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LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
{franco.cordeiro, samuel.tardieu, laurent.pautet}@telecom-paris.fr

Abstract—In the world of embedded systems, optimizing ac-
tions with the uncertain costs of multiple resources in order
to achieve an objective is a complex challenge. Existing methods
include plan building based on Monte Carlo Tree Search (MCTS),
an approach that thrives in multiple online planning scenarios.
However, these methods often overlook uncertainty in worst-case
cost estimations. A system can fail to operate/function before
achieving a critical objective when actual costs exceed optimistic
worst-case estimates, even if replanning is considered. Conversely,
a system based on pessimistic worst-case estimates would lead
to resource over-provisioning even for less critical objectives. To
solve similar issues, the Mixed Criticality (MC) approach has
been developed in the real-time systems community. Thus we
propose to extend the MCTS-based heuristic in three directions.

Firstly, we reformulate the concept of MC to account for
uncertain worst-case costs, including optimistic and pessimistic
worst-case estimates. High-criticality tasks must be executed
regardless of their uncertain costs. Low-criticality tasks are either
executed in low-criticality mode utilizing resources up-to their
optimistic worst-case estimates, or executed in high-criticality
mode by degrading them, or discarded when resources are scarce.
In such cases, resources previously devoted to low-criticality tasks
are reallocated to high-criticality tasks.

Secondly, although the MC approach was originally developed
for real-time systems, focusing primarily on worst-case execution
time as the only uncertain resource, our approach extends the
concept of resources to deal with several resources at once, such
as the time and energy required to perform an action.

Finally, we propose (MC)2TS an extension of MCTS with MC
concepts to efficiently adjust resource allocation to uncertain
costs according to the criticality of actions. We demonstrate
our approach in an active perception scenario. Our evaluation
shows (MC)2TS outperforms the traditional MCTS regardless of
whether the worst case estimates are optimistic or pessimistic.

Index Terms—Embedded Systems, Safety / Mixed-Critical
Systems, Real-Time Systems, Energy Aware Systems.

I. INTRODUCTION

The challenges of autonomous robot mission planning are
multifaceted, particularly in scenarios of active perception
where a robot actively collects information about an area. Sev-
eral geographically distributed sensors can collect data without
being connected to a network. A drone collects data from each
sensor via Bluetooth. It can be critical to complete such an
objective before the sensor runs out of battery or memory.
On its way, the drone may want to take photos. In such
missions, drones are assigned multiple objectives of different
criticality. The difficulties are amplified by uncertainties in
real-world situations, where factors like the energy required
to move under unpredictable environmental conditions (e.g.,
strong wind, heavy rain) significantly impact mission planning

and execution [1]. Depending on these conditions, the drone
may want to give priority to critical objectives and forego
less critical ones. Moreover, energy is not the only resource
required to keep track of, as the robot must reach an objective
before the sensor runs out of memory.

The problem of cost uncertainty has been studied by the
real-time community, particularly when dealing with uncer-
tainty in worst-case execution time (WCET) estimates [2].
Indeed, the WCET evaluation often cannot be carried out
with precision (see Fig. 1). The system designers may ob-
tain optimistic WCET through measurement-based methods
while certification authorities may require pessimistic WCET
obtained through static code analysis techniques [3]. However,
the WCET can be bounded by either low or high estimates
depending on safety guarantees required by the function. Re-
lying solely on high WCET estimations in system design may
result in unnecessary oversizing. Conversely, leaning towards
low WCET estimations can lead to scenarios where execution
budget constraints are exceeded before task completion.

Fig. 1. Optimistic and pessimistic WCET estimates

This challenge led to the emergence of the concept of Mixed
Criticality (MC) in real-time systems [4]. In this paradigm,
tasks are systematically classified according to their criticality
level, i.e. by assessing the consequences of a task failure.
High critical tasks are usually imperative to the survival of the
system, while low critical tasks are related to services. In case
of a resource shortage, the lower criticality tasks are degraded
in order to guarantee the execution of higher criticality ones.
This resource reallocation ensures failure probabilities fall
within an acceptable predetermined range.

