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Abstract—Interferometric Synthetic Aperture Radar (InSAR)
is a remote sensing tool that provides comprehensive information
about the Earth’s surface. However, InSAR parameters are highly
corrupted by speckle, which limits their utility. Deep learning
methods have recently achieved promising results in improving
the reliability of InSAR parameters. Most of the proposed
methods are fully supervised. These methods are usually trained
on synthetic data, which are not able to fully take into account
all the properties of real images. In this paper, we address
this issue by extending the self-supervised denoising approach
Noise2Noise, previously proposed by Lehtinen et al. in 2018,
for the joint estimation of InSAR parameters. Additionally, the
proposed method uses a loss function that is adapted to the
InSAR noise model, making it well-suited for the problem we
are addressing.

Index Terms—Deep learning, despeckling, self-supervision, in-
terferometric Synthetic Aperture Radar, noise statistics.

I. INTRODUCTION

Interferometric Synthetic Aperture Radar (InSAR) is a re-

mote sensing technique that uses two or more SAR acquisi-

tions of the same scene to extract information regarding the

Earth’s surface topography or deformation. This technique is

widely used in various fields such as digital terrain model

computation and land movement monitoring. Using two in-

terferometric acquisitions (i.e. two acquisitions of the same

area taken from slightly different points in space), we can

compute the InSAR interferogram, which provides a measure

of coherence or correlation between the two acquisitions, and

a measure of the phase difference that is related to the topog-

raphy or movement of the scene. However, the acquisitions

are often corrupted by speckle. This speckle is a random

noise that depends on the sensor configuration, the scattering

mechanism, atmospheric conditions, and the temporal and

spatial differences between the acquisitions. These fluctuations

can make the InSAR parameters very difficult to exploit.

In recent years, considerable efforts have been invested in

overcoming this challenge. The most traditional family of

InSAR denoisers is the family of local filters, that use the local

neighborhood to smooth out variations. The most classical

and known filter is the boxcar filter [1], which consists of a

rectangular averaging filter over the image. This filter is very

efficient in terms of simplicity, however it suffers from loss in

resolution and artifacts around high topography regions. The
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Lee filter [2] utilizes directional kernels that better align with

phase fringes. Additionally, it analyzes local noise statistics

to determine the appropriate filtering strength. This allows the

Lee filter to preserve details and fringes more effectively.

Another family of filters is the family of non local filters.

These methods overcome the limitations of the restricted

neighborhood by searching for similarities outside of the local

patch. A prominent example is the NL-InSAR [3], which is a

probabilistic patch-based filter that uses maximum likelihood

to search for similarities inside the image. Another notable

technique is the InSAR-BM3D [4], which extends the BM3D

[5] denoising method for InSAR parameters estimation.

Variational methods also offer a powerful approach to

InSAR denoising by minimizing a cost function that consists

of a data fidelity term and a regularization term. MuLog [6]

is a generic variational denoising method that incorporates

Gaussian denoisers within a multi-channel framework based

on the Plug-and-Play ADMM [7] scheme.

Deep learning has recently shown great success in this

domain. Most of the existing InSAR denoising approaches

in deep learning are fully supervised, such as ϕ-Net [8] and

InSAR-MONet [9]. ϕ-Net [8] uses a UNet architecture for

the joint estimation of the coherence and phase. The authors

focused on developing a large training synthetic dataset that

accounts for different scenarios. InSAR-MONet [9] performs

InSAR phase denoising by training the network to mini-

mize a multi-objective lost function. This multi-objective loss

function penalizes the recovery of spatial information, and

preservation of edges and statistical properties.

As fully supervised methods require the disposition of

noise-free samples, which are very difficult to acquire, these

methods are usually trained on simulated data. Nevertheless, it

is difficult to simulate data faithful to real samples. Therefore,

it is crucial to explore self-supervised approaches to be able

to train networks on real images. One of the existing self-

supervised denoising approaches is Noise2Noise [10]. The ra-

tionale behind this approach is that a deep learning model can

be trained to restore a noisy image using a pair of independent

noisy observations of the same scene by mapping one noisy

sample to the other, without requiring the clean sample. This

is only applicable under the condition that the expectation of

the noisy observations matches the clean target and that the

training dataset is sufficiently large. Although disposing of two

noisy samples of the same scene is not frequent, this situation



occurs for the Sentinel 1 sensor with the burst overlap. Thanks

to this specificity, two noisy interferometric pairs of the same

area are available.

