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Rate Meta-Distribution in Millimeter Wave URLLC
Device-to-Device Networks with Beam

Misalignment
Yibo Quan, Marceau Coupechoux and Jean-Marc Kélif

Abstract—Using the stochastic geometry framework, we study
a millimeter wave (mmWave) Device-to-Device (D2D) net-
work dedicated to Ultra-Reliable Low Latency Communications
(URLLC), where users employ multiple antennas to perform
beamforming. We leverage the notion of meta-distribution in
order to capture the reliability requirement of URLLC. The
packet transmission process is divided into two phases: a beam
training phase, during which exhaustive beam sweeping is
adopted, and a data transmission phase. The paper investigates
the misalignment error distribution resulting from an imperfect
training phase, due to the finite codebooks resolution and the
fast variation of the channel. For the data transmission phase,
closed-form expressions for all the moments of the conditional
rate coverage probability are derived, and the meta-distribution is
approximated using the beta approximation. The study evaluates
the overall network performance through the effective rate meta-
distribution, which accounts for the training overhead and beam
misalignment errors. The results show the detrimental impact of
misalignment errors when URLLC requirements are stringent
and highlight the trade-off between the training overhead and
the gain brought by multiple antennas. Insights are provided for
optimally and jointly choosing the codebook size and tbe number
of antennas.

Index Terms—Device-to-device, sidelink, stochastic geometry,
beamforming, meta-distribution, misalignment, URLLC

I. INTRODUCTION

DEvice-to-Device (D2D) communication is one of the key
technologies for future wireless and cellular networks.

D2D indeed provides an efficient and reliable way for devices
to communicate with each other, possibly without the assis-
tance of a cellular infrastructure [1]. Compared to traditional
communications via a Base Station (BS), D2D communica-
tions have numerous advantages such as increasing the overall
network capacity, increasing the data rate or reducing latency
thanks to the proximity between devices. This makes D2D an
interesting candidate technology for Ultra-Reliable Low La-
tency (URLLC) communications, one of the pillars of 5G New
Radio and future generations [2]. Millimeter wave (mmWave)
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D2D communication is a technology that uses high-frequency
radio waves in the range 30-300 GHz for direct communica-
tions between devices. Compared to sub-6 GHz bands usually
adopted for cellular communications, mmWaves offer very
large bandwidths, allowing fast and reliable transmissions [3].
High carrier frequencies are however characterized by a very
short coherence time and a predominant Line-of-Sight (LOS)
propagation with high attenuation [4]. In order to overcome
these challenging propagation conditions, it is necessary to
equip devices with multiple antennas and to perform beam-
forming to enhance the signal strength and quality [5]. To
fully exploit the beamforming gain, the beams of D2D devices
need to be steered towards desired directions through a process
called beam training. The success of beam training depends on
several factors, including the channel conditions, the training
procedure, or the codebook design. Misalignment errors may
thus occur, which can lead to a degradation of the data
transmission performance [6], in particular in the context of
communications with low latency and high reliability require-
ments. To better understand these challenges and to guide
protocol designs, our study proposes a theoretical analysis of
the communication reliability in mmWave D2D networks in
the context of URLLC. Our approach is based on stochastic
geometry and leverages the notion of meta-distribution in order
to capture the reliability requirement of URLLC. It takes into
account beam misalignment errors due to the beam training
process when using mmWaves and the fundamental trade-off
between training overhead and data transmission reliability.

A. Related works

Stochastic geometry is a widely used mathematical tool
for evaluating the coverage and rate performance of wireless
networks, see e.g. [7]. While early studies on D2D focus on the
average coverage probability among all users [8], it is essential
in the context of URLLC to consider the distribution of the
traditional performance metrics, to know for example the
proportion of users meeting reliability requirements, as defined
e.g. in [2]. To fully characterize the spatial distribution of the
communication reliability, the meta-distribution concept can
be leveraged [9]. Several studies in the literature in stochastic
geometry have taken into account beamforming [10]–[16].
Among those that have computed the rate meta-ditribution
of mmWave D2D networks, such as [10], [11], [15], [16],
several papers assume a perfect beam alignment and overlook
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the significance of beam misalignment. However, the effects
of beam misalignment need to be studied as they play a crucial
role in the network’s performance. Some papers investigate the
effects of beam misalignment, however in an incomplete way.
This is the case for example of [12], [14], where the alignment
errors are modelled using Gaussian or Uniform distributions
In [12], only the average coverage probability is derived. In
[14], beam misalignement is taken into account in numerical
results but not in the calculation of the meta-distribution. In our
previous work [13], we approximate the meta-distribution for
the mmWave D2D network with imperfect beam alignment
by considering a Gaussian distributed alignment error while
assuming Rayleigh fading channels. These approaches need
to be extended to Nakagami-M fading channels, which are
better suited to the prominent LOS propagation of mmWaves
and include Rayleigh, Rician and more general fading distribu-
tions [17]. They also need to be extended to realistic misalign-
ment error models derived from the alignment procedure. In
order to better model the effect of beam misalignment, several
papers analyse the beam training process [18]–[22]. These
works assume an exhaustive search procedure, known as beam
sweeping, to sequentially compare all possible transmitter-
receiver beam directions. Specifically, the authors of [18], [19]
study the impact of noise and derive upper and lower bounds
for the misalignment probability. These studies are performed
for a point-to-point transmission, while stochastic geometry
allows for a system level analysis. Two papers are analysing
beam misalignment in a cellular network context. Reference
[21] studies the impact of user mobility, while the authors
of [22] consider the potential beam misalignment due to the
reuse of pilot signals by BSs. However, none of these works
considers the effect of the codebook resolution, of the fast
variation of the channel at mmWave frequencies and none
of them studies the effective rate meta-distribution, a useful
metric for URLLC. At last, several works have investigated
the joint design of beam training and data transmission using
stochastic geometry, see e.g. [20]–[22]. During the beam train-
ing process, there is indeed a fundamental trade-off between
training and data transmission: Inadequate training may lead
to poor channel estimation and thus to reduced data rate, while
excessive training can result in disproportionate overhead.
Reference [20] is focusing on mis-detection rather than on
misalignement as the users always points to the sector with
minimum path-loss. The authors of [22] ignore the possibility
to have sub-optimal beam pairs (the joint beam gain is either
maximal or zero). Reference [21] studies the overhead due to
beam handovers and misalignment when a user is moving in
the network. The authors however assume that beam alignment
can always be completed within a fixed amount of time,
ignoring the different time constraints for beam sweeping
with different beam widths and potential misalignment due
to inadequate training. Furthermore, these studies assume a
perfect codebook, where beams perfectly span the angular
aperture without any hole or overlapping between the beams.
Side-lobes are also neglected. In practice, however, the code-
book resolution plays an important role in the magnitude of
the misalignment error. In these studies, Rayleigh fading is
always assumed, while Nakagami-M is more appropriate and

more generic. At last, all these works focus solely on the
average coverage probability of the network, while the study
of the meta-distribution is required for understanding network
performance in a URLLC context. Finally, in our previous
work [23], [24], we have studied the stability of a spatio-
temporal model considering beam misalignment, however
without providing the rate meta-distribution nor accounting
for URLLC constraints.

B. Contributions

We propose an analytical methodology based on stochastic
geometry to study the communication reliability of mmWave
D2D networks. The main contributions of the paper are as
follows.

• We propose closed-form formulas for the joint Probability
Mass Function (PMF) of the antenna gains at the trans-
mitter and the receiver resulting from the beam sweep-
ing process, assuming any generic small-scale fading
distribution, including Nakagami-M and any codebook
resolution. In the literature, papers studying this problem
ignore the effect of the varying small-scale fading, and
the influence of the codebook resolution [18]–[22].

• We derive closed-form formulas for the moments of
the meta-distribution of the effective rate assuming
Nakagami-M fading, from which we can derive the beta
approximation. This meta-distribution allows us to obtain
statistical latency guarantees for URLLC communica-
tions. In the literature, authors either ignore misalignment
errors or do not study the rate meta-distribution [20]–[22].

• Via numerical experiments, we highlight the trade-offs
between training and data resources and between the
number of antennas and misalignment errors. We are
able to optimize the codebook size and the number of
antennas. To the best of our knowledge, these trade-
offs have not been studied in the literature using the
meta-distribution while taking into account the codebook
resolution.

II. SYSTEM MODEL

In this section, we introduce the network model and the
codebook-based beamforming model.

A. Network model

We consider a mmWave D2D network as a classical
bipolar network model, where the D2D transmitters form a
homogeneous Poisson point process (PPP) Φ𝑇 with intensity
Λ(d𝑥) = 𝜆 × d𝑥 in a 2-dimensional space R2 [7]. Each
D2D transmitter is associated with a dedicated receiver and
performs point-to-point data transmissions. The point process
associated with the receivers is denoted by Φ𝑅. We assume
that the D2D receivers are uniformly located on the circles
around their dedicated transmitters, with a constant radius 𝑟.
Such a process can be interpreted as a marked point process
of Φ𝑇 with independent random marks. Hence Φ𝑅 is also
a homogeneous PPP [25]. According to the Slivnyak-Meck
theorem, the statistical characteristics do not change for a PPP
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Fig. 1: Time slot of duration 𝑇 made of: (i) A beam training
phase, which consists of 𝑁2

𝑏
mini-slots of duration 𝜏; (ii) A

data transmission phase.

if we add a typical point in a particular position, or more
formally, the reduced Palm distribution P!

𝑥 (·) of Φ is equal
to the original distribution P(Φ ∈ ·) [26]. For convenience,
a typical receiver is assumed to be located at the origin
and attempts to receive the data from the corresponding
transmitter. In order to compensate for the propagation loss of
mmWaves, we consider that D2D transmitters and receivers
are equipped with Uniform Antenna Arrays (ULA) with 𝑁𝑎
antenna elements, which allow directional transmissions [27]–
[29]. Every ULA can be configured with a codebook, which
is a finite set of 𝑁𝑏 possible beams pointing in directions
that divide [0, 2𝜋) into equal intervals. We assume that all
users are synchronized and that time is divided into slots of
duration 𝑇 , see Fig. 1. Each slot consists of a beam training
phase and a data transmission phase. In the beam training
phase, the transmitter and the receiver jointly train the beams
from the pre-designed codebook. The beam training phase is
divided into 𝑁2

𝑏
mini-slots of duration 𝜏, during which every

beam pair is measured before choosing the one providing the
highest signal strength. During the data transmission phase,
users employ the beam pair derived during the first phase to
send a data file of size 𝐿 bits. In the context of URLLC,
the slot duration can be seen as a time budget that should be
shared between the beam training and the data transmission
of a small packet.

