
HAL Id: hal-04691579
https://telecom-paris.hal.science/hal-04691579v1

Submitted on 9 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-end automated cache-timing attack driven by
machine learning

Thomas Perianin, Sebastien Carré, Victor Dyseryn, Adrien Facon, Sylvain
Guilley

To cite this version:
Thomas Perianin, Sebastien Carré, Victor Dyseryn, Adrien Facon, Sylvain Guilley. End-to-end auto-
mated cache-timing attack driven by machine learning. Journal of Cryptographic Engineering, 2020,
11 (2), pp.135-146. �10.1007/s13389-020-00228-5�. �hal-04691579�

https://telecom-paris.hal.science/hal-04691579v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

End-to-end automated cache-timing attack driven by Machine
Learning

Thomas Perianin1 · Sebastien Carré1,2 · Victor Dyseryn1 · Adrien

Facon1,3 · Sylvain Guilley1,2,3

Received: date / Accepted: date

Abstract Cache-timing attacks are serious security

threats that exploit cache memories to steal secret infor-

mation. We believe that the identification of a sequence

of function calls from cache-timing data measurements

is not a trivial step when building an attack. We present

a recurrent neural network model able to automatically

retrieve a sequence of operations from cache-timings.

Inspired from natural language processing, our model

is able to learn on partially labelled data. We use the

model to unfold an end-to-end automated attack on

OpenSSL ECDSA on the secp256k1 curve. Our attack

is able to extract the 256 bits of the secret key by auto-

matic analysis of about 2400 traces without any human

processing.

Keywords side-channel analysis · cache-timing

attacks · machine learning · connectionist temporal
classification (CTC) · recurrent neural network (RNN)

1 Introduction

1.1 Context and Related Work

In traditional cryptanalysis, some assumptions are

made: the attacker is only expected to interact with

the system through its regular interfaces. However, with

the increasing development of embedded cryptography,

new possibilities of attack appear. They exploit physi-

cal information leaking from the device such as timing

T. Perianin
1 Secure-IC S.A.S., Think Ahead Business Line, 35510
Cesson-Sévigné, France
E-mail: thomas.perianin@secure-ic.com

2 LTCI, Telecom-Paris, Institut Polytechnique de Paris,
75013 Paris, France · 3 Département d’informatique de l’ENS,
ENS, CNRS, PSL University, 75005 Paris, France

information or electromagnetic emanations. This new

generation of attacks, called side-channel attacks, has

largely held the research world’s attention since the first

publication in 1996 about timing attacks [20].

Possibilities of attacks are numerous, given the wide

variety of signals that can be disclosed by a device

during a sensitive computation: power consumption

[19, 24], magnetic field [11], temperature [5] or even

sound [1]. The reader is referred to [15] for an extensive

introduction about side-channel attacks.

This paper focuses on one specific class of side-

channel attacks: cache-timing attacks. Those attacks

are based on timing information leaked from CPU cache

memory. Indeed, when the target algorithm is using sen-

sitive information, it loads secret data into the cache

memory. An attacker who can make use of a spy pro-

gram to indirectly check the content of the cache mem-

ory can infer which data has been manipulated by the

target algorithm.

Cache-timing attacks were first introduced by

Tsunoo et al. in [35] to break DES. Later, cache-timing

information was used to break AES [3], as well as RSA

in a popular implementation of a cache-timing attack:

Flush+Reload [38]. In the present paper, we will use

an improvement of the latter attack: the Flush+Flush

attack [14] which is more stealthy and yields more ac-

curate results.

More specifically, we study in this paper a cache-

timing attack on the OpenSSL implementation of

ECDSA, an Elliptic Curve algorithm for digital signa-

ture. OpenSSL [27] is an open source toolkit for the

implementation of cryptographic protocols. The library

of functions, implemented using C, is often used for the

implementation of Secure Sockets Layer and Transport

Layer Security protocols and has also been used to im-

plement OpenPGP and other cryptographic standards.

2 Thomas Perianin1 et al.

Breaking various ECDSA implementations has been

an active topic in the previous years. The vulnera-

ble part is the Elliptic Curve Scalar Multiplication

(ECSM), which is computed through different algo-

rithms, depending on the implementing library and on

the used elliptic curve.

One of these algorithms is the Montgomery Ladder,

which was attacked by Yarom and Berger [37] in a field

of characteristic two. Another one is the w -ary non ad-

jacent form (wNAF), which is used for the secp256k1

curve in OpenSSL. It has been shown to leak a few bits

per signature in [2]. The authors then used a lattice

reduction [25, 26] to fully recover the private key af-

ter about 200 ECDSA signatures. This attack was later

improved to reduce the number of necessary signatures

to 25 [29]. Even more recently, the authors of [10] ex-

plained a method to recover the key with as little as

7 signatures for a success rate of 92%. However, the

computation time exceeds three hours. Finally, another

algorithm is the fixed-window implementation, which

is used for the NIST P-256 curve in OpenSSL. It has

been broken in [12]. This attack targeted actually the

modular inversion implementation and not the double-

and-add sequence.

The focus of this paper will be the wNAF imple-

mentation of scalar multiplication over the secp256k1

curve, just like in [2]. Indeed, this implementation

contains a conditional branching depending on a secret

variable and leading to a cache-timing vulnerability.

We concede that the secp256k1 curve is a very par-

ticular case, and that the attack would not be effective

in a more general situation (as it will be explained

in Section 7 the target code was patched in recent

versions of OpenSSL). However, the main takeaway of

this paper should not be the performance of the attack

in itself, but rather the principles of automation via

machine learning in order to expedite the attack.

All the above mentioned attacks use the

Flush+Reload leakage extraction technique in or-

der to retrieve a sequence of operations. It can be a

double-and-add sequence [2] or a right-shift / sub-

traction sequence [12]. In state-of-the-art papers on

cache-timing attacks, the side-channel acquisition of

the said sequence of operations is usually expedited [2].