In context of action planning, a variety of heuristics have
been proposed to navigate the complexities of decision-making
[1]. Amid these heuristics, Monte Carlo Tree Search (MCTS)
emerges as a popular choice for online planning in which an
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agent needs to navigate through a tree-like search space to find
an optimal path or make optimal decisions.

In this context, MCTS is not inherently designed to balance
guaranteeing execution of some objectives and maximizing
overall objective completion. As it is based on the Monte-Carlo
method, its decision is strongly influenced by the model’s most
probable scenarios. Adapting to optimistic scenarios can lead
to a resource shortage, while adapting to pessimistic scenarios
can lead to oversizing the system.

To address these issues, our contribution is threefold. Firstly,
we reformulate the MC approach in the context of uncertainty
in the costs. Secondly, although the MC approach was origi-
nally designed for real-time systems, focusing on worst-case
execution time as the only uncertain resource, we extend the
approach by generalizing the notion of resources, in particular
to energy. Finally, we design (MC)2TS, which is an extension
of MCTS with MC consideration. It aims to anticipate changes
in resource costs and adjust the decision-making process to
optimize objective completion, resource utilization and system
reliability in terms of criticality compliance.

The rest of the paper is organized as follows. In section
II, we describe the system model and define some notations.
Then we formulate the problem formally in Section III. We
describe our (MC)2TS heuristic in Section IV. In Section V,
we evaluate our heuristic and demonstrate the improvement in
performance brought by our approach.

II. SYSTEM MODEL

We consider a robot which decides to follow a sequence
of upcoming actions x = (x1, x2, ..., xn) to fulfill objectives
that can be measured by an objective function g. The system
designer assigns a criticality level to an action based on the
consequences of its failure. In this work, we only consider two
criticality levels, meaning actions are either part of the set of
high-criticality actions xHI or the set of low-criticality actions
xLO. Both sets must be non-empty for our approach to have
any positive impact on the execution of x.

The system runs in a criticality mode that can be either high
(HI-mode) or low (LO-mode). It starts in LO-mode and when
any resource consumption exceeds its allocated budget in LO-
mode, a mode switch to HI-mode occurs. A high-criticality
action (HI-action) must be carried out whether the system
is running in LO-mode or HI-mode. A low-criticality action
(LO-action) is executed only when the system is in LO-mode.
This means HI-actions must not depend on the execution
of LO-actions. However, if the system switches to HI-mode
while the LO-action is ongoing, this action will continue until
completion. This difference with the classical MC model will
be explained in section IV. If the system switches to HI-mode,
future LO-actions are discarded in order to free up resources
for the HI-actions currently in the plan. A seamless transition
between modes is required: execution must continue running
smoothly as far as HI-actions are concerned. The system may
later switch back to LO-mode if all resource consumption
return to normal.

Every action xi is associated with an actual cost C̄i, a tuple
whose elements represent the different resources we track. In
our case, the cost tuple would be C̄i = [di, ei]. C̄i[duration]
(resp C̄i[energy]) designates the actual action duration di (resp
energy ei) it takes to run action xi. Note that the value of C̄i

is not known a priori; it is observed while performing xi. We
have the following estimates of worst cases for action xi:

• Ci(LO)[r] represents the optimistic worst-case cost of an
action xi in resource r when the system operates in LO-
mode. In this scenario, the robot executes all planned ac-
tions normally. If the actual accumulated costs

∑
k C̄k[r]

exceed the optimistic worst-case accumulated costs based
on Ci(LO)[r] (see section IV), the system switches to HI-
mode, indicating an exceptional environment.

• Ci(HI)[r] represents the pessimistic worst-case cost of
an action xi in resource r when the system runs in
HI-mode. As already said, a LO-action must be able to
complete even though the system switches to HI-mode in
the meantime. Indeed, it may be impossible to stop the
robot in the middle of an action. Thus, a LO-action may
have a cost in HI-mode where ∀r, Ci(HI)[r] ≥ Ci(LO)[r].

