
HAL Id: hal-04700748
https://telecom-paris.hal.science/hal-04700748v1

Submitted on 17 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MyWebstrates: Webstrates as Local-first Software
Clemens Nylandsted Klokmose, James R Eagan, Peter van Hardenberg

To cite this version:
Clemens Nylandsted Klokmose, James R Eagan, Peter van Hardenberg. MyWebstrates: Webstrates
as Local-first Software. UIST ’24: ACM Symposium on User Interface Software and Technology, Oct
2024, Pittsburgh, Pennsylvania, United States. �10.1145/3654777.3676445�. �hal-04700748�

https://telecom-paris.hal.science/hal-04700748v1
https://hal.archives-ouvertes.fr


MyWebstrates:
Webstrates as Local-first Software

Clemens Nylandsted Klokmose
Aarhus University
Aarhus, Denmark
clemens@cs.au.dk

James R. Eagan
LTCI, Télécom Paris

Institut Polytechnique de Paris
Palaiseau, France

james.eagan@telecom-paris.fr

Peter van Hardenberg
Ink & Switch

San Francisco, USA
pvh@inkandswitch.com

File Edit View Format Arrange

Offline use Ad-hoc peer-to-peer Versioning

Interoperability beyond the web Sovereignty over data and tools

Figure 1: MyWebstrates is a local-first implementation of Webstrates enabling: offline use; ad-hoc peer-to-peer collaboration
without an internet connection; versioning including clone and merge; interoperability beyond the web with conventional
desktop software; personal and collective sovereignty over how data and tools are stored and shared.

ABSTRACT
Webstrates are web substrates, a practical realization of shareable
dynamic media under which distributability, shareability, and mal-
leability are fundamental software principles. Webstrates blur the
distinction between application and document in a way that en-
ables users to share, repurpose, and refit software across a variety
of domains, but its reliance on a central server constrains its use; it
is at odds with personal and collective control of data; and limits
applications to the web. We extend the fundamental principles to
include interoperability and sovereignty over data and propose My-
Webstrates, an implementation ofWebstrates on top of a new, lower-
level substrate for synchronization built around local-first software
principles. MyWebstrates registers itself in the user’s browser and
function as a piece of local software that can selectively synchronise
data over sync servers or peer-to-peer connections. We show how
MyWebstrates extends Webstrates to enable offline collaborative
use, interoperate between Webstrates on non-web technologies
such as Unity, and maintain personal and collective sovereignty

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676445

over data. We demonstrate how this enables new types of applica-
tions of Webstrates and discuss limitations of this approach and
new challenges that it reveals.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
Local-first software, malleable software, collaborative software
ACM Reference Format:
Clemens Nylandsted Klokmose, James R. Eagan, and Peter van Hardenberg.
2024. MyWebstrates: Webstrates as Local-first Software. In The 37th Annual
ACM Symposium on User Interface Software and Technology (UIST ’24), Octo-
ber 13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3654777.3676445

1 INTRODUCTION
Webstrates [28] presented a practical web-based realisation of share-
able dynamic media; a vision of software inspired by early work
of Kay and Goldberg [24], where software is malleable and share-
able by its users, and distributable across their devices. Shareable
dynamic media is defined as collections of information substrates:
“... software artifacts that embody content, computation and inter-
action, effectively blurring the distinction between documents and
applications” [28]. Users can share, repurpose, and recombine these
substrates as they see fit. Webstrates or web substrates show how

https://doi.org/10.1145/3654777.3676445
https://doi.org/10.1145/3654777.3676445


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

Web technology can be leveraged for a practical implementation
of shareable dynamic media by applying concurrency control us-
ing operational transformation [48] on the document object model
(DOM) of a webpage, and applying the principle of transclusion for
software composition. This demonstrates the technical realizability
of the vision and has lead to numerous applications of the share-
able dynamic media principles across different domains including
computational and scientific notebooks [40, 43], video editing [29],
video conferencing [17, 18], data visualisation [2], qualitative data
analysis [33], teaching [38], and creative work [11, 13].

Webstrates represents an ambition to empower users to take
control and ownership over their software by blurring the technical
distinction between using and developing software. This echoes
the ambitions of Smalltalk [25], Self [51], Lisp [47] and Hypercard
[16], but Webstrates emphasises shareability; “users can collaborate
seamlessly on multiple types of data within a document, using their
own personalized views and tools” [28]. In Webstrates, software can
even be adapted and reprogrammed collaboratively while in use to,
e.g., let a user be assisted by a more capable peer in changing their
user interface as they are using it [28, 40]. However, the original
realisation of Webstrates was bounded by the technical constraints
of the time, resulting in a centralised architecture where users are
tied to a central server without means for working offline or for
collaborating across servers. Webstrates allows users to work on
the same document, each using their own tools, but only if they
use the same server. In this way, the centralised server effectively
“owns” and controls the user’s data. This violates what we refer to
as personal and collective digital sovereignty (inspired by Couture
and Toupin [9]): the control of one’s data and software tools and
autonomy in choice of where and how to store them. Webstrates
is also limited in interoperability beyond the Web and beyond a
specific Webstrates server. While it does support some degree of
interoperability through the open standards of the Web, it is largely
trapped inside the browser making it difficult to interoperate with
software outside of the Web ecosystem.

Webstrates builds its ideas of shareable dynamic media by apply-
ing two core concepts inspired by Beaudouin-Lafon: information
substrates [6] and instrumental interaction [5]. Information sub-
strates are layered, with each layer having its own organizing set
of abstractions and affordances for interaction. Instrumental inter-
action in turn draws on the insight that interaction is frequently
indirect, mediated by collections of instruments or tools, which are
frequently polymorphic [7].

In Webstrates, the base substrate is the webstrate, which per-
sists and synchronizes a web page’s DOM, including any CSS and
JavaScript. Tools built atop this layer compose in higher order in-
formation substrates, from general purpose tools that add code edit-
ing and execution for computational media, as in Codestrates [8];
to collaborative video editing, as with Videostrates [29]; or even
substrates built around more specialized concepts as affinity di-
agramming and coding for qualitative data analysis [33]. These
higher order substrates each stack and compose substrates to build
off of each other, but the base layer substrate is the persisted and
synchronized DOM.

With MyWebstrates, we introduce a layer below Webstrates’
persisted DOM: shareable data substrates. The Webstrates paper
articulated shareable dynamic media as having three key properties:

malleability, shareability, and distributability. With MyWebstrates,
we propose two additional fundamental properties: interoperability
and sovereignty and show how they can be practically realized. As
with Webstrates, the shareable data substrates provide persistence,
synchronisation, and history support. They are, however, local-first,
have branching versioning support, are platform independent, and
are network agnostic.

Real-time collaborative editors have historically been notori-
ously difficult to build using a decentralised architecture, leading
to most such systems relying on a centralised cloud server. This
includes Webstrates as well as Google Docs, Overleaf (which we
use for this paper), Figma, etc. Local-first software [27] is a software
model presented as an alternative to the entrenched cloud model
that applies recent results in conflict-free replicated data types
(CRDTs) [45] for creating decentralised software where the users
are in control of their data yet retain the means for collaboration
as provided in conventional cloud-based software.

In this paper, we show how Webstrates can be redesigned as
local-first software and demonstrate how this opens up for new use
cases in terms of offline use, interoperability, and personal as well as
collective sovereignty over data (see figure 1). Our examples serve
both as pedagogical tools to explain how MyWebstrates works, as
well as an evaluation of the contribution through their novelty [30].
MyWebstrates is open source1, and a public installation is available
at https://my.webstrates.net.

2 FROMWEBSTRATES TO MYWEBSTRATES
Webstrates [28] allows for creating collaborative and reprogrammable
software through a conceptually simple change to how the web nor-
mally works. Conventionally, the document object model (DOM)
of a webpage is an ephemeral representation of data fetched from
a database. In Webstrates, a web-page is called a webstrate. The
contents of its DOM are the data and changes to it are made persis-
tent and synchronized to any other clients that may have the same
webstrate open. By combining this mechanism with transclusion—
realised through embedding webstrates using iFrames—Klokmose
et al. [28] show how the traditional separation between applications
and documents can be softened, and multiple users can collaborate
on the same document with different tools. They demonstrate a
document editor where two users collaborate on a paper with both
functionally and aesthetically different editors. Also, that a more
experienced user could remotely assist in changing the editor of
another use while in use, to, e.g., add a new tool for managing
references as is an example in the paper.