In [10] the main assumption is that Flush+Reload

traces contain no errors. The main contribution of

those articles is to present innovative mathematical

techniques to recover the private key from perfect

sequences. However, lattice reduction techniques

tolerate very few errors in their inputs. By experience,

reproducing in real-life the attacks of those papers

can be difficult, mainly because of two problems.

First, computer and processor models are diverse, so

a trace that would be perfectly readable in an ideal

configuration might be very noisy with another setup.

Second, a huge number of traces must sometimes

be inspected in order to be translated into enough

sequences to yield the private key. The evaluator is

expected to spend a lot of time looking at signals to

turn them into patterns, and as always with human

processing, errors can come up.

In contrast, some approaches such as [7] consider the

possibility of errors in automatic sequence extraction

and make use of error correction algorithms, which are

computationally expensive.

Contrary to previous research, we would like in this

paper to address particularly the problem of pattern

recognition in side-channel signals. In 2009, the authors

of [6] recognized the importance of automated analysis

for processing large volumes of cache-timing data over

many executions of a given algorithm. They suggested

to use Hidden Markov Models (HMMs) [30] to infer

a sequence of operations and applied their idea to a

modified wNAF algorithm in OpenSSL. Even though

we praise this pioneer work in the field of automated

attacks, we think that it is less robust than our method

which is based on neural networks (see Section 4 for

details). Indeed, HMMs were designed to model a pro-

cess, and diverting it to a pattern recognition tool is less

straightforward. Furthermore, neural networks require

less assumptions and customization, because they more

or less act as a black-box.

Current trends in side-channel analysis consist in

end-to-end automatic key extractions. One such exam-

ple [18] is explained in the context of power analysis,

using tools such as Markov chains Monte Carlo. We are

interested in cache-timing leakage, where the leakage

rate is way smaller, hence new techniques shall be put

forward to analyse the leakage.

Machine learning for pattern recognition is obvi-

ously a hot topic in the research community, with ap-

plications in image [21] and sound [32] processing. Re-

garding applications to cache-timing attacks, the au-

thors of [39] used Support Vector Machines, a machine

learning algorithm, to classify vectors of cache access

timings into a sequence of operations of a modular ex-

ponentiation. More recently, another pattern recogni-

tion technique, hierarchical clustering, has been used

in [23] to identify pre-computed multipliers in cache

activity traces.

1.2 Contributions and Paper Organization

The main contribution of this paper is to suggest a neu-

ral network based machine learning model to retrieve

End-to-end automated cache-timing attack driven by Machine Learning 3

sequences of operations from a large set of cache-timing

data.

To test the accuracy of our model, we replay the

side-channel attack of [2], with a stronger focus on the

analysis of the generated traces. As a result, we present

an end-to-end automated attack on an OpenSSL imple-

mentation of ECDSA, comprising the following steps:

– Step 1: A slightly improved cache-timing trace gen-

eration through the Flush+Flush attack, which is

more robust and stealthy. (Section 3)

– Step 2: A pattern recognition algorithm to derive

double-and-add sequences from traces, after an ini-

tial training phase. (Section 4)

– Step 3: An attack based on a lattice reduction to

retrieve the private key from the identified signature

sequences. (Section 5)

The detailed workflow is illustrated on Figure 1.

Let us insist on the fact that no human intervention is

needed from the moment the traces are measured and

given to the trained model until the recovery of the

private key. This has the double advantage of sparing

evaluator’s efforts and reducing the number of human-

origin errors.

Another advantage of our method is that it stream-

lines the three above steps, which are usually distinct

in traditional attacks. When a trace is generated it is

immediately given to the recognition model and the lat-

tice is then fed with the output sequence to progres-

sively build up information on the private key. As a

result, traces and sequences do not need to be stored

on disk, reducing the memory footprint of the attack

and improving stealthiness. Besides, the full process can

be implemented as a daemon operating silently in the

background.

The next section (Section 2) is a quick reminder

about ECDSA and scalar multiplication algorithms.

The three following sections (Sections 3, 4 and 5) are

about the roll-out of the attack (one section for each

step). Section 6 presents the setup, the workflow and

the results of the attack. The last section (Section 7)

is dedicated to mitigations and future applications for

machine learning.

2 Background

2.1 ECDSA Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is

the transposition to elliptic curve cryptography of the

NIST-standard Digital Signature Algorithm (DSA) [34,

§6]. The digital signature provides message authentica-

Fig. 1 Workflow of the attack. A machine learning model
is manually trained ahead of the actual attack. During the
attack, 1. cache-timing traces are measured during ECDSA
signature, 2. the model is used to extract sensitive sequences
of operations, and 3. these intermediate values are used to
recover the secret key via lattice reduction. The three steps
are automated.

tion, integrity and non-repudiation (the sender cannot

falsely claim that they have not signed the message).

The algorithm is part of asymmetric cryptography;

the sender uses a private key to generate the signature,

and the receiver uses a public key together with the

message to verify the signature.

All users agree on the use of an elliptic curve E

defined over a finite field Fp (in the case of secp256k1,

p is a large 256-bit prime number defined in [31]). A

point G ∈ E of large prime order n is also chosen and

called generator of the curve.

The key pair consists of a private key α 1 randomly

selected in the interval {1, . . . , n− 1}; and a public key

1 To remain consistent with the notations of [2], we chose to
write α for the private key instead of d, which is the standard
notation.

4 Thomas Perianin1 et al.

point Q := α ·G. We use · to denote elliptic curve scalar

multiplication.

Using the previous notations, a message m can be

signed through the following steps:

1. Using an approved hash algorithm, compute e =

Hash(m).

2. Let h be the l leftmost bits of e, where l is the bit

length of the group order n.

3. Select a cryptographically secure random integer k

from the interval {1, . . . , n− 1}.
4. Compute the point (X, y) = k ·G ∈ E.