III. PROBLEM STATEMENT

We aim to produce a robust plan that maximizes the
objective function g involving actions for which the costs
of their resources are uncertain. The design of such systems
traditionally relies on heuristics such as Monte Carlo Tree
Search (MCTS) to produce a plan. However, these heuris-
tics are poorly adapted to uncertain resource costs, and in
particular may fail at runtime to achieve critical objectives.
Conversely, while the Mixed Criticality (MC) approach defines
real-time schedules adaptable to various worst-case execution
times contingent upon the probabilities of fault occurrences, it
has yet to be adapted to many resources, and to resources other
than execution time. The problem is therefore to evolve these
two approaches in order to study the benefits to be derived
from their synergies.

To integrate the concept of MC in the MCTS heuristic,
we need to identify how the costs of actions are considered
during the plan building process. Among the four phases of
MCTS (see IV-A), the selection and simulation phases are
the ones impacted by the cost uncertainty. These phases have
to be enriched in order to produce a better adapted result,
whether the system is operating or transitioning between action
sequences of different worst-case estimates.

The transition must also be seamless, and can take place at
any point during the execution process, ensuring that future
critical actions and those in progress have sufficient resources
available. Additionally, if there are no uncertain costs and if
there are only critical actions, our solution should produce
results similar to those produced by an MCTS heuristic.

Research Objectives
Our first objective (RO1) is to develop a solution to the

mission planning problem that maximizes the number of HI-
actions completed even in exceptional execution environments



where actual resource consumption corresponds to pessimistic
assumptions. The resource budgets must be strictly enforced.

Our second objective (RO2) is to maximize the number of
LO-actions completed in normal execution environments where
resource consumption corresponds to optimistic assumptions.

IV. APPROACH

In this section, we present our (MC)2TS heuristic, an ex-
tension of MCTS heuristics to deal with uncertain constraints,
such as the energy costs. Our solution involves running the
MCTS heuristic while incorporating the mixed criticality ap-
proach during the selection and simulation phases.

A. MCTS phases description

MCTS is composed of four phases: selection, expansion,
simulation and backpropagation [5]. These four phases are
executed iteratively to incrementally grow a tree, as shown
in Fig. 2. Each node of the tree represents a sequence of
actions and contains data about the expected reward of the
subsequent sequences of actions. During each iteration, a new
leaf node is added to the tree, and the statistics within the
ancestor nodes are updated accordingly. This process repeats
until a computation budget is reached. Note that a computation
budget is a standard notation in MCTS literature to designate
processing limits to which the heuristic expands the tree. It
should not be misunderstood with mission (or action) time
budgets or worst-case execution time.

1 – Selection 2 – Expansion

3 – Simulation

Rollout Policy

4 – Backpropagation

Fig. 2. MCTS phases

During the selection phase, an expandable node of the tree
is selected. An expandable node is defined as a node that has
at least one child that has not yet been visited during the
search. The heuristic begins at the root node of the tree and
recursively traverses child nodes until an expandable node is
reached. In order to check whether an action xi is feasible at
node k, we verify conditions such as whether the accumulated
cost after executing xi does not surpass the budget. Therefore,
cost values affect the result of this phase.

During the expansion phase, a leaf node is added to the
selected node k by choosing an action xi+1 among the possible
actions to execute after the sequence xi = (x1, x2, ..., xi). The
list of possible actions is impacted by the uncertainty of costs,
but was already computed in the selection phase.

In the simulation phase, the expected value of the reward
of the new node is computed by simulating possible scenarios
after the execution of xi+1 using a rollout policy. This policy
can be a random policy or a heuristic tailored to the problem.
A maximum horizon is defined to limit the length of the action
sequences simulated within this phase. During the execution of
the rollout, it is important to know which sequences of actions
are possible after xi+1, considering the environment and the
budget. This means uncertain costs also make the results of
this phase uncertain.

In the backpropagation phase, the result of the simulation
phase for the new node is added to the statistics of all nodes
along its path up to the root of the tree. These statistics are
usually unbiased estimators of the rollout evaluations for the
objective function. In this phase, the expected utility of each of
the ancestor nodes is updated (backpropagated) with a more
precise value, as we have more data about the child nodes
resulting from the simulation. This phase is not impacted by
the uncertainty of costs.