B. Beamforming and channel model

The channel is modelled with a distance dependent path-
loss and small-scale fading. For a typical receiver located at
a distance 𝑟 from a transmitter, the path-loss is modelled as
ℓ(𝑟) = 𝐾𝑟−𝛼, where 𝛼 is the path-loss exponent and 𝐾 is
a constant depending on the path-loss reference distance and
the carrier frequency1 [31]. The small scale fading coefficient
ℎ is modelled as a Nakagami-M fading, i.e., ℎ ∼ Γ(𝑀, 1

𝑀
)

where Γ is the Gamma distribution with shape parameter
𝑀 and rate parameter 1

𝑀
[17]. The special case 𝑀 = 1

corresponds to Rayleigh fading. We denote 𝐹 (·) and 𝑓 (·) the
Cumulative Distribution function (CDF) and the Probability
Density Function (PDF) of ℎ, respectively. The equivalent

1We assume here a deterministic path-loss. Taking into account a proba-
bility to be in LOS which is decreasing with distance is left for future work.
Analytical results can be however easily extended to the ball model considered
in [10], [30].

channel matrix H ∈ C𝑁𝑎×𝑁𝑎 , including the ULA responses,
can be thus written as follows [32]:

H =
√︁
ℓ(𝑟)ℎu(𝜓)v∗ (𝜉) (1)

where u(𝜓) ∈ C𝑁𝑎×1 and v(𝜉) ∈ C𝑁𝑎×1 are the array
response vectors at the receiver side and the transmitter side,
respectively, 𝜓 is the Angle-of-Arrival (AoA) and 𝜉 is the
Angle-of-Departure (AoD) of the plane wave with respect to
the antenna arrays axis. This single dominant path model has
been widely adopted by the literature on millimeter waves
communications, see e.g. [33], [34]. The small scale fading
coefficient is here due to non-resolvable multi-paths. Taking
the phase at the first antenna element as a reference, the array
response vectors can be expressed as follows [22]:

u(𝜓) = [1, 𝑒 𝑗
2𝜋𝑑 𝑓𝑐

𝑐
cos(𝜓) , ..., 𝑒 𝑗

2𝜋𝑑 𝑓𝑐
𝑐

(𝑁𝑎−1) cos(𝜓) ]T (2)

v(𝜉) = [1, 𝑒 𝑗
2𝜋𝑑 𝑓𝑐

𝑐
cos( 𝜉 ) , ..., 𝑒 𝑗

2𝜋𝑑 𝑓𝑐
𝑐

(𝑁𝑎−1) cos( 𝜉 ) ]T (3)

where 𝑑 is the distance between the adjacent antenna elements,
𝑓𝑐 is the carrier frequency and 𝑐 is the speed of light. Each
device can steer its antenna bore-sight towards its desired
direction. The receiver steers the beam in direction 𝜃𝑅 with
respect to the antenna array axis using a combining vector
w(𝜃𝑅). The transmitter steers the beam in direction 𝜃𝑇 with
respect to the antenna array axis using a beamforming vector
f (𝜃𝑇 ). We have [29], [32]:

w(𝜃𝑅) = [1, 𝑒− 𝑗
2𝜋𝑑 𝑓𝑐

𝑐
cos(𝜃𝑅 ) , ..., 𝑒− 𝑗

2𝜋𝑑 𝑓𝑐
𝑐

(𝑁𝑎−1) cos(𝜃𝑅 ) ]T (4)

f (𝜃𝑇 ) = 1
√
𝑁𝑎

[1, 𝑒− 𝑗
2𝜋𝑑 𝑓𝑐

𝑐
cos(𝜃𝑇 ) , ..., 𝑒− 𝑗

2𝜋𝑑 𝑓𝑐
𝑐

(𝑁𝑎−1) cos(𝜃𝑇 ) ]T

(5)

where the 1√
𝑁𝑎

factor is to account for the power split among
the 𝑁𝑎 antenna elements at the transmitter side. Ignoring for
now interference, the received signal can be expressed as
follows:

𝑦 = w∗ (𝜃𝑅)Hf (𝜃𝑇 )𝑠 + w∗ (𝜃𝑅)z (6)

where 𝑠 is the transmitted signal with average transmit
power E[𝑠𝑠∗] = 𝑃. The noise vector 𝑧 follows a circularly-
symmetric complex normal distribution z ∼ CN(0, 𝜎2I)
with average power 𝜎2 = N0𝑊 , where 𝑊 is the signal
bandwidth and N0 is the Power Spectral Density (PSD) of
thermal noise. The beamforming vector codebook is defined
as C𝑇 = {f (𝜃𝑇𝑚)}𝑚=1:𝑁𝑏

, where 𝜃𝑇𝑚 =
2𝜋 (𝑚−1)
𝑁𝑏

and 𝑁𝑏
is the size of the codebook, i.e., the number of possible
beam directions. Respectively, we denote the combining vector
codebook as C𝑅 = {w(𝜃𝑅𝑛 )}𝑛=1:𝑁𝑏

, where 𝜃𝑅𝑛 =
2𝜋 (𝑛−1)
𝑁𝑏

. Note
that the sets {𝜃𝑇𝑚}𝑚=1:𝑁𝑏

and {𝜃𝑅𝑛 }𝑛=1:𝑁𝑏
cover a full angle

space of the transmitter and of the receiver respectively, with
equal resolution 𝜃𝑢 = 2𝜋

𝑁𝑏
. We denote 𝑙 = (𝑚, 𝑛) a generic

beamforming and combining vectors pair at transmitter and
receiver sides, respectively. The small scale fading coefficients
ℎ are supposed to be independent and identically distributed
(i.i.d.) for different beam pairs and between the training and
the data transmission phases. This assumption is supported by
the very short coherence time at high carrier frequencies. For
example, assuming a speed of 10 km/h, the channel coherence
time at 28 GHz is about 0.482 ms [4]. When the frequency
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Fig. 2: Codebook and HPBW illustration.

is 71 GHz, the coherence time drops to 0.19 ms. These
values are much shorter than a typical slot duration of 1 ms.
Note that the equivalent antenna gains can be expressed as
𝑔𝑇 (𝜉, 𝜃𝑇 ) = |v∗ (𝜉)f (𝜃𝑇 ) |2 and 𝑔𝑅 (𝜓, 𝜃𝑅) = |w∗ (𝜃𝑅)u(𝜓) |2 at
the transmitter and at the receiver, respectively. For tractability
reasons, we approximate the actual antenna pattern by the
widely used “flat-top” model [10], [21], [22]. This model
consists of a main beam of angular aperture 𝜔 and a side
beam of width 2𝜋 − 𝜔. More precisely, the antenna gain of a
transmitter can be expressed as:

𝑔𝑇 (𝜉, 𝜃𝑇 ) =
{
𝐺𝑇𝑚𝑎𝑥 , 0 ≤ |𝜉 − 𝜃𝑇 | ≤ 𝜔/2
𝐺𝑇
𝑚𝑖𝑛

, otherwise.
(7)

Accordingly, the antenna gain of a receiver 𝑔𝑅 (𝜓, 𝜃𝑅) has a
main lobe of gain 𝐺𝑅𝑚𝑎𝑥 within the same angular aperture
𝜔 around its boresight direction 𝜃𝑅, and a sidelobe of gain
𝐺𝑅
𝑚𝑖𝑛

outside this range. The main beam lobe width 𝜔 can
be interpreted as the Half Power Beam Width (HPBW) of
the antenna pattern. The main beam gain is precisely the
maximum gain of the ULA. The side beam gain is obtained
by normalizing the total radiation power.

Lemma 1: For a ULA with 𝑁𝑎 antenna elements, the
HPBW can be expressed as a function of 𝑁𝑎 as follows:

𝜔(𝑁𝑎) = 2
(
𝜋

2
− arccos

2.784
𝑁𝑎𝜋

)
(8)

Furthermore, we have 𝐺𝑇𝑚𝑎𝑥 = 𝑁𝑎, 𝐺𝑇
𝑚𝑖𝑛

= 𝜌(𝑁𝑎), 𝐺𝑅𝑚𝑎𝑥 =

𝑁2
𝑎 and 𝐺𝑅

𝑚𝑖𝑛
= 𝑁𝑎𝜌(𝑁𝑎), where

𝜌(𝑁𝑎) =

∫ 𝜋

−𝜋
1
𝑁𝑎

��� sin( 1
2 𝑁𝑎 𝜋 cos 𝜃 )

sin( 1
2 𝜋 cos 𝜃 )

���2 𝑑𝜃 − 𝑁𝑎𝜔(𝑁𝑎)
2𝜋 − 𝜔(𝑁𝑎)

(9)

Proof: See Appendix A.
The codebook parameters and the HPBW are illustrated in
Fig. 2.

III. BEAM TRAINING AND MISALIGNMENT

We present here the beam training process and study the
effects of beam misalignment.

A. Beam sweeping

During the beam training phase, the devices adopt a beam
sweeping strategy where the transmitter and the receiver
jointly steer the beams successively in a set of directions by
adopting the beamforming/combining vectors pair from the

pre-defined codebooks presented in Section II-B. At every
mini-slot of the training phase, the transmitter and its receiver
choose a different beamforming and combining vectors pair
( 𝑓 (𝜃𝑇𝑚), 𝑤(𝜃𝑅𝑛 )) from the codebooks C𝑇 × C𝑅, so that all
pairs of vectors are measured. We denote 𝐺𝑇𝑚 = 𝑔𝑇 (𝜉, 𝜃𝑇𝑚)
and 𝐺𝑅𝑛 = 𝑔𝑅 (𝜓, 𝜃𝑅𝑛 ) the transmitter and receiver antenna
gains when the vectors pair 𝑙 = (𝑚, 𝑛) is employed. The
corresponding channel fading coefficient is denoted as ℎ𝑙 . The
useful received signal when using the pair 𝑙 is expressed as
follows:

S𝑙 = 𝑃ℎ𝑙𝐺𝑇𝑚𝐺𝑅𝑛 ℓ(𝑟) (10)

After sweeping over all the codebooks vectors pairs, the
transmitter and its receiver select the beamforming/combining
vectors pair that maximizes S𝑙:

𝑙∗ = arg max
𝑙=(𝑚,𝑛)

𝑚,𝑛∈[1:𝑁𝑏 ]

S𝑙 (11)

The chosen vectors pair 𝑙∗ = (𝑚∗, 𝑛∗) is then employed by
users during the subsequent data transmission phase. The
pair 𝑙∗ is the best one during the training phase. As the
channel power is varying due to fast fading, it is not necessary
the best one during the data transmission phase. Received
signal strengths are nevertheless correlated because the beam
directions are kept constant for 𝑙∗ between the training and the
data transmission phases. The proposed procedure is inspired
by the synchronization and cell selection procedure in 5G
New Radio [35], [36]. The synchronization is indeed based
on the measurement of the Reference Signal Received Power
(RSRP) of the Secondary Synchronization Signal (SSS). The
signal carried by the SSS has been designed such that any two
different SSS have nearly optimal cross-correlation [37]. As a
consequence, if devices use different SSS sequences (chosen
for example at random while ignoring here possible collisions
or pre-allocated), interference can be neglected during the
beam sweeping phase.