Therefore, we propose in this article a self-supervised

method relying on the Noise2Noise principle to reduce the

speckle in InSAR data. The joint estimation of InSAR pa-

rameters is done by denoising the interferometric covariance

matrix. Additionally, the proposed approach takes into account

the peculiarities of the speckle by considering a loss that is

adapted to its distribution. We currently exclusively present

results based on simulated data, with a strategic intention to

migrate towards real Sentinel 1 data in the future. The use

of simulated data is crucial to validate the method before

applying it to more complex real-world data.

II. METHODOLOGY

A. InSAR Statistics

In order to effectively introduce the despeckling method, it

is necessary to take into account the speckle’s statistics.

As mentioned in the introduction, the proposed method aims

to restore the InSAR parameters by denoising the covariance

matrix. In the general case of multi-channel SAR acquisitions

with D channels (polarimetric and/or interferometric), the

empirical covariance matrix CCC ∈ C
D×D can be computed

over a local window as in (1):

CCC =
1

L

L
∑

k=1

v⃗kv⃗
∗

k , (1)

where L is the number of pixels considered, v⃗k ∈ C
D is

the complex amplitude vector at pixel k within the window,

and * denotes the Hermitian transpose. In the case of L≥ D,

according to Goodman’s model [11], the speckle noise in the

covariance matrix CCC follows the Wishart distribution W(ΣΣΣ, L)
given by:

pC(C|ΣΣΣ) = LLD|C|L−D

ΓD(L)|ΣΣΣ|L exp(−Ltr(ΣΣΣ−1C)) , (2)

where ΣΣΣ is a Hermitian positive definite matrix that represents

the true covariance matrix. In the interferometric case where

D = 2, ΣΣΣ is expressed in (3):

ΣΣΣ =

[

A2

1
A1A2ρ12e

jφ12

A1A2ρ12e
−jφ12 A2

2

]

, (3)

where A1 and A2 denote the amplitudes of each acquisition,

and ρ12 and ϕ12 denote the coherence and the phase difference

between both interferometric acquisitions respectively. The

Wishart distribution models the noise as CCC = ΣΣΣ
1

2SSSΣΣΣ
1

2 , where

SSS ∼ W(I, L), with the following expectation and variance [6]:

E[CCC] = ΣΣΣ , (4)

V ar[CCCij ] =
1

L
ΣΣΣiiΣΣΣjj . (5)

The variance of the off-diagonal elements of CCC depends on

the intensities of the signals as show in (5). This implies that

the noise is signal-dependent.

B. Loss

Provided that the expectation of the noisy observations

matches the clean target (as shown in (4)), the application

of the Noise2Noise framework is possible. Given two noisy

observations of the covariance matrix (CCC1,CCC2), we estimate

the parameters θ of the estimator fθ : CCC 7→ Σ̂ΣΣ = fθ(CCC), by

minimizing a loss function LLL that compares f(CCC1) with CCC2:

θ̂Noise2Noise ∈ argminθE[LLL(fθ(CCC1),CCC2)] . (6)

To take into account the statistical properties of the speckle

noise in the optimization problem, the minimized loss is the

negative log-likelihood of the conditional distribution p(C|ΣΣΣ)
presented in (2). This results, in the Noise2Noise context, in

the following loss shown in (7):

LLL(Σ̂ΣΣ1,CCC2) = − log p(CCC2|Σ̂ΣΣ1)

= L(log |Σ̂ΣΣ1|+ tr(Σ̂ΣΣ
−1

1
CCC2)) +K , (7)

where Σ̂ΣΣ1 = f(CCC1) is the denoised estimation of CCC1 and K

is a constant that does not depend on Σ̂ΣΣ1.

C. Methodology

The full methodology, summarized in Fig. 1, follows the

step described below:

1) Two noisy interferometric pairs of the same area are

taken as input. The covariance matrices of both pairs

CCC1 and CCC2 are first computed with L = 1, in order to

preserve the resolution of the images. Given that L < D,

CCC is rank-deficient. This issue was thoroughly discussed

in [12], and the covariance matrix pre-processing opera-

tions proposed by the authors were applied here in order

to mitigate the rank-deficiency problem.

2) The matrix logarithm of the input covariance matrix

C̃̃C̃C1 = logCCC1 is then computed. It was shown in [6]

that applying the matrix-logarithm stabilizes the noise

variance and reduces its dependency on the signal.