MCTS is an algorithm that can be greatly optimized by
rebuilding the plan periodically during the mission execution, a
process known as replanning. Usually, a replan occurs after an
action has been completed and MCTS is executed to determine
the next action. As the system state is updated, the new plan
is better adapted to the new possible outcomes of the mission
execution. Replanning thus leads to a more efficient use of
the remaining resources by adapting to the new reality of the
situation. Thus, our approach can also benefit from replanning,
since a change of mode is no substitute for updating the plan
to reflect the current system state.

B. (MC)2TS: MCTS adaptation to uncertain costs

In our approach, each action has two costs, one in HI-
mode, one in LO-mode. Thus, each node k in the MCTS
action tree has two associated accumulated costs bk(HI) and
bk(LO), with the accumulated costs for the root node b0(HI)
and b0(LO) being zero. The computation of these accumulated
costs depend on the action xi assigned to node k.

For LO-actions, the accumulated costs are calculated as

∀r,

{
bk(LO)[r] = bk−1(LO)[r] + Ci(LO)[r] (1)

bk(HI)[r] = bk−1(LO)[r] + Ci(HI)[r] (2)

whereas for HI-actions, the accumulated costs are

∀r,

{
bk(LO)[r] = bk−1(LO)[r] + Ci(LO)[r] (3)

bk(HI)[r] = max
h≤j<k

(bj(HI)[r]) + Ci(HI)[r] (4)

where h is either the node with the last HI-action in the tree
branch of node k or the root node.

In LO-mode, as all actions are executed, the accumulated
costs for HI and LO actions are computed the same way. This



means the accumulated cost is simply the sum of Ci(LO)[r]
of every node in the branch (equations (1) and (3)).

In HI-mode, the accumulated cost of a HI-action xi must
consider the worst outcome of several situations: either the
system only ran in HI-mode during the execution of the
current action xi; or it was already running in HI-mode while
executing the previous HI-action xh; or it switched from LO
to HI-mode during the execution of one of the previous LO-
actions xl with h < l < i. When node i is added to the tree, its
accumulated cost is computed by considering the maximum
accumulated cost of these different situations (equation 4).
When a budget overrun occurs, the system may change mode
during the execution of a LO-action and must execute the next
HI-action if one exists. However, the cost of executing the HI-
action cannot be precomputed from an unknown intermediary
system state where the current action is still being executed.
Indeed, the system state is only known at the end of each
action. We therefore ensure the current action completes by
allocating it a budget in HI-mode even for a LO-action. In
HI-mode, as we consider that a LO-action must complete its
execution in HI-mode during a mode change, its cumulative
cost in HI-mode is computed by adding the cost of executing
xi in HI-mode to the cumulative cost of executing the previous
action in LO-mode (equation (2)).

Note that in the case where there are no uncertain-
ties, i.e. ∀r, ∀i, Ci(LO)[r] = Ci(HI)[r] = Ci[r], then
∀r, ∀k, bk(LO)[r] = bk(HI)[r] =

∑
i Ci[r]. This means that

(MC)2TS behaves exactly as MCTS when the action costs do
not change between LO and HI mode assumptions.

The only time complexity difference between MCTS and
(MC)2TS occurs in the simulation phase where costs are
computed. However, the selection phase has the highest
complexity of n2, where n is the number of actions. The
additional complexity is constant, as only HI-actions compute
the maximum value between each accumulated cost of nodes
after the previous HI-action, not increasing overall complexity.

x 0
LO

x
1LO

x
2LO

x
3H

I

< r >
x0 ∈ xLO

b0(LO)[r]

x1 ∈ xLO

b1(LO)[r]

x2 ∈ xLO

b2(LO)[r]

x3 ∈ xHI

b3(LO)[r]

< r >
x1 ∈ xLO

b1(HI)[r]

mode change

x3 ∈ xHI

b3(HI)[r]

x0 ∈ xLO

b0(LO)[r]

Fig. 3. (MC)2TS to scheduler instructions and constraints

MCTS or (MC)2TS cannot guarantee that all HI-objectives
will be achieved due to resource limits. To prevent LO-
objectives from overriding HI-objectives, the rewards for HI-
objectives should be greater than the sum of LO-objectives
ones: ∀xi ∈ xHI,

∑
xj∈xLO rj < ri. Thus, HI-objective rewards

become the greatest contributors to the objective function.
Fig. 3 illustrates how the outcome from the (MC)2TS step is

mapped into instructions for the scheduler. In this example, the
selected action sequence is (x0, x1, x2, x3). x3 is a HI-action,
while x0, x1, x2 are LO-actions.