B. Beam misalignment model

Beam misalignment may result from various phenomena
like the device mobility, the resolution of the codebooks or
the device phase errors [18], [19]. In this work, we consider
the alignment errors induced during the training phase because
of the codebook resolution and the channel variability. We
assume the model shown in Fig. 3. A link between a typical
D2D transmitter-receiver pair (in rose) is characterized by an
AoA 𝜓𝑜 and an AoD 𝜉𝑜. The transmitter and the receiver
point their beam in the directions 𝜃𝑇 and 𝜃𝑅, respectively
(𝜃𝑇 = 𝜃𝑅 = 𝜋/2 in the figure). The link between the typical
receiver (‘RX’ in pink) and another interfering D2D device
(‘TX’ in blue) located in 𝑥 has an AoA 𝜓𝑥 and an AoD 𝜉𝑥 .
A misalignment occurs when the transmitter beam direction is
different from the AoD or when the receiver beam direction
is different from the AoA, i.e., when either 𝑒𝑇 = |𝜉𝑜 − 𝜃𝑇 |
or 𝑒𝑅 = |𝜓𝑜 − 𝜃𝑅 | are non zero. At the transmitter side for
example, the maximum antenna gain is achieved as long as
𝑒𝑇 < 𝜔/2, see (7). The error 𝑒𝑇 may result from the codebook
resolution: As 𝜃𝑇 takes values in a finite set, it may not
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Fig. 3: A D2D transmitter-receiver (‘TX’ and ‘RX’ in pink)
at the origin 𝑜 characterized by an AoD 𝜓𝑜 and an AoA 𝜉𝑜.
The alignment errors are denoted as 𝑒𝑇 and 𝑒𝑅. An interfering
D2D transmitter-receiver pair (in blue) is located in 𝑥 and is
characterized by an AoA 𝜓𝑥 and an AoD 𝜉𝑥 with respect to
the pink D2D pair.

coincide with the AoD 𝜉𝑜. The error may also result from
channel variability: Due to the random variable ℎ𝑙 , the beam
pair chosen during the training phase may not correspond to
the best pair during the data transmission phase, see (10), (11).
According to our network model, the AoD 𝜉𝑜 and AoA 𝜓𝑜
are uniformly distributed in [0, 2𝜋). Without loss of generality,
we assume that the AoD and AoA correspond to the first
value of the codebook, i.e., 𝜉𝑜 ∈ [𝜃𝑇1 − 𝜃𝑢

2 , 𝜃
𝑇
1 + 𝜃𝑢

2 ) and
𝜓𝑜 ∈ [𝜃𝑅1 − 𝜃𝑢

2 , 𝜃
𝑅
1 + 𝜃𝑢

2 ).

C. Probability mass function of antenna gains

During the beam sweeping phase, a transmitter and a
receiver antenna gain 𝐺𝑇𝑚 and 𝐺𝑅𝑛 are respectively observed
when the beam pair 𝑙 = (𝑚, 𝑛) is measured. These antenna
gains are i.i.d. random variables across the mini-slots due to
the random AoA and AoD. The PMF of these antenna gains
depends on the codebook resolution 𝜃𝑢, the codebook size 𝑁𝑏
and the HPBW 𝜔. We derive this PMF in the following lemma.

Lemma 2: When 𝜔 ≤ 𝜃𝑢, the PMF of 𝐺𝑇𝑚 can be expressed
as follows:

P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑎𝑥] =
{
𝜔
𝜃𝑢

if 𝑚 = 1
0 if 𝑚 ≠ 1

(12)

P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑖𝑛] = 1 − P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑎𝑥] (13)

The PMF of 𝐺𝑅𝑛 have similar expressions as in (12) and
(13), where index 𝑛 is replaced by 𝑚. When 𝜔 > 𝜃𝑢, the PMF
of 𝐺𝑇𝑚 and 𝐺𝑅𝑛 can be expressed as follows:

P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑎𝑥] =



1 if 𝑚 ∈ 𝐼1
mod( 𝜔−𝜃𝑢

2 , 𝜃𝑢 )
𝜃𝑢

if 𝑚 = ⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋ + 2

0 if 𝑚 ∈ 𝐼2
mod( 𝜔−𝜃𝑢

2 , 𝜃𝑢 )
𝜃𝑢

if 𝑚 = 𝑁𝑏 − ⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋

1 if 𝑚 ∈ 𝐼3
(14)

where 𝐼1 = [1 : ⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋+1], 𝐼2 = [⌊ 𝜔−𝜃𝑢

2𝜃𝑢 ⌋+3 : 𝑁𝑏−⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋−

1] and 𝐼3 = [𝑁𝑏 + 1 − ⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋ : 𝑁𝑏].

P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑖𝑛] = 1 − P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑎𝑥] (15)

The PMF of 𝐺𝑅𝑛 have similar expressions as in (14) and (15),
where index 𝑛 is replaced by 𝑚.

Proof: See Appendix B.
During the data transmission phase, the beam pair 𝑙∗ =

(𝑚∗, 𝑛∗) has been chosen. The observed antenna gains 𝐺𝑇
𝑚∗

and 𝐺𝑇
𝑛∗ thus depend on the measurements performed during

the beam sweeping phase. The total antenna gain for a typical
link is their product. We provide hereafter their joint PMF.

Lemma 3: Let 𝜈 ∈ G𝑇 = {𝐺𝑇𝑚𝑎𝑥 , 𝐺𝑇𝑚𝑖𝑛} and 𝜅 ∈
G𝑅 = {𝐺𝑅𝑚𝑎𝑥 , 𝐺𝑅𝑚𝑖𝑛} two possible values for the transmitter
and receiver antenna gain, respectively. The joint probability
𝑃[𝐺𝑇

𝑚∗ = 𝜈, 𝐺
𝑅
𝑛∗ = 𝜅] can be computed as follows:

P[𝐺𝑇𝑚∗ = 𝜈, 𝐺
𝑅
𝑛∗ = 𝜅] =

∑︁
𝑚∈[1:𝑁𝑏 ]
𝑛∈[1:𝑁𝑏 ]

P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, 𝑙∗ = (𝑚, 𝑛)]

(16)
where

P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, 𝑙∗ = (𝑚, 𝑛)]

=
∑︁

(𝜈𝑖 ,𝜅 𝑗 ) ∈G𝑇×G𝑅

𝑖∈[1:𝑁𝑏 ]\𝑚, 𝑗∈[1:𝑁𝑏 ]\𝑛

{
Eℎ

[ ∏
�̄�∈[1:𝑁𝑏 ],�̄�∈[1:𝑁𝑏 ]

(�̄�,�̄�)≠(𝑚,𝑛)
𝜈𝑚=𝜈,𝜅𝑛=𝜅

𝐹

(
ℎ𝜈𝜅

𝜈�̄�𝜅�̄�

) ]
P[𝐺𝑇𝑚 = 𝜈]P[𝐺𝑅𝑛 = 𝜅]

∏
𝑖∈[1:𝑁𝑏 ]\𝑚
𝑗∈[1:𝑁𝑏 ]\𝑛

P[𝐺𝑇𝑖 = 𝜈𝑖]P[𝐺𝑅𝑗 = 𝜅 𝑗 ]
}

(17)

where ℎ is the channel fading coefficient with CDF 𝐹 (·) and
where the terms P[𝐺𝑇

𝑖
= 𝜈𝑖] and P[𝐺𝑅

𝑗
= 𝜅 𝑗 ] can be computed

thanks to Lemma 2.
Proof: See Appendix C.

When 𝜔 < 𝜃𝑢, there is no overlap between adjacent beams.
As it can be seen in (12), the probability that 𝐺𝑇1 is equal
to its maximum, 𝐺𝑇𝑚𝑎𝑥 , increases when 𝜃𝑢 tends to 𝜔. When
𝜔 > 𝜃𝑢, the antenna beam can cover multiple sectors of width
𝜃𝑢. A smaller 𝜃𝑢 allows for more sectors to be covered, all of
which with a maximum antenna gain. Considering these two
facts, as 𝜃𝑢 decreases, the probability that the chosen beam
pair exhibits the maximum antenna gain increases, as it is
shown in Lemma 3. Note that contrary to what is done in the
literature [20], [22], we do not propose a misalignment prob-
ability but the complete PMF of joint antenna gain resulting
from the training process.

IV. DATA TRANSMISSION

We characterize in this section the data transmission perfor-
mance in a URLLC context.

A. Effective Achievable Rate and Delay
The transmission rate for a transmitter-receiver pair during

the data transmission phase is approximated by the classical
Shannon formula, where the interference is considered as
noise [17]. For a typical receiver at origin 𝑜 and its associated
transmitter (see Fig. 3), the Signal to Interference plus Noise
Ratio (SINR) is expressed as follows:

𝛾 =
𝑃ℎ𝑥𝑜𝐺

𝑇
𝑚∗𝐺

𝑅
𝑛∗ℓ(𝑟)∑

𝑥∈Φ\𝑥𝑜 𝑃ℎ𝑥𝑔
𝑅 (𝜓𝑥 , 𝜃𝑅𝑛∗ )𝑔𝑇 (𝜉𝑥 , 𝜃𝑇𝑥 )ℓ( |𝑥 |) + N0𝑊

(18)
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and the Transmission Rate R during the data transmission
phase is expressed as follows:

R = 𝑊 log2 (1 + 𝛾) (19)

where ℎ𝑥𝑜 and ℎ𝑥 are independent fading coefficients for the
transmission and the interference link, respectively. The bore-
sight direction of the interfering antenna is denoted 𝜃𝑇𝑥 . The
antenna gains 𝐺𝑇

𝑚∗ and 𝐺𝑅
𝑛∗ are random variables following the

PMF derived in Lemma 3. During the data transmission phase,
a user sends a data file using the beam pairs 𝑙∗ = (𝑚∗, 𝑛∗)
chosen during the beam training phase. In order to account
for the fraction of the slot dedicated to beam training, we
define the Effective Achievable Rate [21], [22]:

R̃ =

(
1 −

𝑁2
𝑏
𝜏

𝑇

)+
R (20)

where the superscript + denotes the function ℎ+ = 𝑚𝑎𝑥(ℎ, 0).
The delay 𝐷 to transfer a data packet of length 𝐿 consists of
both the beam training delay and the data transmission delay:

𝐷 = 𝑁2
𝑏𝜏 +

𝐿

R (21)

Note that we have used the Shannon formula to approximate
the transmission rate. An alternative would have been to
consider the finite block-length regime [38]. However, due to
the difficulty to derive closed-form formulas with this regime,
we consider this regime in the section dedicated to numerical
results, Section VI-G.

B. Conditional Effective Rate Coverage Probability

The Rate Coverage Probability, 𝑝𝑐 (𝜂), is defined as the
probability that the transmission rate for a typical transmitter-
receiver link is greater than a threshold 𝜂 in bits/s.

𝑝𝑐 (𝜂) = P(R > 𝜂) (22)

This metric can only characterize the spatial average coverage
performance among different users. Users at different locations
however perceive different channel conditions, so that the
coverage probability is itself random across the links. The
Conditional Rate Coverage Probability, 𝑃𝑐 (𝜂), has thus been
introduced in [9] to characterize the reliability for a typical
user given a specific network topology realization:

𝑃𝑐 (𝜂)
Δ
= P(R > 𝜂 |Φ𝑇 ,Φ𝑅) (23)

The rate coverage probability in (22) is nothing else than its
expectation with respect to the processes {Φ𝑇 ,Φ𝑅}. In the
same way, we define the Conditional Effective Rate Coverage
Probability �̃�𝑐 (𝜂), which is related to the effective achievable
rate:

�̃�𝑐 (𝜂) = P
(
R̃ > 𝜂 |Φ𝑇 ,Φ𝑅

)
(24)

where 𝜂 is the effective rate threshold.

We define the Conditional Success Transmission Probability
as the probability that the delay 𝐷 is smaller than the slot
duration 𝑇 for a typical D2D pair:

P(𝐷 < 𝑇 |Φ𝑇 ,Φ𝑅) = P

(
R >

𝐿

𝑇 − 𝑁2
𝑏
𝜏
|Φ𝑇 ,Φ𝑅

)
(25)

= P
(
R̃ >

𝐿

𝑇
|Φ𝑇 ,Φ𝑅

)
(26)

Equation (26) shows that when 𝜂 = 𝐿
𝑇

, the conditional
effective rate coverage probability is exactly the conditional
success transmission probability to transfer a file of size 𝐿

within a slot duration 𝑇 . This is also equal to the rate coverage
probability with 𝜂 = 𝐿

𝑇−𝑁2
𝑏
𝜏

during the data transmission

phase, where 𝑁2
𝑏
𝜏 ≤ 𝑇 . In order to take into account the

reliability requirements of URLLC, we now leverage the
notion of meta-distribution.