5. Take r = X mod n; if r = 0 then return to step 2.

6. Compute s = k−1(h + rα) mod n; if s = 0 then

return to step 2.

7. The signature is the pair (r, s).

We will not give details over the verification algo-

rithm, which is not useful for the rest of the paper. The

reader is referred to [2] for verification. Let us point

out the fact that knowledge of the integer k, which is

commonly referred to as the ephemeral scalar, or nonce,

leads to knowledge of the private key α when combined

with the message and signature pair:

α = (sk − h)r−1 mod n (1)

It is this equation which we shall exploit in our attack,

by making use of secret bits of the nonce k leaking

through cache memory usage.

2.2 Scalar multiplication with wNAF

Our attack targets step 4 of ECDSA algorithm pre-

sented in the previous subsection. In OpenSSL and for

the secp256k1 curve, this elliptic curve scalar multipli-

cation is computed with wNAF algorithm (see [16] for

details). In this algorithm, the nonce k is converted into

a Non-Adjacent Form (NAF) d0 . . . dl−1, taking the no-

tations of Algorithm 2 in [2]. The multiplication is then

computed with the double-and-add method which con-

tains a conditional branching on the secret dj leading

to a point addition, depending on the value of dj . It

is this particular operation which is targeted in the at-

tack. More precisely, the number of doubling operations

after the last addition of the sequence reveals a few zero

bits of k that can be used to find α. That is why we

will focus on recovering accurately the double-and-add

sequence during a wNAF scalar multiplication.

3 Cache-timing Traces Generation

In this section we shall explain how to use the

Flush+Flush method to acquire cache-timing data dur-

ing a wNAF scalar multiplication.

3.1 Overview on processor memories

Instructions and data are usually stored in a main mem-

ory. To reduce the average time to access this data, re-

cent CPUs feature an additional memory which is faster

and stores copies of frequently used data. This cache

memory is more expensive in energy, thus is smaller

than the main memory. Most modern processors have

multiple levels of cache memories. Some levels are split

and some are shared between the different cores of the

processor.

3.2 Flush+Flush

In this paper, we use the Flush+Flush method of Gruss

et al [14]. This attack relies on the execution time of

the clflush instruction. clflush takes a memory ad-

dress as parameter and evicts its content from the cache

memory.

If the cache contains a copy of the content of this

memory address, the clflush instruction will take

longer than if it was not in the cache.

Indeed, for inclusive memories, clflush will evict

the lower levels of the cache memory in case of a cache

hit and thus take a longer execution time. Detailed rea-

sons for this delay can be found in the paper of Gruss

et al.

This delay opens an attack scenario for a spy

program, measuring repetitively the time taken by

clflush on a memory address I of a target program

instruction during the execution of that target. If at

some point, the time taken by clflush(I) is longer

than expected, it means that the target instruction at

memory address I has been copied in the cache during

the time between the previous clflush and the current

clflush. Consequently, it means that the target most

probably executed the instruction at address I during

this time interval.

In our attack, we want to reconstruct the double-

and-add sequence during a signature. To do so, we select

M memory addresses for instructions of the doubling

function and M memory addresses for instructions of

the addition function (the choice of M and of the ad-

dresses is the object of the next subsection). We denote[
D1 ... DM

]
(respectively

[
A1 ... AM

]
) the addresses

of selected instructions of the double (respectively add)

function.

We flush all the selected addresses one by one, and

repeat the operation until the target is finished with the

signature. For an instruction address I we denote tIi the

measured time of the i-th iteration of clflush(I). The

generated trace can then be seen as a 2M × T matrix

End-to-end automated cache-timing attack driven by Machine Learning 5

X, where T is the number of iterations of flushing all

the selected addresses:

X =



tD1
1 ... tD1

i ... tD1

T
...

...
...

tDM
1 ... tDM

i ... tDM

T

tA1
1 ... tA1

i ... tA1

T
...

...
...

tAM
1 ... tAM

i ... tAM

T


For a given i, if the t

Dj

i are significantly higher

than usual, one can deduce that a double has been

performed by the target between the (i − 1)-th and

the i-th iteration, and idem for the t
Aj

i . In our work,

instead of helping to visually deduce double-and-add

sequence, the matrix will serve as input of a pattern

recognition model, as detailed in Section 4.

As explained in [2], the spy and the victim can run

on different cores, because the targeted memory is a

level of cache which is shared among the cores of a

same physical processor. As a result, the attack does not

have the same limitations as other cache-based attacks

([28]).

3.3 Choice of the number of addresses and profiling

The number of addresses to use for probing is not triv-

ial. If the attacker uses a very small value for M (e.g.

1), the cache hits may be difficult to detect in noisy

measurements. Therefore it is best to choose several

instruction addresses for one target function. On the
other hand, because we measure the flushing timings

of 2M addresses successively, the time to get measure-

ments from all the addresses of one of the two functions

will be longer if M is large, and the attacker could fail

to detect the use of the other function. Additionally,

if M is small, the patterns for each function call will

be distant from each other. This makes the measure-

ment easier to read as all patterns are distinct from

each other.

For the sake of convenience, the number of addresses

for the addition function is taken equal to that in the

doubling function, but there is no compelling reason for

this arbitrary choice.

As for the addresses values, the debugging symbols

are used to map the names of the targeted functions to

the correct memory lines. Starting from the first address

for each function, we selectM addresses with steps of 64

bytes, corresponding to the size of a cache line for our

machine. Indeed, because the clflush instruction does

not evict a single memory cell but rather a whole cache

line, probing memory addresses that will be copied in

the same cache line would be ineffective.

For example, if M = 3 and that the doubling

function starts at address 0x7000ff10 and the addi-

tion function starts at address 0x7001a000, the probed

memory addresses would be (0x7000ff10, 0x7000ff50,

0x7000ff90, 0x7001a000, 0x7001a040, 0x7001a080).