For every action xk, the accumulated cost in LO mode
bk(LO)[r] from the (MC)2TS tree is used as the budget corre-
sponding to resource r. The systems starts in LO-mode. After
executing any action xk, the consumption of every resource
r (e.g.,, duration, or energy) since the system has started is
compared against bk(LO)[r]. If the budget is exceeded for at
least one resource, the system switches (or stays) in HI-mode.

When the system is running in HI-mode, it discards the next
action xk if it is a LO-action. This ensures that the resources
consumption stays below the computed HI-mode accumulated
cost bk(HI)[r]. In the setup shown on Fig. 3, only x0, x1, x2

can be dropped as x3 is a HI-action.
Fig. 3 represents an example of a mode change. The first line

shows the consumption of resource r in LO-mode, while the
second one is a possible scenario where an action surpasses its
LO-mode cost. Line < r > represents the progressive usage of
the available resources. When the mode change occurs, we let
LO-action x1 complete its execution in HI-mode, LO-action x2

is discarded and HI-action x3 is executed after x1 completion.
After transitioning to HI-mode, it is possible that the system

encounters a more favorable environment, resulting in the
actual accumulated cost for every resource r returning to a
value below bk(LO)[r] after executing action xk. In this case,
the system reverts to LO-mode and runs upcoming LO-actions
normally. However, the system needs to check whether any
previously dropped LO-action xi is a dependency of the LO-
action xk it is about to execute. If this is the case, then action
xk must be dropped as well. When a replanning occurs, the
resources are reallocated completely, and the system restarts
in LO-mode after a new plan has been adopted.

If bk(HI)[r] is exceeded for any resource r at the end of xk

execution or at any point before that, either the assumptions
used when designing the system were wrong, or the system
operates by accident outside its safe operating conditions, for
example because of a faulty hardware component. In both
those cases, (MC)2TS still performs more safely than MCTS
by dropping LO-mode actions and giving the system a chance
to recover and return within its nominal operating conditions.

This system can be adapted to n > 2 levels of criticality,
with the lowest being most critical. Each node will have n
accumulated costs, one per mode. In mode m, actions of
criticality level h where h ≤ m must have enough budget to
complete after any mode change. Cost computation considers
transitions before scheduling, similar to equation (4). However,
in modes m where m < h, the only possible transition
occurs during execution, similar to equation (2). The most



resource-consuming case would be transitioning from mode h
to m. Additionaly, to prevent lower critical actions from being
prioritized over higher critical ones, the system designer must
ensure ∀xi ∈ xh,

∑
xj∈xh+1 rj < ri.

V. EVALUATION

In this section, we evaluate the performance of our heuristic
on a data collecting scenario with regard to the research
objectives listed in section III.

• How much does (MC)2TS improve the number of com-
pleted HI-actions in exceptional environments while guar-
anteeing resource constraints (RO1) ?

• How much does (MC)2TS improve the number of com-
pleted LO-actions in normal environments while guaran-
teeing resource constraint (RO2) ?

Our benchmark heuristics are two traditional MCTS im-
plementations using two different strategies that each try to
accomplish one of these objectives.

Maximize actions under pessimistic assumptions (Sec-
tion V-C): we compare our solution to an MCTS implemen-
tation that makes pessimistic assumptions about costs during
the plan building. Indeed, every LO or HI-action in the plan
can be executed during the mission even when an exceptional
environment occurs (RO1).

Maximize actions under optimistic assumptions (Sec-
tion V-D): we compare our solution to an MCTS imple-
mentation that makes optimistic assumptions about costs,
maximizing the number of actions included in the plan (RO2).
If an action exceeds its optimistic budget, the MCTS imple-
mentation triggers a replanning operation after the action has
been completed. This additional replanning and all subsequent
periodic ones will use pessimistic assumptions.