C. Effective Rate Meta-distribution

The SINR, the rate and the effective rate depend on two sets
of random variables, namely the point processes Φ𝑇 and Φ𝑅

on the one hand, all fading channels ℎ𝑥 on the other hand. The
classical coverage probability in (22) provides an average over
all sources of randomness but fails to describe the dispersion
of the coverage probability across the links for a given point
process realization. Yet, URLLC requirements in terms of
latency and reliability should be achieved for a high proportion
of users. We thus rely on the meta-distribution concept that
decomposes the different sources of randomness and provides
the proportion of links with a high coverage probability. The
meta-distribution is defined as the complementary cumulative
distribution function (CCDF) of the conditional coverage prob-
ability [9]. This metric provides the proportion of users whose
coverage probability is above a certain threshold. It can thus
be interpreted as a measure of the link reliability across the
network. Similar to the definition in [9], [11], we define the
Rate Meta-distribution to characterize the spatial distribution
of the device communication reliability:

�̄�𝑃𝑐 (𝜂) (𝜖)
Δ
= P! (𝑃𝑐 (𝜂) > 𝜖), 𝜖 ∈ [0, 1], 𝜂 ∈ R+. (27)

where P! denotes the Palm measure of {Φ𝑇 ,Φ𝑅}. Respec-
tively, this idea can be further extended to analyze the Effective
Rate Meta-distribution as follows:

�̄��̃�𝑐 ( �̃�) (𝜖)
Δ
= P! (�̃�𝑐 (𝜂) > 𝜖), 𝜖 ∈ [0, 1], 𝜂 ∈ R+. (28)

Users can successfully complete transmission within the time
slot 𝑇 if the effective achievable rate exceeds 𝜂 = 𝐿

𝑇
. In

such cases, the effective rate meta-distribution provides the
proportion of users whose probability of successful transmis-
sion is greater than 𝜖 . Communication is considered reliable
when a typical user’s probability of achieving a transmission
rate higher than 𝜂 is greater than 𝜖 . We call 𝜖 the Reliability
Threshold of the network.
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V. RATE META-DISTRIBUTION WITH MISALIGNMENT

This section provides mathematically tractable expressions
for the rate meta-distribution. A common approach involves
first the derivation of the moments of the conditional coverage
probability, and then the application of either the Gil-Pélaez
theorem or the beta approximation [9].

A. Moments of the conditional rate coverage probability

Theorem 4: Consider a D2D network with the model
introduced in Section II. The 𝑏-th moment of the conditional
rate coverage probability 𝑀𝑏 (𝜂) = E[(𝑃𝑐 (𝜂))𝑏] during the
data transmission phase can be approximated as follows:

𝑀𝑏 ≃
∑︁

𝑘1+...+𝑘𝑀=𝑏

( 𝑏
𝑘1...𝑘𝑀

) (
𝑀∏
𝑚=1

( (𝑀
𝑚

)
(−1)𝑚+1

) 𝑘𝑚 )
E𝐺𝑜

[
𝑒
−𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜

∑𝑀
𝑚=1 𝑚𝑘𝑚𝑒−𝜆𝑄 (𝜂′ ,𝐺𝑜 )

]
(29)

where 𝜂′ = 2
𝜂
𝑊 −1
ℓ (𝑟 ) , 𝛽 = [Γ(1 + 𝑀)]−1/𝑀 , the term

( 𝑏
𝑘1...𝑘𝑀

)
is the multinomial coefficient [39], and the variable 𝐺𝑜 =

𝐺𝑇
𝑚∗𝐺

𝑅
𝑛∗ is the total antenna gain of the typical transmitter-

receiver link. The function 𝑄(𝜂′, 𝐺𝑜) is defined as follows:

𝑄(𝜂′, 𝐺𝑜) =
1

2𝜋
[𝜔2𝐴(𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑎𝑥)

+ 𝜔(2𝜋 − 𝜔)𝐴(𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑖𝑛)
+ 𝜔(2𝜋 − 𝜔)𝐴(𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑎𝑥)
+ (2𝜋 − 𝜔)2𝐴(𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑖𝑛)] (30)

where

𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥) = (31)

lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥

𝐺𝑜𝑇𝑡
)−𝑀𝑘𝑚

)
𝑡 𝛿−1d𝑡

and 𝛿 = 2/𝛼.
Proof: See Appendix D.

Note that the PMF of 𝐺𝑜 = 𝐺𝑇
𝑚∗𝐺

𝑅
𝑛∗ derived in Lemma 3

can be used to evaluate the expectation in (29) using the
expression E𝐺𝑜

[ 𝑓 (𝐺𝑜)] =
∑
𝜈∈G𝑇 ,𝜅∈G𝑅 𝑓 (𝜈𝜅)

∑
𝑚,𝑛

P[𝐺𝑇𝑚 =

𝜈, 𝐺𝑅𝑛 = 𝜅, 𝑙∗ = (𝑚, 𝑛)] for any function 𝑓 .
An alternative expression for (31) is (see the details of the

proof in Appendix D):

𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥) =∫ ∞

0

(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀𝑘𝑚
)
𝑣d𝑣 (32)

Corollary 1: The first moment of the conditional coverage
probability can be expressed as follows:

𝑀1 ≃
𝑀∑︁
𝑚=1

(𝑀
𝑚

)
(−1)𝑚+1E𝐺𝑜

[
𝑒
−𝑚𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜 𝑒−𝜆𝑄1 (𝑚,𝜂′ ,𝐺𝑜 )
]
(33)

where the expression of 𝑄1 (𝑚, 𝜂′, 𝐺𝑜) is defined as follows:

𝑄1 (𝑚, 𝜂′, 𝐺𝑜) =
1

2𝜋
[
𝜔2𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑎𝑥)

+ 𝜔(2𝜋 − 𝜔)𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑖𝑛)
+ 𝜔(2𝜋 − 𝜔)𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑎𝑥)
+ (2𝜋 − 𝜔)2𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑖𝑛)

]
(34)

The function 𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) can be expressed as follows:

𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) = (35)

lim
𝑇→∞

𝑇 𝛿

2

𝑀∑︁
𝑛=1

(𝑀
𝑛

)
(−1)𝑛+1

2𝐹1 (𝑛, 𝛿, 𝛿 + 1;− 𝐺𝑜𝑇

𝑚𝛽𝜂′𝐺𝑥
)

where 𝐵(·) denotes the Beta function and 2𝐹1 (·) denotes the
hypergeometric function [40].

Proof: See Appendix D.
An alternative expression for (35) is:

𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) =∫ ∞

0

(
1 − (1 + 𝑚𝛽𝜂

′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀
)
𝑣d𝑣 (36)

Setting 𝑀 = 1 and owing to the monotonicity properties of
the hypergeometric function, we can easily observe from (33)
that the average coverage probability is an increasing function
of the signal to noise ratio 𝑃𝐺𝑜

N0𝑊
, of the path-gain ℓ(𝑟) between

the transmitter and the receiver and a decreasing function of
the threshold 𝜂, which confirms the intuition.

Corollary 2: The second moment of the conditional cov-
erage probability can be expressed as follows:

𝑀2 ≃
𝑀∑︁
𝑚=1

(𝑀
𝑚

)2

× E𝐺𝑜

[
𝑒
−2𝑚𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜 𝑒−𝜆𝑄21 (𝑚,𝜂′ ,𝐺𝑜 )
]

+
𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

2
(𝑀
𝑖

) (𝑀
𝑗

)
(−1)𝑖+ 𝑗

× E𝐺𝑜

[
𝑒
−(𝑖+ 𝑗 )𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜 𝑒−𝜆𝑄22 (𝑖, 𝑗 ,𝜂′ ,𝐺𝑜 )
]

(37)

where functions 𝑄21 (𝑚, 𝜂′, 𝐺𝑜) and 𝑄22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜) are de-
fined as follows:

𝑄21 (𝑚, 𝜂′, 𝐺𝑜) =
1

2𝜋
[
𝜔2𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑎𝑥)

+ 𝜔(2𝜋 − 𝜔)𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑖𝑛)
+ 𝜔(2𝜋 − 𝜔)𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑎𝑥)
+ (2𝜋 − 𝜔)2𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑖𝑛)

]
(38)

𝑄22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜) =
1

2𝜋
[
𝜔2𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑎𝑥)

+ 𝜔(2𝜋 − 𝜔)𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑎𝑥𝐺𝑅𝑚𝑖𝑛)
+ 𝜔(2𝜋 − 𝜔)𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑎𝑥)
+ (2𝜋 − 𝜔)2𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑇𝑚𝑖𝑛𝐺𝑅𝑚𝑖𝑛)

]
(39)
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and 𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) and 𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑥) are defined
as:

𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) = (40)

lim
𝑇→∞

𝑇 𝛿

2

2𝑀∑︁
𝑛=1

(2𝑀
𝑛

)
(−1)𝑛+1

2𝐹1 (𝑛, 𝛿, 𝛿 + 1;− 𝐺𝑜𝑇

𝑚𝛽𝜂′𝐺𝑥
)

𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑥) = (41)

lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 − (1 + 𝑖𝛽𝜂

′𝐺𝑥
𝐺𝑜𝑇𝑡

)−𝑀 (1 + 𝑗 𝛽𝜂′𝐺𝑥
𝐺𝑜𝑇𝑡

)−𝑀
)
𝑡 𝛿−1d𝑡

Proof: See Appendix D.
Alternative expressions of (40) and (41) are:

𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥) =∫ ∞

0

(
1 − (1 + 𝑚𝛽𝜂

′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−2𝑀
)
𝑣d𝑣 (42)

𝐴22 (𝑖, 𝑗 , 𝜂′, 𝐺𝑜, 𝐺𝑥) = (43)∫ ∞

0

(
1 − (1 + 𝑖𝛽𝜂

′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀 (1 + 𝑗 𝛽𝜂′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀
)
𝑣d𝑣

We have noticed that formulations (31), (35), (40), and (41)
accelerate the convergence of the numerical evaluation when 𝑇
is increasing with respect to their infinite integral counterparts
(32), (36), (42), and (43).

Corollary 3: To calculate the 𝑏-th moment of the con-
ditional effective rate coverage probability �̃�𝑐 (𝜂) in (24),
we only need to replace 𝜂 in Theorem 4 by 𝑇 �̃�

𝑇−𝑁 2
𝑏
𝜏

, where

𝑁2
𝑏
𝜏 < 𝑇 .

B. Beta approximation

The numerical computation of the exact rate meta-
distribution by using Gil-Pélaez theorem is often difficult. An
alternative solution is to approximate it with a beta distribution
by matching the first and the second moment as follows:

�̄�𝑃𝑐 (𝜂) (𝜖) = 1 − 𝐼𝜖

(
𝑀1𝑀2 − 𝑀2

1

𝑀2
1 − 𝑀2

,
(1 − 𝑀1) (𝑀2 − 𝑀1)

𝑀2
1 − 𝑀2

)
(44)

where 𝐼𝜖 (·) is the regularized incomplete beta function [10].
Similarly the effective rate meta-distribution �̄��̃�𝑐 ( �̃�) (𝜖) can be
approximated by using the first and second moment of �̃�𝑐 (𝜂).