Since its publication, convenience APIs and constructs have been
added to the Webstrates platform to allow it to scale to, e.g., realise
complex software such as Vistrates [2] or Mirrorverse [18].

What enabled Webstrates, was applying operational transfor-
mation (OT) [48] to the DOM, so when multiple clients edited the
same webstrate eventually it would reach a consistent state. This
includes edits to JavaScript code embedded in the webstrate as well.
Webstrates is based on a JavaScript implementation of OT called
ShareJS [14] (now ShareDB [46]). OT is a first-generation tech-
nology for real-time collaborative editing and requires a central

1Released under the MIT licence at https://github.com/Webstrates/MyWebstrates/

https://my.webstrates.net
https://github.com/Webstrates/MyWebstrates/


MyWebstrates: Webstrates as Local-first Software UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

authority to guarantee consistency. This leads to several limita-
tions: A centralised architecture, no support for offline editing, and
limited cross-server collaboration. Furthermore, the core synchro-
nisation algorithm in ShareJS is implemented in JavaScript, making
it difficult to interoperate beyond the Web.

While it is possible to run multiple Webstrates servers, for two
users to collaborate, they must both have their documents and tools
on the same server. It is not practically possible to work offline. To
do that in a stable manner one would have to host a Webstrates-
server on the local device, which is challenging on mobile devices.
The centralised architecture also means that the user must entrust
their data to the server owner.

MyWebstrates is Webstrates as local-first software and is compat-
ible with existing software built for Webstrates. The transformative
principle of MyWebstrates is that webstrates are created and reside
first and foremost in the users’ local browser instead of on a central
server. Then, they can be selectively shared across sync servers
or alternatively over a peer-to-peer connection. As such, MyWeb-
strates introduces lower-level substrates below the webstrates. It
is effectively a drop-in replacement for the previous Webstrates
server. But, where the data layer below the DOM in the original
Webstrates was an opaque implementation detail, it is in MyWeb-
strates exposed as a layer of the substrate with its own capabilities
and affordances; it can be used to interoperate beyond Webstrates
and the Web as well as store arbitrary data without the impedance
mismatch created when attempting to store data ill-fitted to the
DOM in the DOM (as illustrated in section 4.4).

3 RELATEDWORK
3.1 Local-first software
The term local-first software was introduced by Kleppmann et al.
[27] to demonstrate an alternative to centralised cloud-based soft-
ware while retaining the affordances of modern software that we
have become accustomed to, such as real-time collaborative editing.

Kleppmann et al. [27]’s manifesto introduces seven ideals for
local-first software: 1) No-spinners: all data operations are handled
on the local device and synchronization to other devices happens in
the background; 2) Your work is not trapped on one device: it should
be possible to seamlessly distribute work across multiple devices;
3) The network is optional: software should work fully offline or

MyWebstrates Non-webstrates software

Webstrates-based software

Webstrates

Data substrates

Data 
substrate 

native
software

Legacy 
software

Adapter

Figure 2: MyWebstrates introduces data substrates be-
neath Webstrates’ regular DOM-based substrates. Existing
Webstrates-based software can run on top of MyWebstrates.
Data substrates can be used for interoperability with non-
Webstrates-based software. This could be native software to
the data-substrates—such as Ink & Switch’s Tiny Essay Editor
(section 4.4.2)—or legacy software with an adapter for the
data substrates—e.g., the Godot game engine (section 4.4.3).

with an unreliable network; 4) Seamless collaboration with your
colleagues: rich collaboration should be possible across apps and
file formats with powerful mechanisms for resolving conflicts; 5)
The long now: data and software should withstand a cloud-service
shutting down or going out of business; 6) Security and Privacy by
Default: sensitive data does not have to be stored on other people’s
computers, and if it does it can be encrypted; 7) You Retain Ultimate
Ownership and Control: The user can do with their data as they
want and can process it in arbitrary ways. MyWebstrates addresses
points 1-4, 7, and partially 5 and 6. We discuss these further in
section 6.7.

Kleppmann et al. [27] further propose using conflict-free repli-
cated datatypes (CRDTs) [45] as a foundation for local-first soft-
ware2. CRDTs provide an alternative approach to operational trans-
forms for concurrent editing with robust peer-to-peer concurrency.
The practical realisability of CRDT-based local-first software has
been made possible through a number of open source implemen-
tations such as Kevin Jahn’s Y.js [22] or Kleppmann and Ink &
Switch’s Automerge [26].

MyWebstrates is built using Automerge [26]. Automerge syn-
chronizes changes to arbitrary JSON documents across clients con-
nected in a peer-to-peer fashion. It provides rich versioning includ-
ing conflict resolution, history navigation, as well as branching
and merging of JSON documents. Automerge-Repo is a framework
on top of Automerge to handle network connection and data stor-
age. It is network and storage agnostic, and allows developers to
create adaptors for new types of network or storage. The core of
Automerge is written in Rust and is portable across platforms. To
run in the browser, the core is compiled to web assembly (wasm).

Web-based local-first software has additionally been made possi-
ble by new standardised browser features such as service workers
[37], which enable offline loading and handling of HTTP requests.
Storing large amounts of data locally is possible through the In-
dexedDB API [36].

Commercial platforms for developing web-based local-first soft-
ware includes DxOS [42] and Replicache [44] among others.

3.2 Interoperable systems
Historically, interoperability between programs happened through
the file system and standardized file types. In the UNIX philoso-
phy, interoperability is central, and common practice is to achieve
complex tasks by piping data between simple programs.

Proprietary file formats and later software as a service make
interoperability between software increasingly difficult, trapping
users in so-called application silos.

Ubiquitous computing and computing beyond conventional per-
sonal computers created a push towards interoperability between
applications running on heterogeneous devices in dynamic net-
works. In research, for example, the recombinant computing project
[12] let devices exchange capabilities over an ad-hoc network and in-
teract using meta interfaces agreed upon at runtime. PatchPanel [3]
uses the iROS event heap to enable interaction between heteroge-
neous software. Shared Substance [15] proposed a data-oriented
approach to creating software that spanned multiple devices by

2CRDTs were also mentioned as a future avenue for overcoming implementation
limitations in the original Webstrates paper [28]



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

decoupling shared data from behavior; as contrasted with conven-
tional remote method invocation or (RMI) or the common object
request broker architecture (CORBA). Here, a cross-device applica-
tion was represented in a shared graph structure similar to a scene
graph and software running on the different peers could dynami-
cally associate device-appropriate behaviour to the data. Our data
substrates share similarities with Shared Substance, although all
shared data in MyWebstrates is replicated between peers.

3.3 Related philosophies
MyWebstrates is inspired by various related philosophies around
the shape of software, notions of digital sovereignty, malleability
and appropriation, and expressivity.

One of the main related techno-philosophical efforts around de-
centralisation is the fediverse: heterogenous web-based softwares
that interoperate over theW3C ActivityPub protocol [54] for decen-
tralized social media. With ActivityPub, services publish different
kinds of content streams related to various actors through a flexi-
ble, standardized protocol. Users subscribe to these social activity
streams using the tools of their choice, which interoperate through
ActivityPub. Thus, a user could subscribe to a (Twitter-like) stream
combining microblog posts, photos shared through a Flickr-like
photo-sharing service such as Pixelfed [49], or a Reddit-style meta-
community like Kbin [53]). The protocol facilitates interoperability,
with users freely mixing and merging content across these streams,
adapted to the modality of the consuming tool. Similarly, tools such
as Matrix [34] focus on decentralised instant messages where chat
rooms are federated across servers or even bridged between dif-
ferent services such as WhatsApp, Mattermost, and Slack. In all of
these approaches, users freely mix content across servers, services,
and media, as facilitated by an underlying, federated protocol.

Other work aims to explore new architectures for hypermedia.
For example, the HyperHyperSpace project [4] is perhaps most
similar in approach to MyWebstrates and aims to provide “a local
data store, both in-browser using IndexedDB and server-side; a data
representation format, based on Merkle-DAGs and CRDTs; and a
secure data sync protocol over WebRTC and WebSockets.”

On the other end of the spectrum, the Files over Apps philosophy
takes a different approach, focusing on data in files and formats
that are easy to retrieve and read, under user control [1]. These ex-
plorations further probe a philosophical tension between data-first
software, open-source, and proprietary software formats, and the
complexity of media ownership and stewardship. MyWebstrates
extends the Webstrates vision of shareability and malleability to
include interoperability and sovereignty, while aiming to provide a
collection of fairly simple but powerful substrates in which share-
able dynamic media can grow.