A. Problem setup

Consider a farm scenario where a drone needs to collect
data from sensors spread throughout a field. In this scenario,
the robot operates within an energy budget and a flight time
budget. Some sensors are almost out of battery, and retrieving
their data before they run out of energy is highly critical. The
energy and flight time necessary for movement are subject to
uncertainty, as potential obstacles or environmental conditions
such as strong winds may affect the robot’s motor efficiency.

The costs in time and energy of an action have a minimum
value under optimal conditions. But the more unlikely the
conditions, the higher the costs. Consequently, the energy cost
and the flight time to move the robot can be reasonably mod-
eled as a half-normal probabilistic distribution. The minimum
value is half the worst-case cost in LO-mode (C(LO)). The
standard deviation depends on whether we wish to test the
execution on a normal or exceptional environment. In a normal
environment, we fix it at C(LO)/10. Otherwise, we fix it at
C(LO)/3, increasing the chance of higher costs.

B. Experiment setup

We model the terrain as a 100×100 grid. The robot can
move freely inside the field. Table I contains the considered

cost for moving and for retrieving data. A unit of movement is
the length of one tile in the grid. In HI-mode, each HI-action is
allowed to use twice the previously allocated budget, and LO-
actions are dropped. The energy costs are given in percentage
of battery level. The maximum budget B[energy] is fixed
to 60% of battery level in order to evaluate the influence
of a shortage of a second resource in the results. We use a
random rollout policy and the Upper Confidence Bound for
Trees (UCT) [6] selection policy, a best-first policy which
generates an upper confidence bound to assess the optimality
of the selected node.

In our implementation, the actions considered are reaching
an objective point, and retrieving the data from the sensor
located at that point. The computation budget used is 600
and it refers to the number of times MCTS executes the
selection phase. The horizon used is 5 and represents the
maximum length of actions sequences tested in the rollout
policy. The C parameter in UCT determines how much we
prioritize exploration of different paths over exploitation of the
best current path. We fix it to 0.5. The distance between the
previous objective point and the next one is used to calculate
the cost of an action.

The robot starts at a corner and is expected to finish at
the opposite corner. Replanning is made every 2 actions so
as to allow the robot running (MC)2TS to execute a part of
the mission in HI-mode, as replanning after every action would
bring the robot back to LO-mode immediately after every mode
change. Fifty different scenarios have been generated, each
featuring 15 randomly positioned targets with 4 of them being
of high criticality. We run MCTS and (MC)2TS 100 times on
each random scenario and evaluate the results with different
time budgets.

The objective function considered is

g(x, t) =

∑
i∈x

ri∑
i

ri
− t

B[time]
× 10−4 (1)

where x is the set of actions already completed, ri is the
reward for completing action xi, t is the time consumed from
the beginning of the mission until the end of the last action
and B[time] is the total time budget available.

The t
B[time] expression is used to prioritize plans that

achieve the same objectives in less time. The 10−4 weight
is used to ensure this value is always below the reward of
achieving an objective. The

∑
i

ri factor ensures the total value

is always below 1, which is necessary for UCT. For (MC)2TS,
we use b(LO)[time] as t, as it is the accumulated cost for
the normal mode of operation. The reward for reaching the
recharge site is 1.0, while the one for performing any other
HI- action is 0.2 and for completing any LO-action 0.0166.
Note that ∀xi ∈ xHI,

∑
xj∈xLO rj < ri as HI-actions are our

priority. As reaching the recharge site is the main HI-action
we want to ensure is in the plan, its reward is greater than the
sum of the rewards of the other HI-actions.



We want to assess each algorithm’s ability to find a plan
where the robot retrieves data from objective points and
reaches the recharging site before exhausting its allocated
budget. A robot can fail to reach the recharging site due to
unexpected high action costs. In this situation, the number of
achieved objectives will be counted as zero.

TABLE I
ACTION COSTS

Action Ci(LO) Ci(LO) Ci(HI) Ci(HI)
[duration] [energy] [duration] [energy]

Move (one unit) 2.0 0.1% 4.0 0.2%
Retrieve data 5.0 1.0% 10.0 2.0%

C. MCTS plans built on pessimistic costs
We evaluate the performance of (MC)2TS when compared

to MCTS when the latter is configured to only generate plans
that may never require more resources than the budget given.