The choice of the best M value is crucial for the

success of the attack. For M = 1 and M ≥ 8 our attack

was unsuccessful. We conducted 10 attacks for 2 ≤M ≤
7 and computed the mean and standard deviation of the

number of traces required to retrieve the key. Figure 4

pictures a summary of these statistics. It is obvious that

M = 2 or 3 yield the best results. We chose M = 3 since

it has a lower standard deviation, making our attack

more stable.

4 Pattern recognition with Machine Learning

4.1 Motivation for Machine Learning

Using Machine Learning (ML) algorithms to iden-

tify operations patterns within the cache-timing traces

shows several advantages:

– Using a supervised approach can leverage on com-

prehensive cache-timing characterization obtained

from the target processor.

– It is a practical and generic way to implement pat-

tern recognition.

– Most Machine Learning models provide confidence

indicators associated with their predictions, allow-

ing to discard potential false positives and avoid de-

tection errors.

For these reasons, we investigate the use of a Machine

Learning methodology to extract the double-and-add

sequence from cache measurements.

4.2 Methodology

Our global approach is the following: in order to train

a pattern recognition model, we generate thousands of

cache traces on a processor by recording the cache ac-

tivity of the doubling and addition functions during

the precise execution of the scalar multiplication, in or-

der to observe patterns denoting the utilisation of these

functions.

In order to detect more easily the cache hits, the

inputs of the model are the columns of the measure-

ment matrices X where each row is a memory address

and each column is a period of time during the scalar

multiplication.

6 Thomas Perianin1 et al.

z = (. . . , D,D,D,D,D,A,D,D,D,D,A,D,D,D,D,D,D,A,D,D,D,D,A,D,D)

Fig. 2 150 rightmost points of a cache-timing matrix X with M = 3 and the associated sequence of operations z. High values
in the matrix indicate a cache hit and show the use of specific memory addresses by OpenSSL. The M upper (resp. lower)
rows match the addition (resp. doubling) function addresses, and therefore correspond to the A (resp. D) operation in the
sequence z. The part of z revealing secret zero bits of k is underlined.

z = (. . . , A,D,D,D,D,A,D,D,D,D,A,D,D,D,D,D,D,A,D,D,D,D,A,D,D,D)

Fig. 3 150 rightmost points of a cache-timing matrix with higher noise than the one depicted in Figure 2 and associated
sequence of operations z. This figure is difficult to interpret as the noise blurs the cache hits patterns, but our model is able
to correctly decode the double-and-add operations needed to the secret recovery (underlined).

Fig. 4 Statistics over the number of traces required to find the key for different M values. The gray cross marker represents
the mean of traces and vertical bars represent an interval of length twice the standard deviation. Statistical moments were
computed over 10 experiences.

Additionally, we monitor and record the proces-

sor effective function calls, which yields the exact se-

quence of operations z matching the scalar multipli-

cation. These sequences of operations are used as the

ground truth allowing to label our different cache mea-

surements. These labels enable a supervised approach.

A sequence z = (z1 . . . zl) is composed of successive op-

erations calls, namely A for addition and D for doubling

(zi ∈ {A,D}).
Let a single matrix X, and the associated sequence

of operations z, the set of couples (X, z) constitutes

our dataset for supervised learning. A sample of this

database is shown on Figure 2. On this example, one

can clearly identify the patterns and can easily recon-

struct the sequence. The clarity of the trace depends

of multiple factors like the number of processes run-

ning concurrently on the target machine. Those may

add noise and make the recognition more difficult. An

example of a noisy trace is shown on Figure 3. In our

experiments, the model is able to correctly recognize

the sequence of operations for that example, whereas it

may be challenging for a human being to visualize the

patterns.

The pairs (X, z) are the inputs to train the model,

which can be deployed in real time to process unseen

measurements. Given an input X, the model’s task is

to reconstruct a sequence z′, ideally identical to z. This

task is commonly known as sequence prediction.

To reconstruct this sequence, the model shall pre-

dict, for each column of X, whether an addition (‘A’ la-

bel), a doubling (‘D’ label), or none (‘0’ label) amongst

the two operations is being executed by the target. Let

End-to-end automated cache-timing attack driven by Machine Learning 7

us denote by σ a sequence composed of ‘A’, ‘D’ and ‘0’

labels. σ is called an alignment, or a path, and is an

element of {A,D, 0}∗.
We finally retrieve the final sequence z′ by applying

a post-processing function on σ. This post-processing

is composed of two steps:

– We merge all adjacent identical labels in the pre-

dicted sequence. This is consistent because we

choose a small value for M , and therefore we are

not expecting to find contiguous patterns.

– Finally, we remove the blank labels to keep only the

doubling and addition labels and obtain the final

prediction.

For example:

[A, 0, D,D, 0, D] =⇒ [A, 0, D, 0, D] =⇒ [A,D,D].

For a given sequence z, an alignment σ is called a

valid path for z if the above post-processing function

outputs z when applied to σ. The set of all valid paths

of length T for z is denoted AT (z).

4.3 Supervised task - Misaligned labels

During the training phase, the sequence z is used in

association with each trace X, making our problematic

a supervised sequence generation task.

However, these sequences miss the ‘blank’ labels de-

noting the spaces between patterns because this in-

formation cannot be obtained by monitoring function

calls. From a Machine Learning perspective, the ground

truth is not synchronized with the input data.

In other words, we know the order of the executed

operations but we do not know at which precise point

of time they occur nor the number of ‘0’ labels be-

tween each of them. This number of ‘blank’ is not pre-

dictable. Target sequences are said to be misaligned

with the training data. Consequently, each sequence z

has a length l smaller than the length of the trace X,

and it is therefore not possible to directly train a ML

classifier (such as a random forest) with X and z as

inputs.

From there on, different alignments are possible to

match a matrix X with its associated sequence z. This

problematic is common in speech recognition and differ-

ent approaches exist to solve it. It is sometimes called

sequence generation with unsegmented labels.

