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Abstract—Hyperspectral unmixing is an essential tool for
analyzing hyperspectral data, especially in remote sensing. Many
approaches have been developed for this problem, ranging
from model-based to deep learning-based, and (hybrid) unrolled
methods. However, the development of supervisedly trained deep
learning-based unmixing methods is hindered by the lack of
available labeled training datasets. In this paper, to enable
the supervised training of neural networks for hyperspectral
unmixing, we propose a methodology to construct a synthetic
training database directly from the hyperspectral image to
unmix. We use this data generation approach to train an
unrolled unmixing method LPALM. The trained LPALM is
assessed on two real hyperspectral datasets and shows the
best performances compared to other classical, unrolled, and
autoencoder-based unmixing methods. The code of this work
will be available at https://github.com/rhadjeres/Synthetic-Data-
Generation-HSU.git.

Index Terms—Hyperspectral unmixing, Synthetic training, Un-
rolled neural networks, Deep learning.

I. INTRODUCTION

HYPERSPECTRAL (HS) imaging is an optical technol-
ogy enabling to capture scenes in hundreds to thou-

sands of narrow and contiguous spectral bands, covering a
large wavelength range going from the visible to the near
infrared and shortwave infrared. It has been applied to several
domains such as medical imaging [1], astrophysics [2], and
remote sensing [3]. The rich spectral information provided
by hyperspectral images (HSIs) allows to finely characterize
the spectral signatures of the materials present on a given
scene. Nevertheless, a trade-off between spatial and spectral
resolution is operated on the HS sensors to maintain acceptable
signal-to-noise ratios, resulting in a lower spatial resolution
compared to other remote sensing modalities such as mul-
tispectral or panchromatic imaging, limiting their ability to
resolve fine-scale features on the ground. Thus, HS pixels
usually correspond to mixtures of reflectance spectra of more
than one distinct material present in the scene.

To facilitate the analysis of HSIs, hyperspectral unmixing
(HSU) aims to decompose each pixel into p pure spectra,
called endmembers, and their corresponding relative concen-
tration inside of the pixel, called abundances. The simplest
mixture model being the linear mixing model (LMM), which
assumes each pixel to be a convex linear combination of
the pure materials’ endmembers present in the scene. Several
methods have been developed to perform HSU under the LMM

assumption, varying from iterative mathematical methods (ge-
ometrical, statistical, and sparse regression-based approaches)
[5] to deep learning-based methods [6], and deep unrolled
networks [7].

Model-based methods offer a clearly interpretable model-
ing of the unmixing process but often suffer from a high
computational complexity and cumbersome hyper-parameters
tuning. On the other hand, despite their high performance,
deep learning-based methods may lack of interpretability
due to their black-box nature. Deep unrolled networks try
to combine the best from both worlds by offering efficient
hybrid interpretable neural networks, where each iteration of
an algorithm is recast into a layer of a neural network with
learnable parameters.

Compared to other computer vision tasks, the development
of deep-learning based methods for HS imaging, and espe-
cially HSU, is limited by the lack of available ground truth
data. Indeed, image annotation can be very time-consuming
and may require extensive fieldwork or laboratory analysis.

Contributions This paper proposes a methodology to con-
struct a synthetic labeled database for training deep learning-
based HSU methods, directly from the HSI to unmix. The
methodology is then used to train an unrolled neural network
LPALM with the aim to unmix real HS datasets. The perfor-
mance of the supervisedly trained LPALM is then compared to
two unsupervised classical algorithms, two unrolled methods,
and an autoencoder-based method.

The remainder of this paper is organized as follows. Section
II provides a brief reminder about the HSU problem, the
PALM algorithm and its unrolled version LPALM. Section
III is dedicated to the proposed data generation methodology.
Section IV presents the results of the trained LPALM over two
real datasets in comparison to other HSU methods. Finally,
conclusion and future works are presented in section V.