4 BASIC USE AND USE CASES
In the following section we present the basic usage of MyWebstrates
as well as demonstrate new use cases that it enables. The use cases
are illustrated in the accompanying video.

4.1 Basic use
Alice creates a new Webstrate to capture her notes. Since she has
never used MyWebstrates before, she first visits a website that

hosts the client, such as my.webstrates.net. This static website
installs the MyWebstrates client in her browser. She then navigates
to /new, e.g., my.webstrates.net/new, to create and load a new
blank webstrate (or, with optional parameters, say, a new codestrate
with a built-in editor [8]). She nowwrites her notes in the webstrate,
such as by using the browser’s developer tools, content-editable, or
codestrate’s editor, depending on how she chose to create the new
webstrate. She then closes her browser and takes a break. When she
returns, she re-opens the webstrate URL, which shows her notes as
she had entered them.

Alice decides she would like to share her notes with Bjørn, so she
registers her webstrate with a sync server. She can either do it man-
ually in the console with webstrate.addSyncServer(’sync.web-
strates.net’) or through a menu item in codestrates. To share
the webstrate with Bjørn, she appends @sync.webstrates.net the
the URL; Codestrates has a button for this. In contrast toWebstrates,
MyWebstrates does not share webstrates by default. When Bjørn
fetches this URL, the MyWebstrates client installed in his browser
will fetch and synchronize through the specified sync server. He
adds his comments, which are live-synchronized with Alice. If Bjørn
makes edits that Alice doesn’t agree with, she can roll back the
changes to a previous version.

4.2 Personal and collective digital sovereignty
Anne is preparing to teach an informatics class using theWebstrates-
based CoTinker platform [38]. CoTinker helps create Webstrates-
based learning activities for high-school students involving collab-
orative programming. Anne wants to be sure to protect the privacy
(and legal compliance) of her students’ data and logs of their activ-
ity, which webstrates need to capture, synchronize, and store. The
school has an agreement with a GDPR-compliant cloud provider
where Anne can spin up a dedicated sync server only for the stu-
dents in her class to use. Anne syncs the prototype of her learning
activity to the server for the students to copy. At the end of the
term, she spins down the server, deleting its stored data. Students
retain their own local copies.

As such, MyWebstrates allows user control over where their data
and software are stored. When creating a webstrate, it is first and
foremost created locally on the user’s device and does not leave
the device unless explicitly shared. Sharing is typically done by
federating a webstrate to a sync server. Users may have private
sync servers to synchronise their webstrates between devices and
for backup purposes. Such a private sync server could be hosted on
a home NAS or through a rented cloud server. A sync server can be
personal or collectively owned, e.g., by a household or a company.

During class, Anne realises that one step of the assignment needs
further explanation. She has a local slide editing webstrate that can
transclude the slideshow provided to students. Using this, she adds
a slide with explanation to the prototype of the learning activity on
the shared sync server. Afterwards, she asks her students to press
the update button in their copies to pull in the changes.

The original Webstrates paper [28] as well as the Videostrates
paper [29] demonstrate scenarios where users collaborate on a
shared webstrate with different tools—so called asymmetric collab-
oration—using transclusion. With MyWebstrates, these tools and
documents do not have to reside on the same server. Personal tools



MyWebstrates: Webstrates as Local-first Software UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

may reside locally or on a private sync server while the shared
document can reside on a publicly accessible sync server or the
other way around. In this way, users can exercise more granular
control over the storage and synchronization of their data.

4.3 Offline use
MyWebstrates enables offline use in the following forms: single-
user offline work, intermittent offline work, local peer-to-peer work,
and clone and merge.

4.3.1 Single-user offline work. The prototypical offline use-cases
are working on an airplane, or if one of Anne’s students takes their
laptop outside in the school yard to work. Historically, this kind
of offline use is the most common context of use for a personal
computer, but it has been made challenging with software-as-a-
service and cloud-based software. In MyWebstrates, single-user
offline work without a connection to a server is possible 1) once the
client has been installed in the user’s browser by having previously
navigated to its page, and 2) as long as the webstrates being worked
on have been previously loaded—placing them in local browser
storage—or were created during the offline session. The implemen-
tation of a given webstrate must accommodate offline use by, e.g.,
not relying on external asynchronous data requests or not having
dependencies on online code that cannot be cached.

4.3.2 Intermittent offline work. Intermittent offline work happens
when two or more users are collaborating synchronously and one of
them intermittently loses connectivity, e.g., when entering a tunnel
on a train or due to an unstable or overloaded school network.

As MyWebstrates is local-first, changes to a webstrate are made
locally and synced to peers if available. If a connection is lost
and reestablished, changes from other peers will be automatically
merged. Here, conflicts can potentially arise (see section 6.2).

4.3.3 Local peer-to-peer work. Users may wish to collaborate with-
out access to the internet. For example, Alice and Bjørn might wish
to work on a slideshow on an airplane, or Anne’s students might
edit science reports together while outdoors on a field trip. Tra-
ditional cloud software requires access to centralized servers to
enable this, but because MyWebstrates users have a full copy of the
software and data locally, collaboration can occur via a peer-to-peer
connection over an ad-hoc network. For example, to establish a
peer-to-peer connection between two browsers, Alice and Bjørn
can each navigate to /p2p, which provides an interface to establish
a peer-to-peer connection over an ad-hoc WiFi network using a
QR-code based offer and response exchange. This ad-hoc connec-
tion will then remain active until one of them closes their /p2p tab.
While this peer-to-peer connection is established, Alice and Bjørn
can share any webstrate directly between their browsers.

4.3.4 Clone and merge. One of Anne’s students, Céline, is pre-
senting the results of their group work to the class. While she is
speaking, her group mate Lee realises that their solution to the last
exercise has a bug. Lee quickly clones the learning activity, fixes
the bug and tests that is is correct, then merges the changes into
the main document before Céline reaches the final exercise.

Clone and merge can be useful in such situations where a user
wants to edit a shared webstrate in an offline copy and merge the

MyWebstrates Tiny Essay Editor

Figure 3: A simple ToDo-list implemented as a webstrate
(left) and loaded in the Tiny Essay Editor through the data
substrate (right).

changes back into the shared one. This is a common situation when
developing software that is in use by others, or when for any rea-
son not wanting to share intermediate changes before they are
ready. MyWebstrates lets a user make a clone of a webstrate and
merge changes back into the source webstrate. Merges are han-
dled automatically, however conflicts can occur (see discussion in
section 6.2). There are two ways to duplicate a webstrate: with
webstrate.copy(), which creates and opens a new copy without
version history, and webstrate.clone(), which creates a web-
strate that retains the version history of the original and also al-
lows for calling webstrate.merge() on the original to merge in
any changes. All of this functionality can be accessed through the
console or through more convenient UI built into higher-level web-
strates, e.g., through Codestrates.

4.4 Interoperability
MyWebstrates introduces new opportunities for interoperability in
terms of users being able to apply different tools to simultaneously
edit data in the same webstrate. We identify three cases of interop-
erability: webstrates in foreign software, foreign data in webstrates,
and data substrates-based interoperability.

4.4.1 Webstrates in foreign software. Bjørn and Amélie are collab-
orating on a writing project, and Bjørn has created a ToDo list
webstrate to coordinate their work. Amélie is used to working in
her own text editor, and opens the ToDo webstrate from within.
She wants to privately brainstorm on a list of tasks and creates a
branch of the ToDo-list using the editor’s built in versioning UI.
When satisfied, she merges the changes back into the original.

As a webstrate is stored in a general data substrate realised
through Automerge, any software capable of communicating with
an Automerge-based sync server can load a webstrate. This means
that the tool for navigating the history of an Automerge document
as developed by Ink & Switch [20] can be applied to a webstrate
simply by sharing it over a commonly accessible sync server.

Ink & Switch has developed an Automerge-based open source
editor for writing essays called Tiny Essay Editor (TEE) [21]. TEE
can be extended with new data types, and Webstrates’ DOM model
can be treated as a data type. As an experiment, we transplanted



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

MyWebstrates Tiny Essay Editor

Figure 4: A Tiny Essay Editor essay (right) loaded in a
Codestrates-based webstrate environment (left) editing cus-
tom CSS through the Cauldron editor.

the core of the Webstrates client wholesale into TEE and could
create and open webstrates. Changes synchronize bidirectionally
with MyWebstrates through the data substrate (Figure 3). Moreover,
branching and merging on a document in the TEE interface is
seamlessly applied to the webstrate.