3) Given that the covariance matrix is complex, it is trans-

formed into a real-valued tensor, by separating the real

and imaginary values of the upper triangle matrix of C̃CC1.

4) The denoised output is then converted into a complex

covariance matrix Σ̂ΣΣ1 (after converting back to the

complex and computing the matrix exponential).

5) Finally, the network parameters are optimized by mini-

mizing the negative log-likelihood as described in Sec-

tion II-B.

The model architecture adopted is the UNet architecture

detailed in Fig. 1.

III. EXPERIMENTS

To evaluate the performance of the proposed method, the

training is first conducted on simulations before moving on to

real data. In this section, we show the generation process of

the simulated data, the experimental setup and the results.



Fig. 1: Overview of InSAR2InSAR: the matrix logarithm of CCC1 is computed and the matrix is transformed into a real-valued

vector, which is fed to the network. The inverse transforms are then performed to obtain Σ̂ΣΣ1 which is compared with CCC2.

A. Data Simulations

The noisy interferometric acquisitions are simulated follow-

ing the model described in [3]:
[

z1
z2

]

= MC

[

x1

x2

]

, (8)

where x1 and x2 are two complex standard Gaussian random

variables [x1, x2]
T ∼ CN (0, I) and MC denotes the lower tri-

angle matrix in the Cholevsky decomposition of the covariance

matrix, as expressed in (9):

MC =

[

A1 0

A2ρ12e
−jφ12 A2

√

1− ρ2
12

]

. (9)

MC depends on the coherence ρ12, phase ϕ12 and the noise-

free amplitudes A1 and A2.

The objective is to generate a synthetic dataset that is realis-

tic and preserves to the fullest extent feasible the properties of

real images. Nevertheless, the simulations generated with the

simulation model described above will not take into account

the imaging system and its Point Spread Function (PSF). The

noise-free InSAR parameters are generated using real Sentinel

1 Interferometric Wide Swath SLC interferometric pairs:

1) Amplitudes: the real noisy amplitudes are denoised

using MERLIN [13], a denoising method that uses the

real and imaginary parts of single-look complex images

to restore the amplitudes.

2) Phase simulation: the phase is simulated using the

Shuttle Radar Topography Mission (SRTM) DEM that

has been interpolated on the Sentinel 1 product grid. The

wrapped phase ϕ can be simulated using the interpolated

DEM and the acquisition parameters [14] as show in

(10):

ϕ = ∠exp(j
4πBorth

λRsrange sin θ
h) , (10)

where h is the height provided by the DEM, Borth is

the baseline, λ is the sensor wavelength, Rsrange is the

range distance from the center of the scene, and θ is the

incidence angle.

Following the approach in [9], we used varying baseline

values for each DEM to simulate diverse phase patterns,

enhancing the dataset’s generalization capability.

3) Coherence: the coherence ρ can be estimated using the

cross-correlation r of the intensities of the interferomet-

ric pairs as described in [15]:

ρ =

{√
2r − 1 r > 0.5 ,

0 otherwise .
(11)

In order to estimate the noise-free coherence, the de-

noised intensities are used to compute r as in (12):

r(A1, A2) =
E[A2

1
A2

2
]

√

E[A4

1
]E[A4

2
]
. (12)

The noise free coherence is then estimated according to

(11). Different linear transformations are then applied to

the estimated coherence to simulate different levels of

coherence, hence different levels of noise. The coherence

values range from 0.3 to 0.9.

Finally, after computing the noise-free parameters, the noisy

interferometric images can be simulated according to (8).

Fig. 2 shows an example of 12 simulated phases for three

levels of coherences and four different baselines for one patch.

The top line represents the noise-free phase with increasing

baseline from left to rightand the first column represents the

three levels of noise-free coherence. Two noisy simulations

were created for the same noise-free parameters, which will be

used to compute the two noisy covariance matrices (CCC1,CCC2).

B. Experimental Setup

In order to train the network, a synthetic dataset was

simulated following the protocol described in Section III-A.

The simulated data were generated over a burst acquired

in Luthenay-Uxeloup, in central France. The burst was then

divided into 470 patches of size 256x256 pixels. The training

was carried out on 80% of these patches, while the remaining

20% were used for the evaluation. Each patch was used to

simulate 3 different levels of coherence and 6 different phase

patterns with different baselines as described in Section III-A.