II. BACKGROUND

A. Problem statement

According to the LMM, each pixel writes xn = Asn+en ∈
RL with A ∈ RL×p is the endmember matrix, L is the
number of spectral bands, p is the number of pure materials
present in the scene, sn ∈ Rp is an abundance vector, and
en is an additive Gaussian noise. The whole image writes
X = AS + E ∈ RL×N where S ∈ Rp×N is the abundance
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matrix, N is the number of pixels, and E ∈ RL×N is an
additive Gaussian noise matrix. Due to the ill-posedness of
the unmixing problem, regularization functions are necessary
to avoid spurious solutions, and constrain the solution of the
problem to be physically meaningful. Considering regulariza-
tion functions g and f , respectively on S and A, the unmixing
problem thus translates into

argmin
A∈RL×p,S∈Rp×N

1

2
||X −AS||2F + g(S) + f(A), (1)

where ||.||F is the Frobenius norm.
Usually, the endmembers are subject to the non-negativity
constraint (ENC), while abundances are often subject to
non-negativity (ANC) and sum-to-one constraints (ASC), i.e
the abundances should lie in a probability simplex {sn ∈
Rp|sn,j ≥ 0,

∑p
j=1 sn,j = 1}.

B. LPALM algorithm

Because not all the endmembers are present in each pixel
of the HSI, it is relevant to impose sparse regularization. A
possible formulation for the problem is

argmin
A∈RL×p,S∈Rp×N

1

2
||X−AS||2F +λ||S||1+ ι(A)

{Ai,||Ai||22≤1,i∈[1,p]}
(2)

where Ai is the i-th column of A, the l1 norm encourages
sparsity on the abundances S, and the oblique constraint
encourages normalization of the columns of A to avoid de-
generate solutions.

A popular optimization algorithm to solve problem (2) is
the Proximal Alternating Linearized Minimization (PALM)
algorithm [12], particularly appealing for its mathematical
guarantees. It operates in an alternated framework according
to the following iterations

S(k+1) = STθ(k)

(
S(k) − 1

L
(k)
S

A(k)T
(
A(k)S(k) −X

))

A(k+1) = Π||.||2≤1

(
A(k) − 1

L
(k)
A

(
A(k)S(k+1) −X

)
S(k+1)T

)
(3)

where (k) stands for the kth iteration, ST(.)(.) is the soft
thresholding operator, 1

L
(k)
S

and 1

L
(k)
A

respectively the gradient

steps for S(k) and A(k), and θ(k) = λ

L
(k)
S

the thresholding
parameter. However, similarly to other iterative algorithms,
PALM may suffer from cumbersome hyperparameter tuning
and a high computational complexity.

To overcome the above cited limitations, the authors of
[13] proposed the LPALM as an unrolled version of PALM
algorithm to solve problem (2) in the context of astrophysical
data. LPALM recasts each iteration of PALM into a layer of
a neural network according to the scheme

S(k+1) = STθ(k)

(
S(k) −W (k)T (A(k)S(k) −X)

)
A(k+1) = Π||.||2≤1

(
A(k) − 1

LA
(k)

(A(k)S(k+1) −X)S(k+1)T

)
(4)

where the thresholding parameter θ(k), the matrix W (k)T =
1

L
(k)
S

A(k)T and L
(k)
A , all underlined in (4), are parameters

learned from the training process.
LPALM is trainable in a supervised fashion, given a training

dataset {(Xi, Ai, Si)}Ntrain
i=1 , according to the loss

Loss =
1

Ntrain

Ntrain∑
i=1

(
||Ŝi − Si||2F

||Si||2F
+

||Âi −Ai||2F
||Ai||2F

), (5)

where each Xi is a training image, Ai and Si the associated
ground truths, whereas Âi and Ŝi are the corresponding esti-
mations of the algorithm. LPALM showed interesting results
on synthetic realistic data, where the corresponding training
data were generated according to a simulator.

In our work, we consider a variation of the LPALM replac-
ing the soft thresholding operator by a ReLU(.) function, and
a normalizing step on the columns of S enforcing ASC.

III. GENERATING SYNTHETIC LABELED DATA FOR
HYPERSPECTRAL UNMIXING

In real life scenarios, especially in remote sensing, it is very
difficult to have access to labeled training data or simulators,
which hinders the applicability of LPALM and more generally
supervisedly trained unmixing algorithms. In the sequel, we
will present a three steps methodology to efficiently generate
synthetic training samples directly from the image to unmix.

A. Spectral collection and augmentation

Our goal is to generate labeled training samples for hyper-
spectral unmixing. However, relying on ready-made libraries
such as the USGS spectral library [21] may lead to library
mismatch due to different acquisition conditions. Alternatively,
we propose to construct spectral libraries directly from the
observed images.