4.4.2 Foreign data in webstrates. Bjørn has aWebstrates-based tool
for applying expressive graphical styling to documents. Amélie has
written some text in Ink & Switch’s Tiny Essay Editor that will
be printed using Bjørn’s tool. He transcludes Amélie’s essay into
his Codestrates-based styling editor. While he tweaks the custom
styling in the Cauldron IDE (Figure 4), Amélie’s edits continue to
synchronize live—with his new styling displayed in his interface.

In MyWebstrates, a webstrate provides direct access to the data
substrate and its Automerge instance. Connections can be made pro-
grammatically to any Automerge sync server, and any Automerge
document can be loaded and made accessible to code in a webstrate.

4.4.3 Data substrates-based interoperability. Anne and Dominique
are working on level design for a web-based online game for a
customer. The level is represented in the universal scene descrip-
tion (USD) format [41], which Anne has been editing through the
Godot game engine while Dominique has been using his preferred
environment, Unity. In an online meeting with their client, they
share a link to a web-based representation of the level and can do
live edits based on the feedback from the client during the meeting.

It is possible to store arbitrary data in the data substrate layer
of a webstrate and programmatically listen to changes to it. We
have experimented with storing a scenegraph of a 3D environment
formatted as a JSON representation of the universal scene descrip-
tion (USD) format [41]. We implemented support for loading an
Automerge-based webstrate in both Godot and Unity game engines
over a sync server with live updating of the scene when remote
changes were made to the webstrate.

Figure 5 (left) shows a scene loaded in Godot, Unity, and a web
browser with ThreeJS. The scene is edited through Codestrates’
Cauldron IDE, and changes live-update in all views.

This approach can also enable separation of interaction logic
and business logic in distributed applications. In figure 5 (right),

a Tetris level is expressed in USD and rendered in 3D in Godot.
A Java application shows a 2D view of the scene and allows for
manipulating the model with the mouse, e.g., to rearrange bits of
a Tetris piece. The game logic is running as JavaScript in a Web
browser (not shown), that also takes keyboard input (potentially
from multiple clients) to control the pieces. The Java application
is not aware of the ongoing Tetris game and just knows how to
render and manipulate USD cubes in a 2D plane. This means that
it is possible to take the level apart through the Java application
while the game is running—effectively performing instrumental
interaction [5] on a USD scene (see accompanying video).

5 IMPLEMENTATION
MyWebstrates consists of four core components: a client, a ser-
vice worker, optional synchronization servers, and a peer broker
mechanism for multi-user offline work.

All webstrates are represented as JSON objects persisted in Au-
tomerge documents. Each webstrate document has four core compo-
nents: meta, assets, data, and dom. meta can include information
such as creation time or id of the webstrate it has been copied
from. It also contains the list of zero or more sync servers that the
webstrate is federated to. assets holds references to any file-based
assets that may be stored in the webstrate (e.g., binary images or
JavaScript libraries). data can hold arbitrary data, e.g., a USD-based
scenegraph, as shown in section 4.4.3. dom holds the document ob-
ject model of the webstrate stored as JsonML [23]. A webstrate is
identified with a universally unique identifier (UUID) that is part of
its URL. The id is globally unique, as a shared webstrate is federated
between clients and sync servers with no one version being the
authoritative version3.

5.1 JavaScript Client
The MyWebstrates client is responsible for maintaining correspon-
dence between the state of the DOM in a webstrate and the un-
derlying Automerge documents that stores it. This client can be
served as plain files from any static web host or even by temporarily
running python -m http.server in the client folder. Unlike the
original Webstrates, no server-side code is required to operate.

The client includes a service worker [37] which caches every
part of the system to ensure continued use without an internet
connection. It has other responsibilities described below.

The client combines two main elements: the Webstrates DOM
synchronization system and the Automerge document synchroniza-
tion system. Changes to the DOM are translated into changes to
an Automerge CRDT document. Automerge records those changes
and stores them locally (in IndexedDB) as well as synchronizing
them to any other online collaborators (as described below.) Other
browser tabs are synchronized using the BroadcastChannel feature
of the browser without any network access required.

To determine which webstrate the user is working with, the id
of the webstrate is extracted from the browser’s current URL (e.g.,
/s/b7VabMk9pCKkg/) and the corresponding webstrate document
is loaded from Automerge.

3We expect that a future version will provide a scheme for nicer names.



MyWebstrates: Webstrates as Local-first Software UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 5: Left: A 3D scene stored in USD represented as JSON in a webstrate rendered in Godot, Unity and a Web browser using
ThreeJS. Edits done in the webstrate are synchronized to all visualisations. Right: A Tetris game represented in USD rendered
in Godot and in 2D in a custom Java application. The game logic and control is handled off-screen in a webstrate running in a
Web browser. The Java application can manipulate the pieces while the game is ongoing.

Because a webstrate can be stored on any Automerge sync server,
either the document itself or the URL it is loaded from can recom-
mend a hostname for any sync servers where the data is available.
This allows users to operate their own sovereign hosts but still to col-
laborate seamlessly. This is done by appending @sync.some-server

Web browser: Client 1 Web browser: Client 2

♜ ♝ ♞

Data server A

♜
Data server B

♝

Tab:♜

♜ ♛ ♝
Webstrates

DOM & JS API

Connection to
Data server A

Data substrate
client

Service Worker

Connection to
Data server A

Connection to
Data server B

Shared between tabs

IndexedDB

♛ 
♜ 
♝

Webstrates
HTTP API

Data substrate
client

Figure 6: The bottom right side of the figure shows two
browser clients that each have three webstrates open; each
webstrate represented by a colored chess piece. The black
tower and the purple bishop are shared between the two
clients. Black tower through sync server A and purple bishop
through sync server B. Yellow king and red knight are not
federated to any sync servers. The left side of the figure mag-
nifies the internals of the tab with the black tower in client
1. Each tab runs an instance of the Webstrates client, an Au-
tomerge instance setup with any socket connections to sync
servers the given webstrate might be federated to. The top
shows what is shared between tabs; a service worker and
the IndexedDB data store. The service worker has its own
Automerge instance with socket connections to federated
sync servers of all open webstrates. The IndexedDB holds all
open (and previously opened) webstrates of the client.

.net to the URL. At runtime, the client will establish a new con-
nection to the referenced sync server and request the data.

The client then parses the document’s stored dom and popu-
lates the DOM in the browser. A two-way mapping is now created
between the DOM in the browser and the automerge document
using the same MutationObserver-based strategy as in the orignal
Webstrates implementations [28] and the patch API of Automerge4.

Ephemeral messaging is implemented using broadcasting over
the sync servers. This broadcasting is similarly used when estab-
lishing WebRTC based connections between clients of the same
webstrate for, e.g., video communication or screen sharing; in Web-
strates terminology, this is called signal streaming.5

The client has a simple API for copying a webstrate (without
history and with or without federations) or cloning a webstrate
(with history) where changes can be merged into the original. It
also implements a basic API for handling versioning, where it is
possible to revert back to a specific version.

The client provides an API for adding assets to a webstrate
through a call to webstrate.uploadAsset(). This could, e.g., be
a binary image or any other type of file. Assets are stored in in-
dependent Automerge documents that are treated as immutable
data. This way, updating an asset to a new file will preserve version
history as an older version of the webstrate will just point to the
previous asset document. Assets are served through the service
worker (see below).

Automerge is exposed to the webstrate, which means that soft-
ware running in a webstrate can access the data substrate directly
on the automerge object. Automerge automatically resolves edit-
ing conflicts at the syntactic level of the document. A webstrate is
effectively a set of nested maps and arrays. Edits are targeted to
specific keys or insertion points: two users can concurrently edit
a DOM element by updating attributes or insert children with no
conflicts. If, e.g., two users replace the same attribute, it may cause
a conflict, but Automerge selects a consistent winner. A history
including conflicts is retained, and accessible through the exposed

4https://automerge.org/automerge/api-docs/js/types/next.PatchCallback.html
5https://webstrates.github.io/userguide/api/signaling.html

https://automerge.org/automerge/api-docs/js/types/next.PatchCallback.html
https://webstrates.github.io/userguide/api/signaling.html


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

Automerge API. The MyWebstrates client ensures that no edits vio-
late the structure of the DOM (e.g., adding multiple lists of children
to an element). Some edits are harder to merge than others: for
example, support for moving subtrees in Automerge is preliminary.
Da and Kleppmann [10] propose an algorithm to improve handling
this operation, but it is not yet available for use in Automerge. It
would reduce a common class of semantic conflicts.