VI. NUMERICAL RESULTS

This section aims at verifying the accuracy of our analytical
approximation through Monte Carlo simulations and providing
insights for the design of mmWave URLLC D2D networks.

A. Simulation settings

Our simulation settings are close to the synchronization and
initial access process parameters defined for 5G New Radio
(NR) [41]. Our simulations assume a carrier frequency of
𝑓𝑐 = 28 GHz and a transmission bandwidth of 𝑊 = 400 MHz
[42]. We assume a mini-slot duration of 𝜏 = 4.46 𝜇s, which is
equivalent to one orthogonal frequency-division multiplexing
(OFDM) symbol time with cyclic prefix, given a sub-carrier

TABLE I: System Parameters

Symbol Description Default values
𝑊 Transmission bandwidth 400 MHz
𝑃 Transmit power 28 dBm
N0 Thermal noise PSD −166 dBm/Hz
𝑟 The link distance between D2D users 30 m
𝑓𝑐 Carrier frequency 28 GHz
𝐾 FSPL at reference distance 1 m 7.2695𝑒 − 07
𝛼 Path-loss exponent 2.3
𝑇 Time slot duration 1 ms
𝜏 Mini-slot time duration 4.46 𝜇s
𝐿 File size 32 bytes
𝜆 D2D transmitter-receiver pairs density 0.001 𝑚−2

𝑀 Nakagami-M shape parameter 3

spacing of 240 kHz [42]. Inspired by URLLC requirements,
we set 𝑇 = 1 ms and 𝐿 = 32 bytes [43]. Path-loss parameters
are derived from the micro-cell scenario in [43]. The path-
loss exponent is taken from [31]; the constant path-gain
𝐾 is calculated as the free space path loss (FSPL) at a
reference distance of 1 meter, which is equal to ( 𝑐

4𝜋 𝑓𝑐 )
2,

where 𝑐 is the speed of light. The distance between a receiver
and its associated transmitter is set to 𝑟 = 30 m, with a
transmission power of 𝑃 = 28 dBm. The noise PSD is
N0 = −174 + NF dBm/Hz where the noise factor is set to
NF = 8 dB. We assume a transmitter-receiver pair intensity
of 𝜆 = 0.001 m−2 by default, i.e., the average distance
between neighboring transmitter-receiver pairs is around 30 m.
We consider between 2 and 10 antennas, which are typical
values for devices at millimeter waves [44], [45], [46], [47].
Parameters values are summarized in Tab. I. Monte Carlo
simulations run over multiple snapshots. The original network
area is a square of side length 𝐿𝑛 = 600 m. Transmitters
are drawn according to a Poisson process of intensity 𝜆 and
receivers are located at distance 𝑟 with a uniform orientation.
In order to deal with border effects, we adopt a torus network,
in which the original square network is surrounded by eight
copies of it. The distance between a receiver and an interferer
is computed as the minimum distance toward any of the copies.
At every snapshot, a link coverage probability is computed by
varying the fading channel. Statistics are recorded only in the
central square network.

B. Beam misalignment

We illustrate here the probability mass function of the
antenna gains as derived in Lemma 3. Fig. 4 shows three
joint transmit and receive antenna gains probabilities as a
function of the codebook size 𝑁𝑏 for 𝑁𝑎 = 4 antennas, namely
P(𝐺𝑇𝑚∗ = 𝐺

𝑇
𝑚𝑎𝑥 , 𝐺

𝑅
𝑛∗ = 𝐺

𝑅
𝑚𝑎𝑥), P(𝐺𝑇𝑚∗ = 𝐺

𝑇
𝑚𝑎𝑥 , 𝐺

𝑅
𝑛∗ = 𝐺

𝑅
𝑚𝑖𝑛

)
and P(𝐺𝑇𝑚∗ = 𝐺𝑇

𝑚𝑖𝑛
, 𝐺𝑅𝑛∗ = 𝐺𝑅

𝑚𝑖𝑛
), i.e., the probabilities that

the beams are perfectly aligned, partly aligned or not aligned
at all after the training phase. We first observe that simulation
and analytical results match very well, which was expected as
there is no approximation in the derivation of Lemma 3. When
the codebook size is small, i.e., the training phase is short,
complete misalignment dominates (see Fig. 4 (c)). When the
codebook size is large, perfect beam alignment is the most
probable event (see Fig. 4 (a)). In between, the training phase
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increasingly finds a single maximum gain (for example here
at the transmitter side) but not at both sides (see Fig. 4 (b)).
The probability of finding a single maximum then decreases
as perfect beam alignment becomes more probable.
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Fig. 4: Three probabilities derived from Lemma 3 as function
of the codebook size 𝑁𝑏 (𝑁𝑎 = 4).

C. Impact of the number of antennas on the transmission rate

We investigate here the impact of the number of antennas
on the data transmission rate while keeping the codebook size
fixed at 𝑁𝑏 = 15. As a consequence, the same codebook and
the same beam directions are used whatever the number of
antennas. We set the transmission rate threshold to 𝜂 = 𝐿

𝑇
.

Fig. 5 (a) and (b) show the mean and the variance of the
conditional rate coverage probability 𝑃𝑐 (𝜂) as a function
of the number of antennas 𝑁𝑎. The green curves show the
analytical results, see (29), while the red curves depict the
simulation results. Dashed curves assume a perfect alignment
of the transmitter and receiver beams, i.e., 𝐺𝑜 = 𝐺𝑇𝑚𝑎𝑥𝐺

𝑅
𝑚𝑎𝑥

always holds in equations. We first see that analysis and
simulation results match very well: this confirms the accuracy
of our approximation of the lower incomplete gamma function,
see (58). Fig. 5 (a) shows that the mean of the conditional rate
coverage probability is a monotonically increasing function of
𝑁𝑎 when the beam alignment is perfect. This was expected
since an increase in the number of antennas results in a
stronger main lobe gain and a narrower beamwidth 𝜔 of the
main lobe. These effects lead to a higher received power and
a weaker interference when there are no alignment errors.
However, when considering the beam misalignment due to the
training phase, the performance may degrade. In Fig. 5 (a), we
see that the mean of the conditional rate coverage probability is
first increasing and then decreasing with a maximum achieved
for 𝑁𝑎 = 4. Below this threshold, the amount of resources
dedicated to training is sufficient and increasing the number of
antennas also increases the joint antenna gain, leading in turn
to better coverage. Beyond the optimal number of antennas
however, the training phase is not sufficient for a good beam
alignment: beams are thinner and even a small misalignment
error leads to a rapid degradation of the coverage. This figure

highlights the trade-off between the number of antennas and
the rate coverage in the presence of beam misalignment, a
phenomenon that is not captured by studies assuming perfect
beam alignment. Fig. 5 (b) shows the variance of 𝑃𝑐 (𝜂) as a
function of 𝑁𝑎. When there is no misalignment, the variance
is monotonically decreasing with the number of antennas.
As 𝑁𝑎 is increasing, the transmit power is indeed more and
more precisely focused on the transmitter-receiver link, so
that the interference created to other D2D pairs decreases;
D2D transmissions tend to be more and more independent
of each others, so that the coverage performance is more
homogeneous and the variance decreases. When misalignment
errors are taken into account, the same trend is observed
when the number of antennas is small because the training
is sufficient to achieve a good alignment. On the contrary,
when 𝑁𝑎 grows, there are either very good communication
conditions if beams manage to be aligned despite the poor
training or very bad conditions when the error is significant.
Thinner beams increase these differences, so that the variance
increases. For a given reliability threshold 𝜖 , we can interpret
the meta-distribution as the proportion �̄�𝑃𝑐 (𝜂) (𝜖) of users
who meet the reliability requirement. In Fig. 5 (c) and (d),
we compare the percentage of users who meet the reliabil-
ity requirement assuming two reliability thresholds, namely
𝜖 = 0.9 and 𝜖 = 0.99999. The green curves in the figures
depict the beta approximations for �̄�𝑃𝑐 (𝜂) (𝜖), while the red
curves are obtained through simulations. The dashed curves is
obtained from the beta approximation when the alignment is
perfect. The figures demonstrate that the beta approximation
is an accurate technique for analyzing the meta-distribution.
The proportion of users meeting the reliability requirements
follows the same trend as the mean of the conditional rate
coverage probability for the same reasons: in absence of
error, thinner beams provide enhanced signal strength, while
in presence of errors, thinner beams are beneficial as long as
the training resources are sufficient. There is thus an optimal
number of antennas that maximizes the proportion of users
meeting the reliability requirements. At last, changing the
reliability threshold does not alter the performance trends,
but it does impact the proportion of users that can satisfy
the reliability constraint. For example, with 8 antennas, about
99.5% of the links can satisfy a reliability threshold of 90%,
while only 97.5% of the links can achieve a more stringent
reliability threshold of 99.999%.

D. Impact of the codebook size on the transmission rate

In addition to the number of antennas, the size of the
training codebook, represented by the variable 𝑁𝑏, is another
critical constraint that affects the network’s performance. The
transmission rate threshold is set to 𝜂 = 𝐿

𝑇
. Fig. 6 (a) and

(b) show the mean and the variance of the conditional rate
coverage probability 𝑃𝑐 (𝜂) as a function of 𝑁𝑏 for different
numbers of antennas. The solid curves represent analytical
results obtained from (29) while the dashed curves have been
obtained from simulations. The straight dotted lines have
been obtained with a perfect beam alignment. Here again,
we see that analysis and simulations match very well. This
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Fig. 5: Mean (a) and variance (b) of the conditional rate coverage probability; Proportion of links that have a conditional rate
coverage probability greater than a reliability threshold of 90% (c) or 99.999% (d), as a function of the number of antennas.

confirms the tightness of our approximation. In both figures,
we observe that the curves accounting for misalignment errors
converge to the curves assuming perfect alignment. As 𝑁𝑏
increases, the codebook resolution 𝜃𝑢 decreases, so that the
transmitter and the receiver have a finer estimation of the
AoA and AoD. The probability of having an alignment error
decreases and the magnitude of this error is also decreasing. In
a nutshell, the higher is 𝑁𝑏, the more accurate is the training
period. After some threshold, however, increasing 𝑁𝑏 does
not provide a significant gain on the performance since the
beam resolution is much lower than the beam width. The
figure also demonstrates that if 𝑁𝑎 is large, 𝑃𝑐 (𝜂) requires
a larger 𝑁𝑏 to approach its limit, as more antennas with
thinner beam lobes require codebooks with a more precise
resolution to perform beam alignment. At last, we see that
the variance is decreasing with 𝑁𝑏 and increasing with 𝑁𝑎.
This can be explained by the fact that misalignment errors
introduce variability in the communication conditions across
the links. Fig. 6 (c) illustrates the percentage of D2D users
whose conditional rate coverage probability 𝑃𝑐 (𝜂) is larger
than the reliability threshold of 𝜖 = 99.999% as a function
of 𝑁𝑏. The dashed curves show simulation results, while the
solid curves are obtained using the beta approximation. Again,
the close agreement between the curves suggests that the beta
approximation is an accurate tool for analyzing the meta-
distribution. These curves exhibit the fact that a longer training
time can better align the beams and enable more users to have
reliable communications. Increasing the number of antennas
can ultimately guarantee more users to meet the reliability
requirement, but it requires longer training time. For example,
if we want to achieve a reliability of 99.999% for more than
99% of the users, then a training period with 𝑁𝑏 = 7, 11,
and 21 is required for 𝑁𝑎 = 2, 4, and 8 antennas, respectively.
However, it is impossible to have more than 99.5% of the users
meeting the reliability requirement with only 𝑁𝑎 = 2 antennas
as the performance is saturating to a lower value, whatever the
training period.