In a naive approach, we first tried to segment the

matrices X in order to make them match the sequences

z. To resolve the misalignment problematic, we assigned

the columns of the training data with the correct op-

erations. The realignment was done using a statistical

method allowing to generate a fully labeled intermedi-

ate dataset, suitable for fully supervised learning. We

then trained several classes of ML algorithms and used

them to reconstruct the double-and-add sequence. How-

ever, this realignment methodology is not generic and

not suitable for noisy measurements. The preliminary

results from the obtained models were encouraging but

we wanted to make a better use of the training data.

We therefore propose a method to process the cou-

ples (X, z) without any segmentation or realignment

pre-processing.

4.4 Connectionist temporal classification

In order to remove the need for realignment, we inves-

tigate a solution based on recurrent neural networks

combined with a particular objective function, inspired

from natural language processing.

Recurrent neural networks (RNN) [9] are state mod-

els designed to learn the temporal characteristics of

their inputs: unlike usual networks, the input data is

projected into a state vector linked to itself. The values

of this context vector at a time i therefore depends on

the inputs at time step i but also on the values of the

context vector at step i−1. These models are therefore

able to catch the temporal dependencies between each

point of a time series.

As defined in Section 3.2, our representation X of

cache measurements can be viewed as stacked time se-

ries, and temporal models are particularly suited to pro-

cess them. Our motivation to use recurrent neural net-

works is to take advantage of their modelling capacities
and their genericity: they require no prior knowledge of

the input data.

To train a RNN, an objective function needs to be

defined. This function should evaluate the ability of the

model to resolve the task it was designed for. It should

also be derivable in order to allow the RNN to learn

from a training dataset.

However, the usual objective functions to train neu-

ral networks must be applied for each time point of the

input data, requiring ground truth for each point. As

discussed in section 4.3 , our labels are unsegmented se-

quences and therefore information is missing to directly

train a RNN.

To solve this problem, we choose to use a different

objective function, the Connectionist Temporal Clas-

sification (CTC) function proposed by Graves et al.

in [13].

This function has originally been designed to solve

problems of sequence generation with unsegmented la-

bels for speech recognition. It is typically used to train

8 Thomas Perianin1 et al.

RNNs with pairs of word sequences and audio records

of human voices reading the sequences. In that case, the

segments of the audio records where each word is pro-

nounced is unknown and the CTC function overcomes

this lack of information. The same constraint apply to

the pairs (X, z). Therefore, the CTC function can be

used in the context of cache-timing measurements and

sequences of operations.

Given an observation X of length T (T varies be-

tween traces) and a sequence z, the CTC function com-

putes the probability of z conditionally to X as the sum

of the probabilities of all the valid paths σ of length T

for z:

p(z|X) =
∑

σ∈AT (z)

p(σ|X) (2)

The probability of a path σ is given by the product

of its labels probabilities for each time step:

p(σ|X) =
T∏
t=1

pt(σt|X) (3)

where pt(σt|X) is the probability computed by the RNN

for the label σt ∈ {A,D, 0} at time step t.

From there on, the CTC function can be derived and

its log-likelihood can thus be minimized with the gradi-

ent back propagation algorithm to optimize the weights

of the neural network. The model will then learn to pre-

dict the most probable path leading to z given its input

X, overcoming the lack of information concerning the

true labels position in the measurement. Using CTC

removes the need of any preprocessing to align the se-

quences with the observations.

The final prediction of the model is given by the

alignment with the highest probability predicted by the

model.

σ? = argmax
σ∈L

p(σ|X) (4)

with L the space of possible alignments.

Given a sequence z, computing the probabilities of

every alignment σ ∈ L can be expensive, especially

when the number of labels increases. The CTC func-

tion uses a dynamic programming algorithm to make

these operations faster. For more details on the CTC

function mechanisms, the reader is referred to [13].

The CTC function can be used with any type of

classifiers able to produce an output distribution over

{A,D, 0} for each column of X. For our attack, we com-

bine the CTC with a simple RNN and use Stochastic

Gradient Descent with Momentum [33] to train the neu-

ral network.

As explained in section 2, the number of doubling

operations after the last addition in the sequence reveals

secret bits of k. Therefore, we evaluate the quality of

the model by computing the proportion of pairs (X,z)

of a test dataset from which the model is able recover

this number. In the rest of the paper, we will refer to

this evaluation metric as accuracy.

4.5 Confidence indicators

Because this attack is an end-to-end attack, it is com-

posed of different bricks. If each brick seems to be func-

tional enough individually, the complete chaining can

emphasize error rates which eventually causes the at-

tack to fail.

Moreover, the lattice reduction algorithm involved

in the last step of the attack is intolerant to false posi-

tives: the attack would not bear any misclassified sam-

ples by the ML model.

It is therefore important for the attacker to have the

option to discard weak predictions and avoid using false

positives as inputs of the equation system involved in

the lattice-based key retrieval. Most ML models provide

probabilities or distances associated with their predic-

tions, and we need to consider these indicators in order

to filter the classifiers outputs, based on a confidence

threshold.

To ensure the efficiency of the attack, it is manda-

tory to calibrate models so that their predictions will

respect the following constraints:

– No false positive should be predicted with high con-

fidence.

– There must be enough true positives with high con-

fidence to gather enough information to retrieve the

key.

In other words, for the attack to be feasible, the

model must not only have a good accuracy but also be

able to distinguish clearly between strong and weak pre-

dictions. We therefore proceed to a phase of confidence

calibration on a validation dataset.

In order to estimate the confidence indicator of a

prediction of the CTC-based model, the CTC function

is used to compute the probability p(z′|X) of the out-

put sequence z′. However, when the length of a sequence

increases, this indicator has a tendency to vanish (i.e.,

converge towards 0). So, instead of computing a pre-

diction z′ with the complete measurement X, only a

sub-part of the trace is considered, namely the last N

columns of X. The model takes XN the matrix com-

posed of the N last columns of X as input and predicts

z′N with the confidence p(z′N |XN). This prevents the

confidence indicator to vanish, as the product compu-

tation of the probabilities of paths associated to z′N
considers fewer points (see Equation 3).