The first step of our methodology can be divided into:
1) Employing an endmember extraction algorithm (EEA)

a predetermined number of time NiterEEA to extract
different samples spectra of the pure materials.

2) Removing duplicates and Grouping spectra correspond-
ing to each material using a clustering algorithm to
construct a first spectral library LibEEA.

3) Augmenting the spectral library by applying perturbation
functions that mimick spectral variability on the spectra,
resulting in a new augmented library LibAug .

We use the vertex component analysis (VCA) algorithm [8]
to extract the spectra, and the Fuzzy c-means algorithm [14]
to group them. VCA is interesting for its randomized nature,
which permits to extract different endmember samples by
running the algorithm several times. Nevertheless, there is
some redundancy in the extracted endmembers limiting the
number of available training spectra. The used perturbation
procedure for augmentation has been introduced in [15], and
consists in multiplying reference spectra from LibEEA by
randomly generated piece-wise affine functions. After some
level of variability cvar is fixed by the user, piece-wise affine
functions are generated according to four parameters:
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• ξi ∼ U[1−cvar/2,1+cvar/2] ∀i ∈ {1, 2, 3}.
• Lbreak = ⌊⌊L/2⌋+ ⌊LU/3⌋⌋ ∈ {1, ..., L} is the spectral

band marking the non-linearity and U ∼ N (0,1).
An illustration of a randomly generated piece-wise affine
function and augmented spectra are respectively illustrated in
Fig. 1 and Fig. 2.

Fig. 1. An example of randomly generated piecewise affine function.

Fig. 2. Augmented spectra for Samson dataset (cf. Section IV), of re-
spectively, from left to right, soil, tree and water materials signatures with
cvar = 0.4.

B. Abundance maps generation

Abundance maps also play an important role when gener-
ating synthetic labeled hyperspectral images. This step of our
methodology can be divided into:

1) Computing a reference endmember matrix Aref by
taking the average spectrum from LibEEA associated
to each material.

2) Estimating a reference abundance map Sref by apply-
ing a fully constrained least squares procedure on the
hyperspectral image to unmix and Aref .

3) Estimating the parameters of a statistical distribution as-
sociated to Sref in order to generate samples following
the same distribution.

Sref is obtained using the fully constrained least squares
unmixing (FCLSU) algorithm [19]. We use Dirichlet mixtures
as a prior for abundance maps [16], [17]. On one hand,
the Dirichlet distribution is well suited to model fractions
and ensures non-negativity and sum-to-one constraints of
the abundances. On the other hand, mixtures allow one to
model complex distributions in which the mass probability is
scattered inside the simplex.

Precisely, the Dirichlet mixtures distribution writes as

pS(sn|θ) =
M∑
q=1

ϵqD(sn|θq) =
M∑
q=1

ϵq
Γ(
∑p

j=1 θqj)∏p
j=1 Γ(θqj)

p∏
j=1

s
θqj−1

n,j (6)

where Γ(.) denotes the gamma function, M is the number
of modes, ϵq and D(sn|θq) respectively denote the proba-
bility of mode q and its Dirichlet density parameterized by
θq ≡ {θq1, ..., θqp}. The complete set of parameters is denoted
as θ ≡ {ϵ1, ..., ϵM , θ1, ..., θM}. The parameters are estimated

by maximizing the associated log-likelihood according to a
specific Expectation-Maximization (EM) algorithm [18]. The
log-likelihood writes

L(θ) =
N∑

n=1

[

M∑
q=1

z(n)q log(ϵqD(sn|θq))] (7)

where z(n) = [z
(n)
1 , ..., z

(n)
M ] is a binary vector of size M

with a unique value z
(n)
q of one, indicating the mode of

the n-th sample. The number of modes is determined using
the Akaike information criterion (AIC). The EM algorithm
alternates between the E-step and the M-step.