This yields to 18 different simulations per patch, which results

in a total of 6768 patches for training and 1692 for testing.

The network was trained on batches of 4 patches of size

64x64 which were randomly cropped from the 256x256 train-

ing patches, using the Adam optimizer. The training carried



Fig. 2: Example of 12 phase simulations with multiple base-

lines and coherence levels.

on for 50 epochs, with an initial learning rate of 0.0001 that

decreased by a factor of 0.04 after each epoch.

C. Computed Metrics

The metrics used for the evaluation of the performance of

the model on simulated data are the following:

1) The Mean Squared Error MSE given by (13).

MSE =
1

N

∑

i

(xi − x̂i) , (13)

where N is the number of pixels, xi is the ground truth

and x̂i is the estimation of pixel i. A perfect estimation

results in a MSE equal to 0. This metric is computed

for both phase and coherence.

2) The Structural Similarity Index Measure (SSIM) given

by (14) that measures the structural similarities between

the estimation and the real quantity.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (14)

where µx and µy are the means of x and y, σx and σy are

the standard deviation of x and y, σxy is the co-variance

between x and y, and c1 and c2 are constants.

A perfect similarity results in a SSIM equal to 1. This

metric is computed for both phase and coherence.

3) The cosine dissimilarity CM , computed as in (15):

CM =
1

2N

∑

i

(1− cos(ϕi − ϕ̂i)) . (15)

The values of CM range from 0 and 1, with 0 being

the case of perfect estimation. This is computed for the

phase only.

D. Results On Simulations

Fig. 3 shows results on two test examples with low co-

herence and two different levels of phase fringes. The results

are also compared with two fully supervised deep learning

methods: InSAR-MONet [9], which estimates the phase only,

and ϕ-Net [8], which estimates both coherence and phase.

Considering the phase estimation, while the three presented

methods have difficulty recreating high rate fringes (see exam-

ple 2), the estimation of the proposed method InSAR2InSAR

is the closest to the noise-free phase. ϕ-Net smooths the phase

and has difficulty recreating the small variations. InSAR-

MONet creates some artifacts in the denoised output.

Considering the coherence estimation, both methods In-

SAR2InSAR and ϕ-Net show strong noise suppression, at

the cost of reduced sharpness in InSAR2InSAR and severe

smoothing for ϕ-Net. However, InSAR2InSAR seems to better

preserve the small variations of the coherence. Additionally,

both methods recreate strong phase fringes in the coherence

estimation (see top right corner of Example 2).

A quantitative analysis was also conducted on the validation

set, which consists of 1692 patches of size 256x256 pixels.

The metrics listed in Section III-C were computed and the

results are displayed in Table I. The best results are highlighted

in bold. InSAR2InSAR achieves the best performance for all

metrics, which validates the observed results in Fig. 3.

TABLE I: Quantitative results on the validation dataset. The

best results are highlighted in bold.

Coherence Metrics Phase Metrics

MSE SSIM MSE CM SSIM

φ-Net 0.0091 0.529 1.196 0.0249 0.66

InSAR-MONet - - 0.992 0.023 0.678

InSAR2InSAR 0.0045 0.587 0.771 0.0099 0.772

E. Discussion On Coherence Estimation

While InSAR2InSAR achieves satisfactory results for phase

estimation, it still has difficulty estimating the coherence. A

possible explanation for this behavior is the low sensitivity

of the considered loss to coherence variations. The study

of the variations of the negative log-likelihood with respect

to the coherence validates this assumption. Additionally, In-

SAR2InSAR tends to estimate a low coherence for some

phase fringe areas. A similar low coherence estimation in

phase fringe areas was also observed in Φ-Net. This could

be because such fringes are interpreted as noise, resulting in

lower coherence values. We will dedicate further attention and

effort to address these challenges effectively.

IV. CONCLUSION

In this article, we propose InSAR2InSAR, a new self-

supervised denoising method that extends Noise2Noise for the

joint estimation of InSAR parameters. The proposed method

shows promising results on simulated data. In future works,

we plan to train InSAR2InSAR on a real dataset, which

consists of the burst overlap areas extracted from Sentinel 1

Interferometric Wide Swath SLC data.



Fig. 3: Two examples of phase and coherence estimations on simulated data. From left to right: noisy simulations, noise-free

simulations, estimations of the proposed InSAR2InSAR, ϕ-Net [8] and InSAR-MONet [9].
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