End-to-end automated cache-timing attack driven by Machine Learning 9

Fig. 5 Histograms of confidence values using all the points to compute the prediction (row 1, normal mode), versus using
only the last 150 points (row 2, N = 150), on a validation dataset. In normal mode, the accuracy is 0.9684 and when N = 150,
it is 0.9553.

Considering only the N last points of the measure-

ments lowers slightly the global accuracy (decrease by

2 or 3%), but provides a reliable confidence indicator,

as shown on Figure 5 for N = 150. Clearly, using the

150 last points splits the distribution of confidence indi-

cators between false positives and true positives. After

that, setting a fixed threshold pmin allows to reduce the

number of false positives with high confidence to 0 on

the validation dataset. During the attack, this allows

to discard weak predictions and eliminate prediction

errors.

4.6 Limitations of Machine Learning

Sequence prediction with Machine Learning is one spe-

cific step within the global attack. Moreover, this step

is not at the end of the chain. Therefore, the quality

of a trained model does not necessarily reflect the ef-

ficiency of the attack because the metric used to train

this model can not attest the efficiency of the attack.

If we train two different types of models and find

out that there is e.g. 5% difference in their accuracy on

the testing dataset, we are expecting the one with the

higher score to perform a better attack. This is a biased

hypothesis because other factors need to be considered:

most notably the reliability of the confidence indicators

computed by the model.

For this reason, the metrics usually chosen for ML

model evaluation are not fit to reflect the quality of

the attack. Given two models with different accuracy

scores, it is may well happen that the one with a sig-

nificant lower accuracy performs a better attack.

5 Retrieving the Private Key with Lattice

Reduction

The final step of the attack consists on a lattice reduc-

tion, using Lenstra-Lenstra-Lovàsz (LLL) [22] to com-

pute the private key α from the extracted bits of the

different ephemeral scalars.

We now have a set of d signatures and (hashed)

messages (ri, si, hi) for i = 1...d as well as their double-

and-add sequences generated with the model presented

in the previous section.

The final parts of the sequences reveal bits of

the ephemeral scalar. More precisely, one property of

wNAF is that if the sequence of the i-th signature

is ending with an addition followed by li − 1 dou-

bles (...ADli−1, li ≥ 1) then the binary form of the

ephemeral scalar ki ends with exactly li − 1 zeros

(...10li−1). Signatures with a number of known bits

li ≥ ` only are considered. The choice of ` affects the

success rate of the lattice reduction and will be dis-

cussed in the next section.

10 Thomas Perianin1 et al.

As presented in [2], the key is retrieved by first con-

structing the following matrix from the d signatures:

B =



2l1+1n 0 0 . . . 0 0

0 2l2+1n 0 . . . 0 0
...

...
...

...
...

...

0 0 0 2ld+1n 0 0

2l1+1t1 . . . 2ld+1td . . . 1 0

2l1+1u1 . . . 2ld+1ud . . . 0 n


where li is the number of known least significant bits

as explained above, and n is the curve order and:

ti =
ri

(si.2li)
mod n ; ui =

αi − hi

si

2li
mod n

Finally, the private key α can be extracted by apply-

ing the lattice reduction on B. The reader is referred

to [2] for a more comprehensive description of lattice

reduction.

6 Setup and Results

We tested the attack on an Intel Core i7-4790 processor

(Haswell microarchitecture) running Ubuntu 18.04.2

LTS. The attack was also successfully tested on Sky-

lake and Kaby Lake processors. The requirement of the

attack is that the cache memory must be inclusive for

the Flush+Flush technic to work, as explained in Sec-

tion 3.2. The attack was conducted on version 1.1.0f of

OpenSSL. The vulnerability has been corrected in lat-

est versions using a cache constant-time multiplication

method.

The number of targeted addresses for the

Flush+Flush cache-timing extraction was chosen as

2M = 6, because according to the results presented

in Section 3, it is the number that allows a success-

ful attack in a small number of traces with the least

variance. We selected the addresses inside each target

function ec GFp simple dbl and ec GFp simple add,

according to the method described in Section 3.

The training phase is done before the actual attack

and only requires the attacker intervention to set the

gradient descent parameters and the calibration param-

eters (N and pmin). The rest of the attack (trace gener-

ation, sequence extraction and lattice reduction) is au-

tomated and requires no human intervention once the

model is trained.

Because ECDSA signature generation is probabilis-

tic, learning does not involve any change in long-term

secret α nor in the data to be signed. Given the learn-

ing ability of the CTC-based model, a relatively small

number of traces is enough to achieve a high test ac-

curacy. However, a larger dataset is required for cali-

bration. We generate 1,000 traces as a training dataset,

1,000 for testing the model, and finally, 10,000 are kept

as a validation dataset for calibrating the model confi-

dence indicators. It allowed us to choose N = 150 and

a threshold pmin = 0.95, as these parameters allow to

discriminate efficiently between true positives and false

positives.

The trained model achieve high accuracy, between

0.95 and 0.97 after calibration, depending on their ini-

tialization and on the randomness of the stochastic gra-

dient descent.

Once the model is trained, the attack is performed

on the fly: ECDSA signatures are successively triggered

with random nonces. The measurements are processed

by the neural network directly after being generated,

and the extracted bits are used to build the lattice ma-

trix in parallel. Once the bits of d signatures have been

accumulated, the reduction is computed. This workflow

is detailed on Algorithm 1.

Algorithm 1: Attack workflow.

Parameters: d the number of signatures needed for
reduction, N the number of points to
use for predictions, pmin the
minimum confidence, ` the minimum
value for li.

Result: Private key α.