• E-step: Given the samples {sn}Nn=1 and the current
estimated parameter θ̂(k), this step consists in computing
the conditional expectation of the complete log-likelihood

Q(θ; θ̂(k)) =

N∑
n=1

[

M∑
q=1

β(n,k)
q log(ϵqD(sn|θq))] (8)

where

β(n,k)
q = E[z(n)q |θ̂(k)q ] =

ϵ̂
(k)
q D(sn|θ̂(k)q )∑M

l=1 ϵ̂
(k)
l D(sn|θ̂(k)l )

. (9)

• M-step: This step updates the parameters

ϵ̂(k+1)
q =

1

N

N∑
n=1

β(n,k)
q ,

θ̂
(k+1)
qj = Ψ−1

(
Ψ

(
p∑

l=1

θ̂
(k)
ql

)
+

∑N
n=1[β

(n,k)
q log(sn,j)]∑N
n=1 β

(n,k)
q

)
(10)

with Ψ(x) ≡ d(log Γ(x))/dx the psi(.) function and
Ψ−1(.) its inverse.

Illustrations of the estimated density parameters on three
abundance materials are given in Fig. 3.

Fig. 3. Reference empirical density (Blue) and associated estimated Dirichlet
mixtures density (Orange) of respectively soil, tree and water materials
associated to Samson dataset.
C. Labeled hyperspectral samples

The final stage consists in generating mixed hyperspec-
tral samples. Each training sample corresponds to a tuple
{(Xi, Ai, Si)}Ntrain

i=1 , where Ai is an endmember matrix sam-
pled from LibAug , Si is an abundance map sampled from the
estimated Dirichlet mixture distribution, and Xi = AiSi +Ei

is a mixed hyperspectral sample with Ei an additive gaussian
noise such that SNR = 30dB.
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IV. EXPERIMENTS

In this section, we assess the unmixing performance of
the supervisedly trained LPALM on two real-world datasets,
in comparison with other unmixing methods, namely: VCA
[8] combined with FCLSU [19], SNPA [9], DNMF-net [10],
SNMF-Net [11], and CNNAEU [20]. Among these compared
methods, VCA (+FCLSU) and SNPA are geometric unsu-
pervised methods, while DNMF-Net and SNMF-Net are two
unrolled NMF-based methods. DNMF-Net unrolls a multi-
plicative update algorithm, SNMF-Net unrolls an Lp-NMF
algorithm where the parameter p is learned from the data,
and both algorithms are unsupervisedly trained thanks to a
reconstruction loss. And finally, CNNAEU is an autoencoder-
based unmixing method that has shown highly accurate results
in the critical comparison of autoencoder-based unmixing
methods [22]. All relevant parameters of these approaches
have been set as suggested in their original implementation.

The spectral angle distance (SAD) and the root-mean-
square error (RMSE) were used in order to quantitatively
compare the performance of the algorithms. SAD measures
the dissimilarity between a reference endmember Ar and its
associated estimation Âr, and is defined as

SADr = arccos

(
AT

r Âr

∥Ar∥∥Âr∥

)
. (11)

RMSE computes the error between a reference abundance map
Sr and its associated estimated map Ŝr, it is defined as

RMSEr =

(
1

N
∥Sr − Ŝr∥2

) 1
2

(12)

where N is the number of elements of the abundance map.
The smaller the values of SAD and RMSE, the better the
unmixing.

Columns of all the hyperspectral images and mixing matri-
ces used in the experiments are normalized to get rid of scaling
factors, and the variability controlling parameter cvar has been
set to 0.4 for all the experiments. The number of layers of
LPALM was set to 5, initialized with Aref and Sref , and it
was trained on 100 generated training samples of the same
dimension as the ground truth matrices with Adam optimizer
and a learning rate lr = 10−6 during 600 epochs.

Samson Dataset contains 95×95 pixels, and 156 channels
covering the spectral range of 400nm-900nm. We considered
three main endmembers present in the scene including water,
soil and tree.

Table I provides endmember estimation results of all the
compared methods w.r.t SAD. It shows that LPALM outpe-
forms the other methods on average SAD, when estimating
Soil and Tree endmembers, and places second closely after
SNPA for Water endmember. In comparison with the other
methods, SNMF-Net not only shows the worst endmembers
results, but also the worst abundance estimation results overall
according to table II. Even if both SNMF-Net and DNMF-Net
are unrolled networks relying on a reconstruction loss, DNMF-
Net performs better as it uses 70% of the image as training

pixel while SNMF-Net uses only 500 pixels i.e. around 6%
here. LPALM still peforms the best on average RMSE and
for the Soil abundance, and places second for Tree and Water
abundances.