E. Effective achievable rate analysis

The analysis presented so far focuses on the rate coverage
probability during the data transmission phase. However, when
taking into account the overhead of the beam training phase,
the size of the beam training codebook is limited by the

total time budget, resulting in 𝑁𝑏 ≤ ⌊
√︃
𝑇
𝜏
⌋. In this section,

we study the effective achievable rate with an effective rate
threshold of 𝜂 = 𝐿

𝑇
. Fig. 7 illustrates how the mean of the

conditional effective rate coverage probability �̃�𝑐 (𝜂) evolves
with respect to 𝑁𝑏 for different numbers of antennas. The solid
curves represent analytical results obtained using the equations
of Corollary 3, while the dashed curves depict simulation
results. The dotted lines represent the conditional rate coverage
probabilities when there is no misalignment. We first observe
that the mean is decreasing with 𝑁𝑏 in the absence of errors.
This is due to the lack of data resources when the training
period becomes longer and the trend is directly related to
the first factor of (20). We then see that, in the presence
of misalignment errors, curves are first increasing and then
possibly decreasing. The reason lies in two conflicting effects:
when 𝑁𝑏 increases, the misalignment errors decrease while
the amount of resources dedicated to data is reduced. Fig. 7
shows that an almost perfect alignment is achieved for 𝑁𝑏 = 7
and 14 for 𝑁𝑎 = 2 and 4 antennas, respectively. This means
that no improvement can be expected from the training after
these thresholds. This explains why the performance reaches
its maximum at these values. On the contrary, for 𝑁𝑎 = 8
antennas, the training is far from perfect when 𝑁𝑏 = 14.
The training is not able to compensate for the lack of data
resources. Overall, 𝑁𝑎 = 2 and 𝑁𝑏 = 8, or 𝑁𝑎 = 4 and 𝑁𝑏 = 14
offer the best performance, while 𝑁𝑎 = 8 antennas are not able
to recover from the errors with reasonable overhead.

By fixing 𝑁𝑏 to a low value, e.g. 𝑁𝑏 = 4, Fig. 7 shows
that �̃�𝑐 (𝜂) decreases as the number of antennas increases.
This is due to the imprecise resolution of the codebook and
a severe beam misalignment. With more antennas, the beam
width is thinner and misalignment worsens. When 𝑁𝑏 = 14
on the contrary, �̃�𝑐 (𝜂) reaches its maximum with 4 antennas,
which offer the best trade-off between signal quality achieved
with beamforming and misalignment errors induced by an
incomplete training. Fig. 8 (a) shows the proportion of D2D
users with a conditional effective rate coverage probability �̃�𝑐
above the threshold 𝜖 = 99.999% as a function of 𝑁𝑏 for
the different number of antennas. The proportion �̄��̃�𝑐 ( �̃�) (𝜖) is
first increasing with 𝑁𝑏 when 𝑁𝑏 is small and then dropping
quickly when 𝑁2

𝑏
𝜏 approaches 𝑇 . For a reliable URLLC

network with low latency, a common requirement is that 95%
of the users operate with 99.999% reliability and 1 ms latency
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Fig. 6: Mean (a) and variance (b) of the conditional rate coverage probability; Proportion of links that have a conditional rate
coverage probability greater than a reliability threshold of 99.999% (c), as a function of the number of beams.
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Fig. 7: Mean of the conditional effective rate coverage prob-
ability as a function of the number of beams.
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Fig. 8: Proportion of links with a conditional effective rate
coverage probability greater than 99.999% as a function of
the number of beams for 𝑇 = 1 ms (a) and 𝑇 = 5 ms (b).

[2]. According to Fig. 8 (a), 𝑁𝑎 = 2 always meets this strict
constraint. When 𝑁𝑎 = 4, 𝑁𝑏 needs to be larger than 5 to
ensure the reliability requirement. On the contrary, 𝑁𝑎 = 8
antennas cannot achieve it. However, increasing the number
of antennas becomes a valid option if the delay requirement
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Fig. 9: Feasibility of the URLLC requirement that 95% of the
users communicate with 99.999% reliability and 1 (a), 1.5 (b),
and 2 ms (c) latency [2] (feasible combinations in dark blue).

is relaxed. In Fig. 8 (b), the slot duration is set to 𝑇 = 5 ms.
This lets more room for training and 𝑁𝑏 can reach a higher
value (here 33) on the x-axis. We see here how the optimal
number of antennas varies with 𝑁𝑏. If 𝑁𝑏 is small, it is better
to use fewer antennas so that misalignment errors are less
impactful. As 𝑁𝑏 is increasing, it is more and more interesting
to increase the number of antennas because we have enough
time to train the beams, and consequently, the higher beam
gains outperform the loss due to misalignment. For our studied
scenario, the possible design choices in terms of the number
of antennas and beams are summarized in Fig. 9 and 10. We
see how relaxing the different constraints extends the possible
network design choices. Note that this kind of result cannot
be derived by using the standard coverage probability but
necessitates the meta-distribution.

F. Impact of Nakagami-M shape parameter

The shape parameter 𝑀 of the Nakagami-M fading channel
characterizes the severity of the fading [17]. The case 𝑀 =

1 corresponds to Rayleigh fading, while there is no fading
when 𝑀 → ∞. An environment with a higher value of 𝑀
is thus more favorable for the beam training process. This is
illustrated in Fig. 11. When 𝑀 is increasing, there are more
links that can meet the reliability constraint. As the fading is
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Fig. 10: Feasibility of the URLLC requirement that 95% of
the users communicate with 99.999% (a), 99.9% (b), 90% (c)
reliability and 𝑇 = 1 ms latency (feasible combinations in dark
blue).
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Fig. 11: Proportion of links with a conditional effective rate
coverage probability greater than 99.999% (𝑁𝑎 = 4, 𝑇 = 1 ms).

less severe, the channel can indeed be better predicted from the
training phase. This confirms our initial analysis that channel
fading plays a critical role in the beam training process.
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Fig. 12: Mean (a) and variance (b) of the conditional rate
coverage probability - Analysis and simulation assuming a
finite block length regime (𝑁𝑎 = 8, 𝜀𝑐 = 10−5).

G. Finite block length regime

The finite block-length regime [38] is sometimes adopted
in the literature for the calculation of the achievable rate
when URLLC is considered. In this case, the new Effective

2 4 6 8 10 12 14
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0.4

0.6

0.8

1

Fig. 13: Proportion of links that have a conditional rate cov-
erage probability greater than 99.999% - Simulations assume
a finite block length regime (𝑁𝑎 = 8, 𝜀𝑐 = 10−5).

Achievable Rate expression is given by (see [48] for a similar
derivation):

R̃★=
(
1 −

𝑁2
𝑏
𝜏

𝑇

)+
𝑊

(
𝐶 (𝛾) −

√︄
𝑉 (𝛾)

𝑊 (𝑇 − 𝑁2
𝑏
𝜏))

𝑄−1 (𝜀𝑐)
)
(45)

where 𝜀𝑐 is the message error probability, 𝐶 (𝛾) = log2 (1+𝛾),
𝑉 (𝛾) =

𝛾

2
𝛾+2

(𝛾+1)2 log2
2 𝑒 and 𝑄(𝑥) = 1/

√
2𝜋

∫ ∞
𝑥

exp(−𝑡2/2)𝑑𝑡.
The Rate Coverage Probability can be written as:

𝑝𝑐 (𝜂) = P(R̃★ > 𝜂) (1 − 𝜀𝑐) (46)

Other performance metrics can be redefined in the same
way by taking into account 𝜀𝑐 and R̃★. However, it is an
open problem to derive closed-form formulas in this context.
In Figures 12-13, we show the mean and variance of the
conditional rate probability and the proportion of links with a
rate coverage probability greater than 99.999% obtained using
our analytical formulas based on the Shannon formula and
by simulations assuming a finite block length regime. We see
that, although less accurate, our analytical study provides good
approximations. More investigations are nevertheless required
to develop an analytical study with more accurate results.

VII. CONCLUSION

We propose an analytical framework to investigate the
impact of beam misalignment on mmWave URLLC D2D
networks. First, the joint antenna gain distribution is evaluated
based on the study of an imperfect exhaustive search approach.
The imperfection of the beam sweeping procedure comes from
the finite codebooks, the finite amount of resources dedicated
to training and the high variability of the channel at high
frequencies. We then derive mathematical expressions for the
moments of the conditional effective rate coverage probability
assuming Nakagami-M fading, and we approximate the effec-
tive rate meta-distribution using a beta approximation. Our re-
sults show that misalignment errors can be highly detrimental
if URLLC requirements are stringent. Misalignment errors not
only reduce the joint beam gain but also introduces variability
in the link quality that affects reliability. At last, our study
highlights the trade-off between the training overhead and
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the number of antennas. Having fewer antennas is preferable
when a very short delay is required with high reliability. The
potential gain of many antennas can however be exploited
when the delay constraint is relaxed.

APPENDIX

A. Proof of Lemma 1

Consider a ULA at the transmitter side with 𝑁𝑎 equally
spaced antenna elements. The corresponding array response
vector is shown in (3). By choosing the beamforming vector
shown in (5), the combined far field pattern 𝑓 𝑇𝑎 (𝜉, 𝜃𝑇 ) =

v∗ (𝜉)f (𝜃𝑇 ) of the array is obtained as:

𝑓 𝑇𝑎 (𝜉, 𝜃𝑇 ) =
1

√
𝑁𝑎

𝑁𝑎∑︁
𝑖=1

𝑒 𝑗 ( (𝑖−1) 2𝜋𝑑 𝑓𝑐
𝑐

(cos( 𝜉 )−𝑐𝑜𝑠 (𝜃𝑇 ) ) ) (47)

The power gain 𝑔𝑇 (𝜉, 𝜃𝑇 ) = | 𝑓 𝑇𝑎 (𝜉, 𝜃𝑇 ) |2 leads to:

𝑔𝑇 (𝜉, 𝜃𝑇 ) = 1
𝑁𝑎

����� sin(𝑁𝑎 𝜋𝑑 𝑓𝑐𝑐 (cos(𝜉) − cos(𝜃𝑇 )))
sin( 𝜋𝑑 𝑓𝑐

𝑐
(cos(𝜉) − cos(𝜃𝑇 )))

�����2 (48)

The maximum array factor gain is achieved when the steering
direction and the AoD align: 𝜃𝑇 = 𝜉. The maximum array
factor at the transmitter side is 𝐺𝑇𝑚𝑎𝑥 = 𝑁𝑎. We assume that
𝑑 = 𝑐

2 𝑓𝑐 and the antenna is broadside (𝜃𝑇 = 𝜋/2) [29]. The half
power beam width in (8) is obtained by solving the following
equation:

1
𝑁𝑎

����� sin( 1
2𝑁𝑎𝜋 cos(𝜋/2 − 𝜔/2))

sin( 1
2𝜋 cos(𝜋/2 − 𝜔/2))

�����2 =
𝑁𝑎

2
(49)

Let 𝐾 (𝑁𝑎) be the total radiation power gain of the ULA:

𝐾 (𝑁𝑎) =
∫ 𝜋

−𝜋

1
𝑁𝑎

����� sin( 1
2𝑁𝑎𝜋 cos(𝜉))

sin( 1
2𝜋 cos(𝜉))

�����2 d𝜉 (50)

Let 𝜌 be the minimum gain in the side lobe of transmitter. We
equalize the approximate and exact radiated powers as follows
and deduce the sidelobe gain:

𝑁𝑎𝜔(𝑁𝑎) + 𝜌(𝑁𝑎) (2𝜋 − 𝜔(𝑁𝑎)) = 𝐾 (𝑁𝑎) (51)

𝜌(𝑁𝑎) =
𝐾 (𝑁𝑎) − 𝑁𝑎𝜔(𝑁𝑎)

2𝜋 − 𝜔(𝑁𝑎)
(52)

In a similar way, we get that the HBPW 𝜔 for the receiver
antennas is the same as that at the transmitter end. The
maximum gain of receiver antennas is 𝑁𝑎 times that for the
transmitter antenna. The minimum gain of receiver’s antenna
has the value 𝐺𝑅

𝑚𝑖𝑛
= 𝑁𝑎𝜌.