1

2 Initialize empty B with db = 0 columns
3 while db < d do
4 Sign a message. Generate (r, s, h) and the

associated measurement X
5 Extract z′N and confidence p(z′N |XN) with the

ML model
6 if p(z′N |XN) ≥ pmin then
7 Get li from z′N
8 if li ≥ ` then
9 Add a column to B using r, s, h, and li

10 Compute the lattice reduction
11 return α

Our experimental phase showed that the best value

was d = 200 for the number of acceptable signatures

and ` = 4 for the minimal number of known bits for

an acceptable signature. Those parameters ensured a

success rate of more than 99 % in predicting the private

key in a reasonable timeframe (less than 5 seconds).

Because the bits of the nonce k are randomly dis-

tributed, there is a probability 1/2`−1 that a signa-

ture is acceptable (the ephemeral scalar must end with

at least ` − 1 zeros). Thus the expected total num-

End-to-end automated cache-timing attack driven by Machine Learning 11

ber of traces needed to recover the private key is

1, 600. In practice, we need on average 1.5 times more

traces, because around 33% of signatures are discarded

due to a lack of confidence in the model predictions.

The total number of traces required is thus

d× 2`−1 × 1.5 = 2400 on average (circa). For cer-

tain iterations of the experimental phase, the key re-

trieval was achieved with the minimum value of approx-

imately 1600 traces. Of course this is a greater number

of signatures than in [2], but we achieve a better suc-

cess rate in retrieving the private key. This is mainly

because we are able to process a larger number of sig-

natures thanks to the automation of the sequence iden-

tification.

7 Conclusion and Perspectives

7.1 Mitigation

Several methods for mitigating the attack were sug-

gested in [2]. We will not cover them, especially be-

cause at the time this paper is written, the w-NAF

implementation is not used anymore, regardless of the

curve. Indeed in the latest version (1.1.1c) of OpenSSL,

this algorithm is used for multi-ECSM only (an oper-

ation that consists in computing [k1]P1 + [k2]P2 where

k1, k2 are scalars and P1, P2 curve points). Multi-ECSM

is only used for the verification part of ECDSA signa-

ture, therefore is non sensitive. For the generation part

of ECDSA signature, a fixed-window algorithm is now

used, making the double-and-add sequence independent

from any secret.

We decided to realize the attack on a legacy version
of OpenSSL for didactic purpose, because our objec-

tive is not to disclose a new attack but rather a new

generic model for cache-timing traces processing. We

also wanted to remain consistent with the original pa-

per of [2].

7.2 Future applications for Machine Learning

In this work, we presented a neural network model for

pattern recognition in cache-timing traces. We then uti-

lized the model in a cache-timing attack targeting an

elliptic curve scalar multiplication algorithm, on a spe-

cific architecture. Synergies could easily be found with

state-of-the-art cryptanalysis, such as [10], which re-

quires a small number of traces with no errors. Our

model would be useful in the production of such traces

in real conditions.

Besides, the modelling capabilities of neural net-

works are mostly limited by the complexity of their

structure and the diversity of their training inputs: an

improvement of our methodology would be to build a

database with training examples from different archi-

tectures, enabling the creation of cross-architecture at-

tack models.

We also believe that the same technique can be gen-

eralized to other algorithms, thus improving the qual-

ity of a number of other attacks. We were able to suc-

cessfully reproduce the attack of Bernstein et al. [4] on

an RSA sliding window modular exponentiation imple-

mented in Libgcrypt. Our model was useful to generate

the square-and-multiply sequence. We underline that

Ueno et al. [36] also target that goal, but using Dynamic

Time Warping (DTW) and not CTC+RNN. Synergies

between both approaches might be possible.

Our model of sequence prediction with incomplete

information could be applied to other side-channel at-

tacks, not only those capturing cache-timing data. In

power analysis, for example, patterns of electrical con-

sumption must be classified. In Template Attacks [8], a

lot of traces must be recorded to select points of interest

in the data. Our model could be used to speed up the

identification of relevant points to build the template.

Additionally, our model can be customized as the

CTC function can be combined with different types of

classifiers. In particular, it is possible to use LSTMs

[17], to model more complex temporal dependencies.

Eventually, it could be beneficial to classify traces

depending whether the final bits are 0, instead of recog-

nizing a pattern of double and added and subsequently

sort for nonces with trailing zeroes.

References

1. Backes, M., Dürmuth, M., Gerling, S., Pinkal, M.,
Sporleder, C.: Acoustic Side-Channel Attacks on Print-
ers. In: USENIX Security symposium, pp. 307–322 (2010)

2. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh
Aah... Just a Little Bit” : A Small Amount of Side Chan-
nel Can Go a Long Way. In: L. Batina, M. Robshaw
(eds.) Cryptographic Hardware and Embedded Systems
– CHES 2014, pp. 75–92. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

3. Bernstein, D.J.: Cache-timing attacks on AES (2005).
http://cr.yp.to/antiforgery/cachetiming-20050414.

pdf

4. Bernstein, D.J., Breitner, J., Genkin, D., Bruinderink,
L.G., Heninger, N., Lange, T., van Vredendaal, C.,
Yarom, Y.: Sliding right into disaster: Left-to-right slid-
ing windows leak. In: International Conference on Cryp-
tographic Hardware and Embedded Systems, pp. 555–
576. Springer (2017)

5. Brouchier, J., Kean, T., Marsh, C., Naccache, D.: Tem-
perature attacks. IEEE Security & Privacy 7(2), 79–82
(2009)

6. Brumley, B.B., Hakala, R.M.: Cache-timing template at-
tacks. In: International Conference on the Theory and

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

12 Thomas Perianin1 et al.

Application of Cryptology and Information Security, pp.
667–684. Springer (2009)

7. Cabrera Aldaya, A., Garćıa, C., Alvarez Tapia, L., Brum-
ley, B.: Cache-timing attacks on rsa key generation. pp.
213–242 (2019). DOI 10.13154/tches.v2019.i4.213-242