When considering (RO1) where we only consider the ex-
ceptional situation, this MCTS is optimal as it is designed to
never surpass the allocated budget. Indeed, every action in the
plan will always be executed. In the most pessimistic scenario,
(MC)2TS will drop every LO-action and execute a plan that
only contains HI-actions. It will compute the accumulated
cost as the sum of C(HI)[r], just as the pessimistic MCTS
configuration. Therefore, in an exceptional environment, both
approaches will execute similar amounts of HI-actions, making
them equal when it comes to (RO1).

When considering a normal environment (RO2), MCTS
may execute less LO-actions than (MC)2TS due to its pes-
simism. Thus, we evaluate the number of objectives achieved
by (MC)2TS compared with that of MCTS by simulating
situations where the budget in LO mode is never exceeded.

600 800 1,000 1,200
6
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14

Time Budget

O
bj
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tiv
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Average number of objectives achieved

MCTS
(MC)2TS

Fig. 4. MCTS plans built on pessimistic costs executed in normal environ-
ment

The experimental results are shown in Fig. 4. The values
reach a peak due to the limited energy budget. (MC)2TS
outperforms MCTS in this scenario when the budget is not big
enough to accomplish all objectives. This is due to (MC)2TS
having an accumulated cost closer to the execution in a normal
environment, allowing it to explore more action sequences
thanks to the previously spared budget.

D. MCTS plans built on optimistic costs

We evaluate the performance of (MC)2TS when compared
to MCTS in case the latter is configured to generate plans that
optimize the number of actions in a normal environment. As
the plans do not guarantee resource constraints in the most
pessimistic scenarios, these plans may fail to ensure a safe
return to the recharging site.

When considering (RO2) where we try to optimize the nor-
mal case, this MCTS configuration is designed to allow plans
with a greater number of actions. Therefore, if we compare its
performance to (MC)2TS in situations where the budget in LO-
mode is never exceeded, it will often achieve more objectives
by not respecting the resource constraints. However, when
considering an exceptional environment (RO1), MCTS will
generate plans that require more resources than the allocated
ones to complete. Therefore, we evaluate how often MCTS
plans fail to handle worst case situations by simulating it in
exceptional environments. We also evaluate the number of total
objectives (MC)2TS accomplishes when compared to MCTS
during these missions.

The experimental results are shown in Fig. 5. The first
graph shows that with lower budgets optimistic MCTS fails
midway through the execution of the mission multiple times,
reducing its effectiveness. However, as shown in the second
graph, (MC)2TS is able to accomplish more objectives even
with higher budgets. This is due to its ability to return to
LO-mode once cumulative costs have been reduced to values
below the optimistic assumptions.

E. Computational budget influence

An essential consideration is whether the results from
previous simulations remain consistent across different compu-
tational budgets, and how this value influences the comparison
between the heuristics. To evaluate this behavior, we simulate
the situation with pessimistic plans using a time budget of 600
and varying the computational budget.

The experimental results are shown in Fig. 6. As the compu-
tational budget increases, the algorithms are capable of finding
more optimal plans. With higher budgets, both algorithms
degenerate into a standard tree search, and they reach a peak
number of objectives. As (MC)2TS cost assumptions are more
optimistic, it consistently achieves more objectives on average
than pessimistic MCTS.

F. Conclusions

We compared (MC)2TS to two extreme MCTS approaches:
one that prioritizes (RO1), and one that prioritizes (RO2).
The strategy with pessimistic assumptions may ensure the
plan can be executed, but it underperforms when evaluating
the number of actions executed. Similarly, the strategy with
optimistic assumptions optimizes the actions executed, but
fails to provide a plan that can be executed even in the
worst case. Therefore, (MC)2TS is a better alternative if both
objectives are desirable, as it a reaches a good compromise
between ensuring budget constraints and maximizing actions.
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VI. RELATED WORKS

In this section, we explore the literature on MCS and
MCTS, as these two domains play a key role in our proposed
framework for optimizing robot operations.

A. Mixed Criticality Systems

In Mixed-Criticality Systems, researchers have focused on
Real-Time Scheduling [4]. As we consider Decision Making
Heuristics, we rather focus on the different system models than
on the MC scheduling algorithms themselves.

