False positives reduction strategy

	5.10 Conclusion and discussion

	6 Conclusion
	6.1 Summary
	6.2 Perspectives and future research directions
	6.2.1 On risk assessment
	6.2.2 On in-vehicle secure communications
	Appendices
	Transforamtion rules
	Entropy computations

	Bibliography