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In:
International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 13–28. Springer (2002)

9. Elman, J.L.: Finding structure in time. Cognitive science
14(2), 179–211 (1990)

10. Fan, S., Wang, W., Cheng, Q.: Attacking OpenSSL im-
plementation of ECDSA with a few signatures. In:
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1505–1515.
ACM (2016)

11. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic
analysis: Concrete results. In: International workshop on
cryptographic hardware and embedded systems, pp. 251–
261. Springer (2001)

12. Garćıa, C.P., Brumley, B.B.: Constant-Time Callees with
Variable-Time Callers. In: E. Kirda, T. Ristenpart (eds.)
26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017.,
pp. 83–98. USENIX Association (2017). URL https:

//www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/garcia
13. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber,

J.: Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks.
In: Machine Learning, Proceedings of the 23rd Interna-
tional Conference (ICML 2006), Pittsburgh, Pennsylva-
nia, USA, June 25-29, 2006, pp. 369–376 (2006). DOI
10.1145/1143844.1143891. URL https://doi.org/10.

1145/1143844.1143891
14. Gruss, D., Maurice, C., Wagner, K.: Flush+Flush:

A Stealthier Last-Level Cache Attack. CoRR
abs/1511.04594 (2015)

15. Guilley, S., Meynard, O., Nassar, M., Duc, G., Hoogvorst,
P., Maghrebi, H., Elaabid, A., Bhasin, S., Souissi, Y., De-
bande, N., et al.: Vade mecum on side-channels attacks
and countermeasures for the designer and the evaluator.
In: 2011 6th International Conference on Design & Tech-
nology of Integrated Systems in Nanoscale Era (DTIS),
pp. 1–6. IEEE (2011)

16. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to el-
liptic curve cryptography. Computing Reviews 46(1), 13
(2005)

17. Hochreiter, S., Schmidhuber, J.: Long short-term mem-
ory. Neural computation 9(8), 1735–1780 (1997)

18. Hwang, J., Yoon, J.W.: An automated end-to-end side
channel analysis based on probabilistic model. Applied
Sciences 10(7), 2369 (2020). DOI 10.3390/app10072369.
URL http://dx.doi.org/10.3390/app10072369

19. Kocher, P., Jaffe, J., Jun, B.: Differential power analy-
sis. In: Annual International Cryptology Conference, pp.
388–397. Springer (1999)

20. Kocher, P.C.: Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In: An-
nual International Cryptology Conference, pp. 104–113.
Springer (1996)

21. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D.,
Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwrit-
ten digit recognition with a back-propagation network.
In: Advances in neural information processing systems,
pp. 396–404 (1990)

22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring poly-
nomials with rational coefficients. Mathematische An-
nalen 261(4), 515–534 (1982)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-
level cache side-channel attacks are practical. In: 2015
IEEE Symposium on Security and Privacy, pp. 605–622.
IEEE (2015)

24. Mangard, S., Oswald, E., Popp, T.: Power analysis at-
tacks: Revealing the secrets of smart cards, vol. 31.
Springer Science & Business Media (2008)

25. Nguyen, P.Q., Shparlinski, I.E.: The Insecurity of
the Digital Signature Algorithm with Partially Known
Nonces. Journal of Cryptology 15(3) (2002)

26. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the
elliptic curve digital signature algorithm with partially
known nonces. Designs, codes and cryptography 30(2),
201–217 (2003)

27. OpenSSL: Cryptography and SSL/TLS Toolkit. http:

//www.openssl.com
28. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and

Countermeasures: The Case of AES. In: Proceedings of
the 2006 The Cryptographers’ Track at the RSA Con-
ference on Topics in Cryptology, CT-RSA’06, pp. 1–
20. Springer-Verlag, Berlin, Heidelberg (2006). DOI
10.1007/11605805 1. URL http://dx.doi.org/10.1007/

11605805_1
29. Van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit

more. In: Cryptographers’ Track at the RSA Conference,
pp. 3–21. Springer (2015)

30. Rabiner, L.R., Juang, B.H.: An introduction to hidden
Markov models. IEEE ASSP magazine 3(1), 4–16 (1986)

31. Research, C.: Recommended elliptic curve domain pa-
rameters. Standards for Efficient Cryptography (SEC) 2
(2000)

32. Roy, D.K., Pentland, A.P.: Learning words from sights
and sounds: A computational model. Cognitive science
26(1), 113–146 (2002)

33. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.:
Learning representations by back-propagating errors.
Cognitive modeling 5(3), 1 (1988)

34. of Standards, N.I., Technology: FIPS PUB 186-
4: Digital Signature Standard (2013). DOI:
http://dx.doi.org/10.6028/NIST.FIPS.186-4

35. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi,
H.: Cryptanalysis of DES implemented on computers
with cache. In: International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 62–76. Springer
(2003)

36. Ueno, R., Takahashi, J., Hayashi, Y.I., Homma, N.: Con-
structing Sliding Windows Leak from Noisy Cache Tim-
ing Information of OSS-RSA (2019). 8th International
Workshop on Security Proofs for Embedded Systems
(PROOFS). Atlanta, GA, USA

37. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-
channel Attack. IACR Cryptology ePrint Archive 2014,
140 (2014)

38. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel
Attack. In: 23rd USENIX Security Symposium
(USENIX Security 14), pp. 719–732. USENIX As-
sociation, San Diego, CA (2014). URL https:

//www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/yarom
39. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-

VM side channels and their use to extract private keys.
In: Proceedings of the 2012 ACM conference on Com-
puter and communications security, pp. 305–316. ACM
(2012)

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/garcia
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.3390/app10072369
http://www.openssl.com
http://www.openssl.com
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11605805_1
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Introduction
	Background
	Cache-timing Traces Generation
	Pattern recognition with Machine Learning
	Retrieving the Private Key with Lattice Reduction
	Setup and Results
	Conclusion and Perspectives