B. Proof of Lemma 2

Let first notice that, as a receiver is uniformly distributed
around its associated transmitters, the AoD 𝜉 is uniformly
distributed in [0, 2𝜋). Let also recall that, without loss of
generality, the AoD corresponds to the first value of the
codebook, i.e., 𝜉 ∈ [𝜃𝑇1 − 𝜃𝑢

2 , 𝜃
𝑇
1 + 𝜃𝑢

2 ) which corresponds to
𝑚 = 1 in the equations. Let first assume that 𝜔 ≤ 𝜃𝑢, i.e.,
the beamwidth is smaller than the codebook resolution. This
means that the transmitter can achieve the maximum gain only

when it is pointing in the direction 𝑚 = 1. As a consequence,
P[𝐺𝑇𝑚 = 𝐺𝑇𝑚𝑎𝑥] = 0 when 𝑚 ≠ 1. When 𝑚 = 1, the maximum
gain is achieved with probability 𝜔

𝜃𝑢
owing to the uniform

distribution of the AoD. This proves equations (12) and (13).
Let’s now consider the case 𝜔 > 𝜃𝑢, i.e., the beamwidth is
larger than the codebook resolution. In this case, some sectors
are fully covered by the beam, some are partially covered and
some are not covered. This corresponds to the different sub-
cases of (14). The probabilities are related to whether or not
the first sector is fully covered, partially covered or not covered
by the beam. The beam fully covers 2⌊ 𝜔−𝜃𝑢

2𝜃𝑢 ⌋ adjacent sectors
of size 𝜃𝑢. Thus, the first sector 𝑚 = 1 is fully covered if the
transmitter points towards a sector 𝑚 ∈ 𝐼1 or 𝑚 ∈ 𝐼3. When
the first sector is fully covered, the probability to achieve the
maximum gain is one because we have assumed that the AoD
falls in this sector. In addition to the fully covered sectors,
there are two additional sectors at the margins of the beam
that are partially covered. The first sector is one of them if
𝑚 = ⌊ 𝜔−𝜃𝑢

2𝜃𝑢 ⌋ + 2 or 𝑚 = 𝑁𝑏 − ⌊ 𝜔−𝜃𝑢
2𝜃𝑢 ⌋. In this case, owing

to the uniform distribution of the AoD, the maximum gain is
achieved with probability mod( 𝜔−𝜃𝑢

2 , 𝜃𝑢 )
𝜃𝑢

. In all other cases, i.e.,
when 𝑚 ∈ 𝐼2, there is no intersection between the beam and
the first sector and the probability of achieving the maximum
gain is thus zero. This proves equations (14) and (15). The
same derivation also applies to the receiver side.

C. Proof of Lemma 3

The joint PMF of 𝐺𝑇
𝑚∗ and 𝐺𝑅

𝑛∗ is calculated considering
different optimal beam pairs, which leads to (16). The joint
probability P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, 𝑙∗ = (𝑚, 𝑛)] can be expanded
into 22(𝑁𝑏−1) terms according to the joint distribution of
{𝐺𝑇

𝑖
}𝑖≠𝑚 and {𝐺𝑅

𝑗
} 𝑗≠𝑛:

P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, 𝑙∗ = (𝑚, 𝑛)]
=

∑︁
(𝜈𝑖 ,𝜅 𝑗 ) ∈G𝑇×G𝑅

𝑖∈[1:𝑁𝑏 ]\𝑚, 𝑗∈[1:𝑁𝑏 ]\𝑛

{
P[𝑙∗ = (𝑚, 𝑛) |𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅,

𝐺𝑇𝑖 = 𝜈𝑖 , 𝐺
𝑅
𝑗 = 𝜅 𝑗 ]P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, 𝐺𝑇𝑖 = 𝜈𝑖 , 𝐺

𝑅
𝑗 = 𝜅 𝑗 ]

}
(53)

Since the antenna gains 𝐺𝑇
𝑖

and 𝐺𝑅
𝑗

over different beam pairs
are independent, the joint distribution of {𝐺𝑇

𝑖
} and {𝐺𝑅

𝑗
} can

be expressed as follows:

P[𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, {𝐺𝑇𝑖 = 𝜈𝑖}, {𝐺𝑅𝑗 = 𝜅 𝑗 }]
= P[𝐺𝑇𝑚 = 𝜈]𝑃[𝐺𝑅𝑛 = 𝜅]

∏
𝑖∈[1:𝑁𝑏 ]\𝑚
𝑗∈[1:𝑁𝑏 ]\𝑛

P[𝐺𝑇𝑖 = 𝜈𝑖]P[𝐺𝑅𝑗 = 𝜅 𝑗 ]

(54)

According to (11), the chosen beam pair is chosen by mea-
suring the useful received power with different beam pairs.
The conditional probability in (53) is the probability that the
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received signal gets the largest power over beam pair (𝑚, 𝑛),
which can be expressed as follows:

P[𝑙∗ = (𝑚, 𝑛) |𝐺𝑇𝑚 = 𝜈, 𝐺𝑅𝑛 = 𝜅, {𝐺𝑇𝑖 = 𝜈𝑖}, {𝐺𝑅𝑗 = 𝜅 𝑗 }]
= Eℎ

∏
�̄�∈[1:𝑁𝑏 ],�̄�∈[1:𝑁𝑏 ]

(�̄�,�̄�)≠(𝑚,𝑛)
𝜈𝑚=𝜈,𝜅𝑛=𝜅

P[ℎ𝜈𝜅 > ℎ (�̄�,�̄�)𝜈�̄�𝜅�̄� |ℎ] (55)

= Eℎ
∏

�̄�∈[1:𝑁𝑏 ],�̄�∈[1:𝑁𝑏 ]
(�̄�,�̄�)≠(𝑚,𝑛)
𝜈𝑚=𝜈,𝜅𝑛=𝜅

𝐹

(
ℎ𝜈𝜅

𝜈�̄�𝜅�̄�

)
(56)

The CDF of the gamma distribution is expressed as 𝐹 (𝑥) =
1

Γ (𝑀 ) 𝛾(𝑀, 𝑀𝑥). In order to reduce the calculation complexity,
the lower incomplete gamma function 𝛾(·) can be approxi-
mated by 𝛾(𝑛, 𝑥) = (𝑛 − 1)!

(
1 − 𝑒−𝑥 ∑𝑛−1

𝑘=0
𝑥𝑘

𝑘!

)
[49].

D. Proof of Theorem 4

We first consider only the randomness of ℎ𝑥0 . The condi-
tional probability P(R > 𝜂 |Φ𝑇 ,Φ𝑅, ℎ𝑥) is thus a constant for
a given configuration (Φ𝑇 ,Φ𝑅) and a given value of ℎ𝑥 , for
all 𝑥 ∈ Φ𝑇\𝑥𝑜. According to the definition of the rate in (19),
we have:

P(R > 𝜂 |Φ𝑇 ,Φ𝑅, ℎ𝑥)

=P
©«ℎ𝑥𝑜 > (2

𝜂

𝑊 − 1)

∑
𝑥∈Φ𝑇\𝑥𝑜

𝑃ℎ𝑥𝐺𝑥ℓ( |𝑥 |) + N0𝑊

𝐺𝑜𝑃ℓ(𝑟)
|Φ𝑇 ,Φ𝑅, ℎ𝑥

ª®®¬
=1 − 1

Γ(𝑀) 𝛾
(
𝑀, 𝑀𝜂′

∑
𝑥∈Φ𝑇 𝑃𝐺𝑥ℎ𝑥ℓ( |𝑥 |) + N0𝑊

𝑃𝐺𝑜

)
(57)

≃1 −
(
1 − 𝑒−𝛽𝑀𝜂

′
∑
𝑥∈Φ𝑇 𝑃𝐺𝑥ℎ𝑥ℓ ( |𝑥 |)+N0𝑊

𝑃𝐺𝑜

)𝑀
(58)

=

𝑀∑︁
𝑚=1

(𝑀
𝑚

)
(−1)𝑚+1𝑒−

𝑚𝑀𝛽𝜂′N0𝑊
𝑃𝐺𝑜

∏
𝑥∈Φ𝑇

𝑒
−𝑚𝛽𝑀𝜂′ 𝐺𝑥ℎ𝑥ℓ ( |𝑥 |)

𝐺𝑜 (59)

where 𝜂′ = 2
𝜂
𝑊 −1
ℓ (𝑟 ) , 𝛾(·) refers to the lower incomplete gamma

function, and 𝛽 = [Γ(1+𝑀)]−1/𝑀 . Equation (57) comes from
the fact that ℎ𝑥𝑜 is a gamma distributed random variable. The
approximation (58) is obtained by adopting the following tight
inequality [50]:

(1 − 𝑒−𝛽𝑀𝑥)𝑀 <
1

Γ(𝑀) 𝛾(𝑀, 𝑀𝑥) (60)

The conditional rate coverage can now be obtained by aver-
aging the probability P(R > 𝜂 |Φ𝑇 ,Φ𝑅, ℎ𝑥𝑜 ) with respect to
ℎ𝑥 , 𝑥 ∈ Φ. Recall that the coefficients {ℎ𝑥}𝑥∈Φ are i.i.d. with
a Gamma distribution. Thus we have the following formulas:

𝑃𝑐 (𝜂)

=

𝑀∑︁
𝑚=1

(𝑀
𝑚

)
(−1)𝑚+1𝑒−

𝑚𝑀𝛽𝜂′N0𝑊
𝑃𝐺𝑜

∏
𝑥∈Φ𝑇

Eℎ𝑥
[
𝑒
−𝑚𝛽𝑀𝜂′ 𝐺𝑥ℓ ( |𝑥 |)

𝐺𝑜
ℎ𝑥

]
(61)

=

𝑀∑︁
𝑚=1

(𝑀
𝑚

)
(−1)𝑚+1𝑒−

𝑚𝑀𝛽𝜂′N0𝑊
𝑃𝐺𝑜

∏
𝑥∈Φ𝑇

1
(1 + 𝑚𝛽𝜂′𝐺𝑥ℓ ( |𝑥 | )

𝐺𝑜
)𝑀

(62)

The 𝑏’s moment of 𝑃𝑐 (𝜂) is the expectation of 𝑃𝑐 (𝜂)𝑏 with
respect to Φ𝑇 , Φ𝑅 and the antenna gain 𝐺𝑜. By using the
multinomial theorem [39], it can be expressed as follows:

𝑀𝑏 =
∑︁

𝑘1+𝑘2+...+𝑘𝑀=𝑏

( 𝑏
𝑘1...𝑘𝑀

)
E

𝑀∏
𝑚=1

( (𝑀
𝑚

)
(−1)𝑚+1𝑒−

𝑚𝑀𝛽𝜂′N0𝑊
𝑃𝐺𝑜

×
∏
𝑥∈Φ𝑇

1
(1 + 𝑚𝛽𝜂′𝐺𝑥ℓ ( |𝑥 | )

𝐺𝑜
)𝑀

) 𝑘𝑚
(63)

=
∑︁

𝑘1+𝑘2+...+𝑘𝑀=𝑏

( 𝑏
𝑘1...𝑘𝑀

) (
𝑀∏
𝑚=1

( (𝑀
𝑚

)
(−1)𝑚+1

) 𝑘𝑚 )
× E𝐺𝑜

[
𝑒
−𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜

∑𝑀
𝑚=1 𝑚𝑘𝑚

× EΦ𝑇

∏
𝑥∈Φ𝑇

EΦ𝑅

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑥 |)
𝐺𝑜

)−𝑀𝑘𝑚
]

(64)

The process Φ𝑅 is a conditional random measure that depends
both on Φ𝑇 and the AoD of the interfering devices {𝜉𝑥}, 𝑥 ∈
Φ𝑇 , where 𝜉𝑥 for different 𝑥 ∈ Φ𝑇 are independent. So the
expectation with respect to Φ𝑅 in (64) can be replaced by the
expectation with respect to 𝜉𝑥 and writes now:

EΦ𝑇

[ ∏
𝑥∈Φ𝑇

EΦ𝑅

[
𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑥 |)
𝐺𝑜

)−𝑀𝑘𝑚
] ]

= exp

(
−𝜆

∫
R2

1 − E𝜉𝑥

[
𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑥 |)
𝐺𝑜

)−𝑀𝑘𝑚
]

d𝑥

)
(65)

The integral part in equation (65) follows from the probability
generation functional (PGFL) of a Poisson point process [26].
We then denote this integral part as 𝑄(𝜂′, 𝐺𝑜) and transform
it into polar form. Since 𝜓𝑥 is uniformly distributed in [0, 2𝜋),
we get:

𝑄(𝜂′, 𝐺𝑜)

=

∫
R2

1 − E𝜉𝑥

[
𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑥 |)
𝐺𝑜

)−𝑀𝑘𝑚
]

d𝑥 (66)

=

∫ ∞

0

∫ 𝜋

−𝜋
1

− 1
2𝜋

∫ 𝜋

−𝜋

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀𝑘𝑚𝑣d𝜉𝑥d𝜓𝑥d𝑣 (67)

=
1

2𝜋

∫ 𝜋

−𝜋

∫ 𝜋

−𝜋

∫ ∞

0(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀𝑘𝑚
)
𝑣d𝑣d𝜉𝑥d𝜓𝑥 (68)

We then let 𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥) denote the following function:

𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥) =∫ ∞

0

(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥ℓ( |𝑣 |)
𝐺𝑜

)−𝑀𝑘𝑚
)
𝑣d𝑣 (69)

Because the angles 𝜉𝑥 and 𝜓𝑥 are all uniformly distributed in
[0, 2𝜋) and the antenna gain 𝐺𝑥 is the product of 𝑔𝑇 (𝜉𝑥 , 𝜃𝑇𝑥 )
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and 𝑔𝑅 (𝜓𝑥 , 𝜃𝑇𝑥 ), where 𝜃𝑇𝑥 and 𝜃𝑅𝑥 are also uniformly dis-
tributed, we get (30). Let 𝑢 = 𝑣𝛼 and 𝛿 = 2/𝛼 we get:

𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥)

= lim
𝑇→∞

𝛿/2
∫ 𝑇

0

(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥

𝐺𝑜𝑢
)−𝑀𝑘𝑚

)
𝑢𝛿−1d𝑢 (70)

By replacing 𝑢 with 𝑡 = 𝑢/𝑇 , we get:

𝐴(𝜂′, 𝐺𝑜, 𝐺𝑥)

= lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 −

𝑀∏
𝑚=1

(1 + 𝑚𝛽𝜂
′𝐺𝑥

𝐺𝑜𝑇𝑡
)−𝑀𝑘𝑚

)
𝑡 𝛿−1d𝑡 (71)

1) First Moment: In the specific case of the first moment,
i.e., when 𝑏 = 1, equation (29) can be simplified. Indeed, the
sum is performed over all combinations of non negative inte-
gers 𝑘1, ..., 𝑘𝑀 such that 𝑘1 + ... + 𝑘𝑀 = 1. As a consequence,
there are 𝑀 such combinations, where for each combination
there a single term equal to 1, say 𝑘𝑚 = 1 and all others are
equal to zero, i.e., 𝑘𝑖 = 0 for 𝑖 ≠ 𝑚. The sum in (29) is thus
now over these 𝑀 combinations.

Given the derived values of the 𝑘𝑖 , the multinomial coeffi-
cient

( 𝑏
𝑘1 ,...,𝑘𝑀

)
= 𝑏!

𝑘1!...𝑘𝑀 ! is always equal to 1. The product
in (29) has a single factor: For the combination 𝑚 it reduces
to

(𝑀
𝑚

)
(−1)𝑚+1. At last the expectation in (29) is reduced to

E𝐺𝑜

[
𝑒
−𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜
𝑚
𝑒−𝜆𝑄 (𝜂′ ,𝐺𝑜 )

]
since only one term remains

in the sum. We thus obtain:

𝑀1 ≃
𝑀∑︁
𝑚=1

(𝑀
𝑚

)
(−1)𝑚+1E𝐺𝑜

[
𝑒
−𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜
𝑚
𝑒−𝜆𝑄 (𝜂′ ,𝐺𝑜 )

]
(72)

where 𝑄 is given by (30). Now, the function 𝐴 in (31) can be
also simplified using the specific expression of the 𝑘𝑖 when
𝑏 = 1:

𝐴(𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥)

= lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 − (1 + 𝑚𝛽𝜂

′𝐺𝑥
𝐺𝑜𝑇𝑡

)−𝑀
)
𝑡 𝛿−1d𝑡 (73)

= lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 − (1 − 1

1 + 𝐺𝑜𝑇𝑡

𝑚𝛽𝜂′𝐺𝑥

)𝑀
)
𝑡 𝛿−1d𝑡 (74)

By using the binomial theorem, it can be further expressed as:

𝐴(𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥)

= lim
𝑇→∞

𝑇 𝛿𝛿

2

𝑀∑︁
𝑛=1

(𝑀
𝑛

)
(−1)𝑛+1

∫ 1

0

(
1 + 𝐺𝑜𝑇𝑡

𝑚𝛽𝜂′𝐺𝑥

)−𝑛
𝑡 𝛿−1d𝑡

(75)

Equation (35) is derived by replacing the integral part by the
integral form of the hypergeometric function 2𝐹1 [40]:

𝐵(𝑏, 𝑐 − 𝑏)2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) =∫ 1

0
𝑡𝑏−1 (1 − 𝑡)𝑐−𝑏−1 (1 − 𝑡𝑧)−𝑎𝑑𝑡 (76)

with 𝑎 = 𝑛, 𝑏 = 𝛿, 𝑐 = 𝛿 + 1 and 𝑧 = − 𝐺𝑜𝑇

𝑚𝛽𝜂′𝐺𝑥
. The function

𝐵(·) denotes the Beta function and 𝐵(𝑏, 𝑐−𝑏) = 𝐵(𝛿, 1) = 1/𝛿
in our case.

Note that the expression of 𝐴 and thus the expression of
𝑄 now explicitly depends on the combination 𝑚 of the 𝑘𝑖 in
(72). We thus now write 𝑄1 (𝑚, 𝜂′, 𝐺𝑜) and 𝐴1 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥)
to distinguish these functions from their counterpart in the
generic case.

2) Second Moment: When 𝑏 = 2, the sum in (29) is
performed over all combinations of non negative integers
𝑘1, ..., 𝑘𝑀 such that 𝑘1 + ... + 𝑘𝑀 = 2. There are thus two
sub-cases: Either there is a single index equal to 2 and others
equal to 0 (say 𝑘𝑚 = 2 and 𝑘𝑛 = 0 for 𝑛 ≠ 𝑚) or there are two
indices equal to 1 and all others equal to 0 (say 𝑘𝑖 = 𝑘 𝑗 = 1
and 𝑘𝑛 = 0 for 𝑛 ≠ 𝑖 and 𝑗).

In the first sub-case, there are 𝑀 possible combinations of
the 𝑘𝑖 and the multinomial coefficient is always equal to 1.
We have thus a very similar derivation as for the first moment,
except that here 𝑘𝑚 = 2 instead of 1. We come up with the
expression of 𝐴 (renamed 𝐴21 to distinguish from the generic
case) similar to (73):

𝐴21 (𝑚, 𝜂′, 𝐺𝑜, 𝐺𝑥)

= lim
𝑇→∞

𝑇 𝛿𝛿

2

∫ 1

0

(
1 − (1 + 𝑚𝛽𝜂

′𝐺𝑥
𝐺𝑜𝑇𝑡

)−2𝑀
)
𝑡 𝛿−1d𝑡 (77)

Equation (40) is obtained by introducing the hypergeometric
function as it has been done for the first moment. The function
𝑄21 is obtained by replacing 𝐴 by 𝐴21 in (30) and showing
the explicit dependence on 𝑚. For this first sub-case, we thus
obtain a first term:

𝑀21 ≃
𝑀∑︁
𝑚=1

(𝑀
𝑚

)2
E𝐺𝑜

[
𝑒
−2𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜
𝑚
𝑒−𝜆𝑄21 (𝑚,𝜂′ ,𝐺𝑜 )

]
(78)

In the second sub-case, the sum in (29) is over all possible 𝑖
and 𝑗 such that 𝑘𝑖 = 𝑘 𝑗 = 1, 𝑖 ≠ 𝑗 . The multinomial coefficient
is always equal to 2. For a given 𝑖 and 𝑗 , the product in (30)
reduces to: (𝑀

𝑖

) (𝑀
𝑗

)
(−1)𝑖+ 𝑗 (79)

and the expectation to:

E𝐺𝑜

[
𝑒
−(𝑖+ 𝑗 )𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜 𝑒−𝜆𝑄22 (𝑖, 𝑗 ,𝜂′ ,𝐺𝑜 )
]

(80)

where we have renamed the function 𝑄 for this specific sub-
case. At last, we come up with the expression (41) of the
function 𝐴 (renamed here 𝐴22) similar to (73) by taking into
account the specific values of the 𝑘𝑖 . Note that the function
𝐴22 and hence 𝑄22 explicitly depend here on the indices 𝑖 and
𝑗 . For the second sub-case, we thus obtain a second term:

𝑀22 ≃
𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

2
(𝑀
𝑖

) (𝑀
𝑗

)
(−1)𝑖+ 𝑗

× E𝐺𝑜

[
𝑒
−(𝑖+ 𝑗 )𝑀𝛽𝜂′ N0𝑊

𝑃𝐺𝑜 𝑒−𝜆𝑄22 (𝑖, 𝑗 ,𝜂′ ,𝐺𝑜 )
]

(81)

Summing 𝑀21 in (78) and 𝑀22 in (81), we obtain (37).
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