As such, MyWebstrates ensures that synchronization conflicts
cannot leave a document in a syntactically invalid state, and main-
tains access to the full history of changes, including conflicting
changes. Semantic conflicts, however, can still arise (see further
discussion of conflicts in section 6.2).

5.2 Service worker
The service worker has the following responsibilities: 1) Serving
client files from its cache, 2) serving assets, and 3) providing an
HTTP wrapper for certain Webstrates API calls.

The service worker stores all client files. Once initially loaded,
the client is accessible in the browser without a connection.

When adding an asset to awebstrate, that asset becomes available
through a resource on the URL (e.g., /s/2L...ct/logo.png). The
service worker will intercept the request for logo.png, lookup the
asset document in the list of assets in the webstrate, load the asset
doc from Automerge and respond with the data of the asset based
on a stored MIME type. The service worker will also serve files
from paths into zip-file assets.

The service worker furthermore provides a wrapper for some of
the Webstrates client API to, e.g., allow creating new webstrates.

5.3 Sync server
MyWebstrates does not require a network connection to operate
and can synchronize directly (as described below) with other clients.
However, it is helpful to store data on a cloud server for durability
and ease of replication. Otherwise, when a client is closed, its data
is unavailable to anyone else, and if the computer should be lost,
the data would be lost as well.

MyWebstrates uses a conventional Automerge sync server6 as a
store-and-forward host for collaborators. Any client can post edits
to a webstrate if they know its id and hostname of the server.

Because this server is not specific to webstrates, it allows for
interoperability with any other automerge-based applications that
share it. The sync server is a simple service that accepts WebSocket
connections and that stores documents in the file system.

5.4 Local peer-to-peer connectivity
For multi-user offline work, MyWebstrates provides a mechanism
for establishing peer-to-peer connections over an ad-hoc network.
This is possible because the underlying data is all stored locally and
can be synchronized through the same mechanisms as updating a
cloud-hosted sync server. Connections are established over local ad-
hoc wifi networks via WebRTC and peer signalling occurs using QR
codes that encode the standardWebRTC offer and response protocol.
Each user opens a built-in page within the application. They face
their laptops together and the camera on each reads QR codes
presented by the other until the network connection is established
6https://github.com/automerge/automerge-repo-sync-server

(see figure 7). Once the network connection is established, the same
protocol used by the cloud servers enables collaboration.

6 DISCUSSION
6.1 History and versioning
Both Webstrates and MyWebstrates use a history of changes to
maintain consistency, and it is possible to roll back to a previous
version by applying an inverted list of changes.

In MyWebstrates, there is not a central server with an authori-
tative order of these changes. Hence, versions are no longer guar-
anteed incremental (. . . , v12, v13, . . . v1701, etc). That is, there is
no common mapping to order these change sets. As such, MyWeb-
strates uses Automerge’s git-like hash of changes to globally iden-
tify a document’s current version (e.g., 19624. . . f516c). For a given
client (such as a browser or sync server), however, an internally-
consistent incremental version number is available, but cannot be
used to identify a given version across instances as each instance
may have applied its patches in a different order. These incremental
version numbers are more usable but are only locally valid, while
version hashes are globally valid.

It is thus possible to identify a given version of a document
(locally through the version number or globally through a version
hash) and to roll back to previous versions, as with Webstrates, but
the order of these versions is not globally stable.

In contrast to the original Webstrates, MyWebstrates can main-
tain history when cloning a document (similar to creating a fork
in git). Any document with a common history can thus merge any
subsequent changes. This makes it possible to create branches of
documents that can pull in changes from other common ancestors.

6.2 Conflicts
Conflicts can be characterised along two dimensions: semantic vs.
syntactic, and synchronous vs. asyncronous. Syntactic conflicts per-
tain to the document data structure while semantic conflicts pertain
to the meaning users ascribe to the document. Both synchronous
and asynchronous syntactic conflicts are handled automatically
by Automerge (as described in section 5). Synchronous semantic

Figure 7: Two laptops on the same ad-hoc network face each
other. Each presents QR codes detected by the camera of the
other to execute the WebRTC offer and response protocol
until a connection is established.

https://github.com/automerge/automerge-repo-sync-server


MyWebstrates: Webstrates as Local-first Software UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

conflicts are localised in time and space, e.g., when two users are
simultaneously editing the same sentence. These will often be de-
tected and immediately remedied by users, typically through social
negotiation. Asynchronous semantic conflicts on the other hand
may happen unexpectedly and in distant parts of a document. Dis-
covering and resolving these can be hard and requires tools to
maintain awareness of changes and to inspect the history in order
to remedy unintentional merges.

MyWebstrates provides low-level APIs to a webstrate’s data sub-
strate, from which one could build higher-level conflict managers.
We deemed developing such tools out of scope of this paper. First,
they are heavily application dependent: tools for conflict resolution
in a MyWebstrates-based vector graphics editor would be signifi-
cantly different from for a text editor. Second, conflict handling in
CRDTs is a problem that is under active research and new results
are currently being published on a regular basis (e.g., [10]).

Although different applications will have varied requirements
for managing change review and conflict resolution, there may be
opportunities for shared tooling. The Patchwork project [20] will
allow for creating bespoke versioning tools for Automerge-based
applications. They illustrate a versioning tool for a tldraw-based
whiteboard [50] running on Automerge.With Patchwork, we would
be able to create a generic history tool embedded in the Cauldron
IDE that operates at the DOM level. Application developers could
create domain-specific tools, e.g., for Mirrorverse or CoTinker.

We have not found that the current lack of support for advanced
conflict resolution has prevented us from experimenting with build-
ing usable local-first software on top of MyWebstrates.

6.3 Personal and Collective Sovereignty
Webstrates aims to provide software users with the ability to adapt
their tools to their own idiosyncratic needs, such as through bring-
ing in their own personal tools and representations to collaborative
documents. From this perspective, Webstrates has been fairly suc-
cessful. Due to its centralised architecture, however, the locus of
control remains in a cloud-based server.

MyWebstrates aims to bring data under a user’s own control.
Through its local-first architecture, data remains on the user’s own
device by default (in the browser’s indexedDB). As such, the user
maintains autonomy over any data and tools they create and use.
If a user wishes to create, say, a personal journal, their intimate
thoughts are not implicitly shared with another entity.

Collaboration, however, can be enabled in an opt-in fashion by
registering a webstrate with a sync server. This explicit operation
promotes data from being under an individual’s locus of control to
one that is shared between the user and others through the sync
server. Moreover, collaboration often occurs across individual and
collective boundaries. For example, this paper is a collaboration
across three institutions, each of which has a legitimate motiva-
tion for control and ownership of its product. When collaborating
through a traditional cloud-based tool (such as Overleaf or Web-
strates), ownership and control of the data is effectively conferred
to the cloud owner. Even with most federated tools such as Git,
collaborators must agree upon a single controller to effectively
“own” their data (such as a neutral third-party (e.g., GitLab) or one
institution’s locally-hosted Git Forge (e.g. GitLab, Forgejo, etc)).

While it is possible to synchronize data across multiple Git servers,
collaborators must elect one such repository to be canonical.

In MyWebstrates, we aim to provide a different approach. When
shared with a sync server, each sync server effectively caches its
own copy of the collective document. A document that lives in
Alice’s browser and Bob and Charlie’s sync servers does not live
in any one chosen place but rather in all. This paper could thus be
collectively owned and controlled by all three partner sync servers.

This mechanism relies on documents having a global shared
name, independent of the sync server or sync servers used for
collaboration. In this way, ownership of the data means having
a snapshot of the collective data under the user’s (or collective’s)
locus of control. By making the data substrate’s id globally unique,
independent of which sync servers may be involved, the document
is effectively independent of any specific actor. All participating
sync servers may effectively hold the data, but no specific one
maintains sole control or ownership.

The federated ownership of documents has the downside that
once a document first been shared, it is extremely difficult to delete
as it will require asking all peers to do so—peers that may be offline
or potentially unwilling to fulfill the request. This is a fundamental
problem with federated architectures including the ActivityPub-
based Fediverse and email as well.

6.4 Interoperability
The concept of sovereignty extends beyond simply where data are
stored. It includes notions of empowerment beyond the confines
of application and document, including beyond Webstrates itself.
Section 4.4 illustrates three such use cases: using Webstrates in Ink
& Switch’s Tiny Essay Editor (TEE); using TEE in a Webstrate; and
combining conceptually divergent data between Webstrates and a
game engine, such as Unity or Godot.