Two mechanisms are usually considered to address a re-
source failure event : either discard the LO-tasks in HI-mode, or
degrade the quality of LO-tasks [7]. Gu et al. have criticized the
strategy of discarding LO-tasks in HI-mode [8] and propose an
unused budget reclamation scheme. Though resource-efficient
to some extent, it adopts a pessimistic outlook, degrading the
overall efficiency potential. A few studies have proposed to
attempt the minimum service level of LO-tasks in HI-mode.
Liu et al. propose continuing to execute LO-tasks in HI-mode
but with a smaller WCET [9]. However, such an alternative
is outside the scope of our case study. Several works also
propose increasing the tasks’ period in HI-mode [10]–[12],
but our system is not periodic.

In the context of energy-aware mixed-criticality systems,
some studies propose Dynamic Voltage and Frequency Scal-
ing (DVFS) or DVFS with Earliest Deadline First (EDF-
VD) scheduling [9], [13]. While they aim to reduce energy
consumption by gracefully degrading LO-tasks in HI-mode,
they lack inherent prioritization of HI-tasks over LO-tasks. In
these studies, DVFS serves merely a mechanism for degrading
the execution of a LO-task. Our approach differs in that it
considers energy as an uncertain parameter of the problem,
and not just as a resource to be managed. Therefore, we treat
energy (as well as action duration) as a first-class citizen within
the MC system, equally important as execution time.

B. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has proven to be pivotal
in addressing complex decision-making problems, such as
gaming, planning, optimization, and scheduling [5], [14]. Its
exploration-exploitation properties make it particularly valu-
able in path planning applications. Dam et al. extended the
application of Monte Carlo methods to improve exploration
strategies for robot path planning [15]. Kartal et al. proposed
hybrid approach, combining MCTS with Branch and Bound
for multi-robot action allocation problem with time windows
and capacity constraints [16]. These constraints and time
windows only consider one lower and upper bound, which
differs from the MC approach.

Most existing studies consider a known environment where
cost is fixed. Given a dynamic environment, Patten et al. have
proposed a method for using different samples of the robot’s
current knowledge to simulate future events [17]. However,
it does not consider the uncertainties associated with the
robot’s actions. Unlike other approaches that may consider
the uncertainty of the rewards of an action [5], [18]–[20],
we specifically focus on the uncertainties associated with the
robot’s resources, introducing a novel aspect of uncertain costs.

Additionally, we highlight mode-change and replanning in
(MC)2TS. We demonstrate how they are complementary tech-
niques that increase the safety and efficiency. This emphasizes
our adaptability even in the face of future cost changes.



VII. CONCLUSIONS AND PERSPECTIVES

In this article, we tackle the challenge of action planning
amid uncertain action costs. Estimating these costs in complex
systems can be challenging and often results in overestima-
tions. Consequently, this leads to oversized systems, resulting
in the waste of resources and reduced performance.

We reformulate the Mixed Criticality (MC) approach, orig-
inally proposed in the real-time community, in two ways.
Firstly, we generalize this approach to several different re-
sources, including energy and action duration, whereas it was
originally dedicated solely to execution time. Secondly, we
apply this approach to Monte Carlo Tree Search instead of
Real-Time Scheduling.

We propose (MC)2TS an extension of MCTS to mixed-
criticality systems. First, we adapt the action planing system
model to the MC approach. Next, we extend the cost evalua-
tion to match the different criticality modes of the MC system.

We evaluate our proposal in relation to our initial research
objectives, and demonstrate the considerable advantages of our
approach in reducing oversizing of the system architecture
in the presence of uncertain costs. On an active perception
example, we demonstrate that the robot can anticipate changes
in the environment and therefore, changes in costs. This
anticipation prevents the robot from being lost. Furthermore,
the objectives are effectively met since the costs are not as
consistently pessimistic as they would be with a traditional
MCTS approach.

In future work, we will extend our model to UAV swarms
or, more generally, autonomous and self-aware systems [21]
enhancing distributed planning with the mixed criticality ap-
proach. We will design (MC)2TS as a real-time service and
use tools like Cheddar [22] to validate its schedulability,
demonstrating our approach in a real environment.
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