Jasper ridge Dataset contains 100×100 pixels, and 224
channels covering the spectral range of 380nm-2500nm. To
mitigate the water absorption and atmosphere effects, noisy
bands (1–3, 108–112, 154–166, and 220–224) have been
removed, leading to 198 remaining bands. We considered four
main endmembers which are tree, water, road and soil.

According to table III, LPALM exhibits the best endmember
estimation on average for Tree and Road materials, and places
second for Soil closely after VCA which performs on average
three times better than SNPA on this dataset. This shows that
the theoretical conditions that guarantee the results of SNPA
to be correct are not verified in practice. The endmember
estimation error of SNPA also propagates to abundances as
shown in table IV. Once again, SNMF-Net and CNNAEU
show the worst results for abundance estimation while LPALM
performs the best. This shows the efficiency and utility of
efficiently generated synthetic training datasets.

TABLE I
SAD RESULTS ON SAMSON DATASET.

Algorithm VCA SNPA DNMF SNMF CNNAEU LPALM
Soil 0.0236 0.0404 0.0233 0.0713 0.0323 0.0152
Tree 0.0417 0.0753 0.0494 0.1112 0.0418 0.0356

Water 0.1655 0.0326 0.0368 0.2164 0.0959 0.0361
Mean 0.0769 0.0494 0.0365 0.1330 0.0567 0.0290

TABLE II
RMSE RESULTS ON SAMSON DATASET.

Algorithm FCLSU SNPA DNMF SNMF CNNAEU LPALM
Soil 0.0591 0.0790 0.0813 0.5704 0.2446 0.0498
Tree 0.0346 0.0627 0.0774 0.5661 0.2471 0.0368

Water 0.0525 0.0254 0.0393 0.4520 0.2283 0.0271
Mean 0.0487 0.0557 0.0660 0.5295 0.2400 0.0379

TABLE III
SAD RESULTS ON JASPER DATASET.

Algorithm VCA SNPA DNMF SNMF CNNAEU LPALM
Tree 0.0638 0.1627 0.0353 0.3413 0.0774 0.0200

Water 0.1437 0.0751 0.1645 0.3852 0.0534 0.1068
Soil 0.1179 0.2304 0.1632 0.1696 0.1323 0.1218
Road 0.0901 0.6988 0.0975 0.0836 0.1101 0.0284
Mean 0.1039 0.2918 0.1151 0.2449 0.0933 0.0693

TABLE IV
RMSE RESULTS ON JASPER DATASET.

Algorithm FCLSU SNPA DNMF SNMF CNNAEU LPALM
Tree 0.0832 0.1025 0.0629 0.5671 0.2911 0.0617

Water 0.0788 0.0893 0.1567 0.5250 0.2753 0.0938
Soil 0.1497 0.1894 0.1352 0.4715 0.4005 0.1287
Road 0.1283 0.2455 0.1826 0.5601 0.3053 0.1244
Mean 0.1100 0.1567 0.1344 0.5309 0.3180 0.1021

V. CONCLUSION

This paper proposed a synthetic data generation strategy
allowing the use of LPALM algorithm in remote sensing
hyperspectral unmixing. The trained LPALM showed better re-
sults compared to other state-of-the-art methods, highlighting
the efficiency of the proposed methodology. Future work will
include the assessment of this data generation methodology
on other architectures.
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Fig. 4. Ground truth spectra (red) and associated estimated spectra (blue) of
Samson dataset. From the top to the bottom: Soil, tree, and water. From left
to right: VCA, SNPA, DNMF-Net, SNMF-Net, CNNAEU and LPALM.

Fig. 5. Estimated abundance maps of Samson dataset. From the top to the
bottom: Soil, tree, and water. From left to right: VCA, SNPA, DNMF-Net,
SNMF-Net, CNNAEU and LPALM.

Fig. 6. Ground truth spectra (red) and associated estimated spectra (blue) of
Jasper dataset. From the top to the bottom: Tree, Water, Soil and Road. From
left to right: VCA, SNPA, DNMF-Net, SNMF-Net, CNNAEU and LPALM.

Fig. 7. Estimated abundance maps of Jasper dataset. From the top to the
bottom: Tree, Water, Soil and Road. From left to right: VCA, SNPA, DNMF-
Net, SNMF-Net, CNNAEU and LPALM.
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