The first two examples show how a webstrate can be manipu-
lated in a foreign software environment and vice versa, with each
environment acting as its own set of collective instruments on a
shared data substrate. While neither of these systems were designed
with the other in mind, the user can freely import from the other.
In this way, TEE and Webstrates could be thought of as alternative
editors for a shared collaborative document, similar to the way
that the original Webstrates [28] enabled Alice, Bob, and Charlie to
use their own specialized tools in idiosyncratic ways to collaborate
on a shared document. This interoperability is facilitated by the
conceptual alignment between Webstrates’ model of the DOM and
TEE’s model of an essay.

The Tetris example shows a more heterogenous sort of interoper-
ability beyond the web, with parts of the logic written in Java, parts
in Webstrates, and game models based on a USD scene graph em-
bedded in Godot or Unity. Each of these pieces comes together, with
live synchronization coming through the underlying data substrate.
While some data can be represented directly through Webstrates,
scene graphs and models are exposed through a webstrate’s data
property while still maintaining the underlying synchronisation
and sharing model of the data substrate. This enables divergent
software to co-exist and collaborate, similarly to the way that Sub-
stance Grise [15] grafted a shared scene graph into the Anatomist
application used by neuroscientists. Whereas the former did so



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

through a bespoke plugin architecture, this software demonstration
shows how a sharing-oriented data substrate can be generalized
to more diverse applications, from 3D virtual worlds in Unity &
Godot, to specialized tools with game physics and game controls
shared across multiple actors.

One of the key challenges for this kind of interoperability is
that of conceptual alignment between the underlying data formats.
MyWebstrates’ data substrates enable synchronisation at the raw
data layer by using general abstractions for offline synchronisation.
By building off of Automerge, any system that can embed this
library can theoretically interoperate with MyWebstrates at this
layer. The second challenge is being able to interpret andmake sense
of the exchanged data. For Webstrates and TEE, this is relatively
straightforward since both use a JSON tree to describe their content.
For the games example, these use more opaque data structures.
Approaches such as Cambria’s data lenses [31, 32] show promise
at enabling translation between conceptually compatible formats,
but may require more bespoke integration to interoperate.

6.5 Transclusion revisited
Transclusion is the referencing and embedding of other documents,
in whole or in part [39]. In Webstrates, it is expressed using iFrames
and is a key mechanism for composition and malleability. By tran-
scluding a webstrate in another, the embedding webstrate can
change the embedded webstrate’s appearance and behavior. For
example, Liu and Eagan [33] transclude interview transcripts in a
textual editor for qualitative coding, while another webstrate tran-
scludes those codes for an affinity-diagramming based represen-
tation on a wall-sized display, enabling asymmetric collaboration
across devices, representations, interactions, and analytic processes.

MyWebstrates’ data substrates enable a similar sort of transclu-
sion across interoperable systems. In the Webstrates+TEE examples
above, a user can transclude a webstrate into TEE (or vice versa),
enabling her to combine distinct tools and environments to meet
her own idiosyncratic needs. Or, collaborators could collectively
work on the same document with their own personal tools7.

In the Tetris example, transclusion is used between diverse sys-
tems and environments not to provide alternate lenses on the same
data but to provide new specialized capabilities, with each part of
the system extending the whole.

Transclusion in MyWebstrates is, as in the original Webstrates,
limited to the granularity of a document; either a webstrate or data
substrate-based document. Transcluding, e.g., a single slide from
one slideshow to another requires either that the slide is itself a self-
contained document or that the whole slideshow is transcluded and
only the specific slide is rendered. Ideally, any node in a document
would be independently addressable and transcludable, however,
this would require a fundamentally different data model than the
document-based model of Automerge.

6.6 Authentication and authorization
In the original Webstrates, an access control list is stored in the
document and enforced by the server.

7such as when one co-author of this paper works in markdown+git and another in
Overleaf

With MyWebstrates, the ID of a webstrate represents a basic
security capability that gives lasting read and write access to the
document to any user with access to the shared sync server. This is
a pattern found in some other web applications, including today,
the tldraw collaborative drawing system. Sharing a URL provides
immediate collaborative access to a document. Users without the
unguessable URL have no access to the document at all.

The Automerge system extends this security further by allowing
users to provide their own sync servers: even the MyWebstrates
development team has no way of knowing which sync servers exist.

The trade-off in this design is that today, there is no mechanism
for revoking access to a document. Once the ID of a webstrate is
known by another user, nothing short of forking the document to
a new ID will allow excluding a collaborator.

This is particularly concerning in an environment where se-
curity boundaries between webstrates are weak and anyone can
contribute code that everyone will execute in their browser. Clearly
future work is required to develop a more robust model of secure
collaborative code execution.

In simple cases, whether a document or a change should be
shared with a peer could be handled through basic public/private
key authentication. One challenge is group management, which
could apply to either groups of people (such as a team of coauthors),
or groups of devices (such as your laptop, phone, and desktop).

Consider, for example, a group with three users, Alice, Bob and
Eve. Alice is a group administrator and removes Eve. Before Bob
receives that message, he receives updates from Eve and takes
actions based on it. Later Bob hears that Eve should have been
removed earlier – how should Eve’s updates be handled?

It gets even more challenging in the case of peers with shared
administration. Consider the same group but where Alice and Eve
are both administrators. Each removes the other from the group
concurrently. Who should Bob consider a member of the group –
and what should happen if Bob receives messages out of order?

While no solution is currently available for Automerge, Herb
Caudill [19] sketches out a possible approach. Distributed key agree-
ment [52] and Zelenka et al. [55]’s User-Controlled Authorization
Network (UCAN) standard provide potential partial solutions.

6.7 Local-first principles
MyWebstrates addresses the seven principles of local-first software
(introduced in Section 3.1) in the following manner: 1) No spinners:
Document edits happen locally, and are not dependent on a network
connection. As such, local changes happen more quickly during use.
Initial load times to synchronise from a remote server, however, are
potentially longer, bounded by the complexities of Automerge and
available network connection. We expect this gradually to improve
with optimizations to Automerge. 2) Your work is not trapped on
one device is inherently supported. Moreover, MyWebstrates—in
contrast to Webstrates—are not shared by default. The user must ex-
plicitly decide what to share, including with themselves across their
own devices. Because the underlying data substrates are stored in
the browser’s IndexedDB, MyWebstrates are currently trapped in
the specific browser or shared with a sync server. There is also an
experimental Webstrates package that can write Codestrate frag-
ments to the local file system using the web FileSystem APIs [35].



MyWebstrates: Webstrates as Local-first Software UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

3) The network is optional is inherently supported by MyWebstrates,
however, software developed using MyWebstrates could introduce
network dependencies that limit offline use, as with a tool for re-
mote conferencing that might depend on a specific conferencing
server being available. 4) Seamless collaboration with your colleagues
is inherently possible and is a fundamental goal of Webstrates. My-
Webstates introduces an explicit step to activate sharing through a
sync server, reflecting the tension between seamless collaboration
and control over data. It also adds richer version control, including
branching and merging, by delegating this responsibility to the
lower level data substrate. 5) The long now is supported by users
not having to rely on a centralised server, however, it also means
that the responsibility for keeping data lies with the user to a larger
degree than before. MyWebstrates may have a shorter long-term
viability than simpler file storage formats [1]. We aim to mitigate
this risk by relying on Web standards rather than bespoke APIs
for expressing interactive software. 6) Security and Privacy by de-
fault: MyWebstrates delegates access controls to the underlying
data substrate. For non-shared webstrates, this represents an in-
crease in security and privacy, as data do not leave the browser.
For shared webstrates, this currently represents a decrease in se-
curity as the underlying data substrate does not currently provide
access controls. This is not a fundamental limitation; we expect
it to be addressed in a future version of Automerge. 7) You retain
ultimate ownership and control is partially fulfilled. While MyWeb-
strates live in the browser by default, and the user can selectively
choose which webstrates to share with a sync server, Webstrates
currently provides rudimentary per-webstrate tools. Assets and
other dependencies add complexity to the meaning of just what
is meant by a webstrate. Furthermore, once a webstrate has been
shared, it is effectively beyond the creator’s sole control to update
or delete remote copies. However, this is a fundamental concern in
decentralised content networks and not unique to MyWebstrates.

6.8 Other limitations
There are several limitations to the implementation of MyWeb-
strates. Offline collaboration over peer-to-peer is fragile to network
interrupts and can be limited when used on networks enforcing
strict client isolation. Furthermore, in the current implementation,
as soon as two clients are peered, any open webstrates are shared,
hence making it possible to inadvertently leak private content.

All document history is preserved by Automerge. Users cannot
redact historical edits, beyond creating a copy with no history.
Sensitive data such as passwords cannot easily be redacted and will
thus be accessible to collaborators via the history APIs.

Storing assets in Automerge does not scale to very large assets
such as, e.g., embedding a gigabyte video in a slideshow webstrate.
Similarly, the service worker does not support streaming assets,
which limits its use for, large assets such as video.

There is currently no user facing way to see what webstrates
are stored in local storage in the browser, and if a user clears their
browser cache, the data will be gone. Future work includes an
interface to explore local webstrates and to export or persist them
to disk, e.g., through the file system API [35].

Various aspects of the original Webstrates API have been omitted
from MyWebstrates, e.g., user cookies8 and messaging9. These
features have had little use in software built on Webstrates, and
will require being rethought for local-first software.

7 CONCLUSIONS
Webstrates presents a vision and a model of shareable, dynamic
media in which users can freely extend and mold software to suit
their own idiosyncratic needs, but it relies on a centralised server
to support collaboration and sharing. We have introduced MyWeb-
strates, an extension to this vision that focuses on interoperability
and on personal and collective sovereignty, in line with the original
goals of Webstrates.

The MyWebstrates prototype provides a local-first solution that
obviates the need for a webstrates server, pushing that role down
to a lower-level data substrate with an optional sync server. This
approach enables various configurations of offline use and greater
control over whether webstrates are shared. By introducing a more
general data substrate, we also facilitate interoperability between
webstrates, other systems that share the same data substrate, and
external systems, both on and off the web.

ACKNOWLEDGMENTS
This work has been partially funded by the Novo Nordisk Founda-
tion (0086698), the Aarhus University Research Foundation (AUFF-
E-2022-9-33), the Villum Foundation (VL-54492), and the French
National Research Agency (ANR-21-ESRE-0030). Any opinions,
findings, and conclusions or recommendations expressed here are
those of the authors and do not necessarily reflect the views of the
funding agencies. We thank Janus Kristensen and Jonas Oxenbøll
Petersen from CAVI for programming assistance and video editing.
We thank Jason Kankiewicz for his work on Automerge-based USD
support in Godot.

REFERENCES
[1] Steph Ango. 2023. File Over App. https://stephango.com/file-over-app. Accessed:

2024-03-28.
[2] Sriram Karthik Badam, Andreas Mathisen, Roman Rädle, Clemens N. Klokmose,

and Niklas Elmqvist. 2019. Vistrates: A Component Model for Ubiquitous An-
alytics. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2019),
586–596. https://doi.org/10.1109/TVCG.2018.2865144

[3] R. Ballagas, A. Szybalski, and A. Fox. 2004. Patch panel: enabling control-flow
interoperability in ubicomp environments. In Second IEEE Annual Conference
on Pervasive Computing and Communications, 2004. Proceedings of the. 241–252.
https://doi.org/10.1109/PERCOM.2004.1276862

[4] Santiago Bazerque. 2021. Hyper Hyper Space. https://www.hyperhyperspace.
org/whitepaper. Accessed: 2024-03-28.

[5] Michel Beaudouin-Lafon. 2000. Instrumental interaction: an interaction model
for designing post-WIMP user interfaces. In CHI ’00: Proceedings of the SIGCHI
conference on Human factors in computing systems (The Hague, The Netherlands).
ACM, New York, NY, USA, 446–453. https://doi.org/10.1145/332040.332473

[6] Michel Beaudouin-Lafon. 2017. Towards Unified Principles of Interaction. In
Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter (Cagliari,
Italy) (CHItaly ’17). Association for Computing Machinery, New York, NY, USA,
Article 1, 2 pages. https://doi.org/10.1145/3125571.3125602

[7] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, polymorphism
and reuse: three principles for designing visual interfaces. In AVI ’00: Proceedings
of the working conference on Advanced visual interfaces (Palermo, Italy). ACM
Press, 102–109. https://doi.org/10.1145/345513.345267

[8] Marcel Borowski, Janus Bager Kristensen, Rolf Bagge, and Clemens Nylandsted
Klokmose. 2021. Codestrates v2: A Development Platform for Webstrates. (2021).

8https://webstrates.github.io/userguide/api/cookies.html
9https://webstrates.github.io/userguide/api/messaging.html

https://stephango.com/file-over-app
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/PERCOM.2004.1276862
https://www.hyperhyperspace.org/whitepaper
https://www.hyperhyperspace.org/whitepaper
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/3125571.3125602
https://doi.org/10.1145/345513.345267
https://webstrates.github.io/userguide/api/cookies.html
https://webstrates.github.io/userguide/api/messaging.html


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Klokmose et al.

[9] Stephane Couture and Sophie Toupin. 2019. What does the notion of
“sovereignty” mean when referring to the digital? New Media & Soci-
ety 21, 10 (2019), 2305–2322. https://doi.org/10.1177/1461444819865984
arXiv:https://doi.org/10.1177/1461444819865984

[10] Liangrun Da and Martin Kleppmann. 2024. Extending JSON CRDTs with Move
Operations. In Proceedings of the 11th Workshop on Principles and Practice of
Consistency for Distributed Data (Athens, Greece) (PaPoC ’24). Association for
Computing Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/
3642976.3653030

[11] Peter Dalsgaard, Kim Halskov, and Clemens Nylandsted Klokmose. 2020. A study
of a digital sticky note design environment. In Sticky creativity. Elsevier, 155–174.

[12] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and Trevor F. Smith. 2009.
Experiences with recombinant computing: Exploring ad hoc interoperability in
evolving digital networks. ACM Trans. Comput.-Hum. Interact. 16, 1, Article 3
(apr 2009), 44 pages. https://doi.org/10.1145/1502800.1502803

[13] Jonas Frich, Midas Nouwens, Kim Halskov, and Peter Dalsgaard. 2021. How
Digital Tools Impact Convergent and Divergent Thinking in Design Ideation. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 431, 11 pages. https://doi.org/10.1145/3411764.3445062

[14] Joseph Gentle. 2011. ShareJS: Realtime collaboration editing in any app. https:
//github.com/josephg/ShareJS. Accessed: 2024-03-28.

[15] Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan, Clément Pil-
lias, and Michel Beaudouin-Lafon. 2011. Shared substance: developing flexi-
ble multi-surface applications. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). Asso-
ciation for Computing Machinery, New York, NY, USA, 3383–3392. https:
//doi.org/10.1145/1978942.1979446

[16] Danny Goodman. 1993. The complete HyperCard 2.2 handbook. Random House
Inc.

[17] Jens Emil Grønbæk, Banu Saatçi, Carla F. Griggio, and Clemens Nylandsted
Klokmose. 2021. MirrorBlender: Supporting Hybrid Meetings with a Mal-
leable Video-Conferencing System. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 451, 13 pages.
https://doi.org/10.1145/3411764.3445698

[18] Jens Emil Sloth Grønbæk, Marcel Borowski, Eve Hoggan, Wendy E. Mackay,
Michel Beaudouin-Lafon, and Clemens Nylandsted Klokmose. 2023. Mirrorverse:
Live Tailoring of Video Conferencing Interfaces. In Proceedings of the 36th Annual
ACM Symposium on User Interface Software and Technology (San Francisco, CA,
USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA,
Article 14, 14 pages. https://doi.org/10.1145/3586183.3606767

[19] Herb Caudill. 2024. Alice and Bob in wonderland: Bootstrapping identity and
authority in a world without servers. https://herbcaudill.com/words/20240602-
local-first-auth. Accessed: 2024-07-18.

[20] Ink & Switch. 2024. Patchwork lab notebook. https://www.inkandswitch.com/
patchwork/notebook/. Accessed: 2024-07-23.

[21] Ink & Switch. 2024. Tiny Essay Editor. https://github.com/inkandswitch/tiny-
essay-editor. Accessed: 2024-03-28.

[22] Kevin Jahns. 2024. Yjs: A CRDT framework for real-time collaboration. https:
//yjs.dev. Accessed: 2024-03-28.

[23] JsonML.org. 2024. JsonML. http://www.jsonml.org. Accessed: 2024-07-23.
[24] Alan Kay and Adele Goldberg. 1977. Personal dynamic media. Computer 10, 3

(1977), 31–41.
[25] Alan C Kay. 1996. The early history of Smalltalk. In History of programming

languages—II. 511–598.
[26] Martin Kleppmann and Ink & Switch. 2024. Automerge: A JSON-like data struc-

ture that can be modified concurrently by different users, and merged again
automatically. https://automerge.org. Accessed: 2024-03-28.

[27] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-first software: you own your data, in spite of the cloud.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Athens, Greece)
(Onward! 2019). Association for Computing Machinery, New York, NY, USA,
154–178. https://doi.org/10.1145/3359591.3359737

[28] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Proc.
UIST ’15 (Charlotte, NC, USA). ACM, 280–290. https://doi.org/10.1145/2807442.
2807446

[29] Clemens N. Klokmose, Christian Remy, Janus Bager Kristensen, Rolf Bagge,
Michel Beaudouin-Lafon, and Wendy Mackay. 2019. Videostrates: Collaborative,
Distributed and Programmable Video Manipulation. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology (New Orleans,
LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
233–247. https://doi.org/10.1145/3332165.3347912

[30] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[31] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2020. Project Cambria:
Translate your data with lenses. https://www.inkandswitch.com/cambria. Ac-
cessed: 2024-03-28.

[32] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2021. Cambria: Schema
Evolution in Distributed Systems with Edit Lenses. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data (Online,
United Kingdom) (PaPoC ’21). Association for Computing Machinery, New York,
NY, USA, Article 8, 9 pages. https://doi.org/10.1145/3447865.3457963

[33] Jiali Liu and James R Eagan. 2021. ADQDA: A Cross-device Affinity Diagramming
Tool for Fluid and Holistic Qualitative Data Analysis. PACM HCI: Proceedings
of the ACM on Human-Computer Interaction 5, ISS (2021), 19. https://doi.org/10.
1145/3488534

[34] Matrix.org Foundation. 2024. Matrix.org: An open network for secure, decen-
tralised communication. https://matrix.org. Accessed: 2024-03-28.

[35] Mozilla Developer Network (MDN). 2024. FileSystem API. https://developer.
mozilla.org/en-US/docs/Web/API/File_System_API. Accessed: 2024-03-28.

[36] Mozilla Developer Network (MDN). 2024. IndexedDB API. https://developer.
mozilla.org/en-US/docs/Web/API/IndexedDB_API. Accessed: 2024-03-28.

[37] Mozilla Developer Network (MDN). 2024. Service Worker API. https://developer.
mozilla.org/en-US/docs/Web/API/Service_Worker_API. Accessed: 2024-03-28.

[38] Line Have Musaeus, Marie-Louise Stisen Kjerstein Sørensen, Blanka Sára Palfi,
Ole Sejer Iversen, Clemens Nylandsted Klokmose, and Marianne Graves Petersen.
2022. CoTinker: Designing a Cross-device Collaboration Tool to Support Com-
putational Thinking in Remote Group Work in High School Biology. In Nordic
Human-Computer Interaction Conference (Aarhus, Denmark) (NordiCHI ’22). As-
sociation for Computing Machinery, New York, NY, USA, Article 49, 12 pages.
https://doi.org/10.1145/3546155.3546709

[39] Theodor Holm Nelson. 1995. The heart of connection: hypermedia unified by
transclusion. Commun. ACM 38, 8 (1995), 31–33.

[40] Midas Nouwens, Marcel Borowski, Bjarke Fog, and Clemens Nylandsted Klok-
mose. 2020. Between Scripts and Applications: Computational Media for the Fron-
tier of Nanoscience. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376287

[41] Pixar Animation Studios. 2021. OpenUSD. https://openusd.org/release/index.
html. Accessed: 2024-03-28.

[42] DxOS Project. 2024. DxOS: Realtime local-first applications. https://dxos.org.
Accessed: 2024-03-28.

[43] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and
Clemens N. Klokmose. 2017. Codestrates: Literate Computing with Webstrates.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 715–725. https://doi.org/10.1145/3126594.3126642

[44] Replicache. 2024. Replicache: Realtime sync for any backend stack. https://
replicache.dev. Accessed: 2024-03-28.

[45] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of Dis-
tributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 386–400. https://doi.org/10.1007/978-3-
642-24550-3_29

[46] ShareDB. 2024. ShareDB: Realtime database backend based on Operational
Transformation (OT). https://github.com/share/sharedb. Accessed: 2024-03-28.

[47] Guy Steele. 1990. Common LISP: the language. Elsevier.
[48] Chengzheng Sun and Clarence Ellis. 1998. Operational transformation in real-

time group editors: issues, algorithms, and achievements. In Proceedings of the
1998 ACM Conference on Computer Supported Cooperative Work (Seattle, Wash-
ington, USA) (CSCW ’98). Association for Computing Machinery, New York, NY,
USA, 59–68. https://doi.org/10.1145/289444.289469

[49] Daniel Supernault and Contributors. 2023. Pixelfed. https://pixelfed.org. Ac-
cessed: 2024-03-28.

[50] tldraw. 2024. tldraw. https://tldraw.com. Accessed: 2024-07-15.
[51] David Ungar and Randall B. Smith. 1987. Self: The power of simplicity. SIGPLAN

Not. 22, 12 (dec 1987), 227–242. https://doi.org/10.1145/38807.38828
[52] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-

ford. 2021. Key Agreement for Decentralized Secure Group Messaging with
Strong Security Guarantees. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (Virtual Event, Republic of Korea)
(CCS ’21). Association for Computing Machinery, New York, NY, USA, 2024–2045.
https://doi.org/10.1145/3460120.3484542

[53] Ernest Wisniewski and Kbin contibutors. 2023. Kbin. https://kbin.pub. Accessed:
2024-03-28.

[54] World Wide Web Consortium (W3C). 2018. ActivityPub. W3C Recommendation.
World Wide Web Consortium (W3C). https://www.w3.org/TR/activitypub/
Accessed: 2024-03-28.

[55] Brooklyn Zelenka, Daniel Holmgren, Irakli Gozalishvili, and Philipp Krüger. 2024.
UCAN Specification. https://github.com/ucan-wg/spec. Accessed: 2024-03-28.

https://doi.org/10.1177/1461444819865984
https://arxiv.org/abs/https://doi.org/10.1177/1461444819865984
https://doi.org/10.1145/3642976.3653030
https://doi.org/10.1145/3642976.3653030
https://doi.org/10.1145/1502800.1502803
https://doi.org/10.1145/3411764.3445062
https://github.com/josephg/ShareJS
https://github.com/josephg/ShareJS
https://doi.org/10.1145/1978942.1979446
https://doi.org/10.1145/1978942.1979446
https://doi.org/10.1145/3411764.3445698
https://doi.org/10.1145/3586183.3606767
https://herbcaudill.com/words/20240602-local-first-auth
https://herbcaudill.com/words/20240602-local-first-auth
https://www.inkandswitch.com/patchwork/notebook/
https://www.inkandswitch.com/patchwork/notebook/
https://github.com/inkandswitch/tiny-essay-editor
https://github.com/inkandswitch/tiny-essay-editor
https://yjs.dev
https://yjs.dev
http://www.jsonml.org
https://automerge.org
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3332165.3347912
https://doi.org/10.1145/3173574.3173610
https://www.inkandswitch.com/cambria
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3488534
https://doi.org/10.1145/3488534
https://matrix.org
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://doi.org/10.1145/3546155.3546709
https://doi.org/10.1145/3313831.3376287
https://openusd.org/release/index.html
https://openusd.org/release/index.html
https://dxos.org
https://doi.org/10.1145/3126594.3126642
https://replicache.dev
https://replicache.dev
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://github.com/share/sharedb
https://doi.org/10.1145/289444.289469
https://pixelfed.org
https://tldraw.com
https://doi.org/10.1145/38807.38828
https://doi.org/10.1145/3460120.3484542
https://kbin.pub
https://www.w3.org/TR/activitypub/
https://github.com/ucan-wg/spec

	Abstract
	1 Introduction
	2 From Webstrates to MyWebstrates
	3 Related work
	3.1 Local-first software
	3.2 Interoperable systems
	3.3 Related philosophies

	4 Basic use and use cases
	4.1 Basic use
	4.2 Personal and collective digital sovereignty
	4.3 Offline use
	4.4 Interoperability

	5 Implementation
	5.1 JavaScript Client
	5.2 Service worker
	5.3 Sync server
	5.4 Local peer-to-peer connectivity

	6 Discussion
	6.1 History and versioning
	6.2 Conflicts
	6.3 Personal and Collective Sovereignty
	6.4 Interoperability
	6.5 Transclusion revisited
	6.6 Authentication and authorization
	6.7 Local-first principles
	6.8 Other limitations

	7 Conclusions
	Acknowledgments
	References

