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Abstract—Change detection is an important data processing
task in remote sensing, with applications such as deforestation
monitoring or natural disaster assessment. Synthetic Aperture
Radar (SAR) imaging offers key advantages for change detection,
in particular due to its robustness to weather condition and
cloud coverage. Because of the speckle phenomenon, the intensity
of SAR images suffer from strong fluctuations, making the
detection of radiometric changes challenging. Our method builds
on a recently introduced self-supervised despeckling technique. It
estimates despeckling uncertainty to better identify meaningful
differences between two despeckled images. Conformal prediction
permits to approach the change detection problem from the angle
of anomaly detection. Thus, we develop a fully unsupervised
change detection approach with a controlled probability of false
alarm. Experimental results on TerraSAR-X satellite images with
metric resolution show the capability of our method to detect
changes without any supervision.

Index Terms—unsupervised change detection, SLC SAR,
CFAR, conformal prediction, despeckling uncertainty

I. INTRODUCTION

Synthetic Aperture Radar (SAR) is an active remote sensing
imaging modality based on the emission of short pulses of
radio waves and the measurement of the echoes back-scattered
by the surface of the Earth. After synthesis, a focused SAR
image in Single Look Complex (SLC) format corresponds to
an array of complex values. In contrast to optical imaging,
SAR images are not affected by clouds or by daily and
seasonal variations of the sun light and of the corresponding
shadows. Radar imaging is therefore well-adapted to perform
change detection. Yet, SAR images suffer from strong fluctu-
ations due to the speckle phenomenon that arises from the
constructive and destructive interferences between multiple
echoes collected by the radar antenna for a given resolution
cell. It is challenging to distinguish an intensity variation due
to a radiometric change of the SAR scene from a fluctuation
due solely to the speckle phenomenon. Adequate processing
is necessary to limit erroneous change detections.

The task of change detection in Earth observation corre-
sponds to the localization of changes that occur on the ground
between two or more dates. Such a monitoring has a very large
domain of applications, including deforestation and sea ice
monitoring, or disaster assessment such as landslide mapping
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and assessment of damages created by floods, forest fires, or
earthquakes [1].

Several recent change detection methods for SAR,
optical/multi-spectral or multimodal [2] imaging are based
on supervised deep-learning [3]-[6] which requires manually
labeled images, a very time-consuming step. Some methods,
like [7], use a pretext task in order to pre-train a feature
extractor in order to reduce the amount of required labeled
data or to improve performance. These methods can achieve
semantic change detection and, thanks to the ground truths, can
be adapted to a specific type of change, which is extremely
dependent on the application.

Unsupervised methods can be split in two main categories.
First, an unsupervised classification method can be applied
to the output of a feature extractor, pre-trained via a pretext
task [8] or contrastive-learning [9]. The unsupervised classifier
can be based on k-means clustering [10], Change Vector
Analysis [11], Markov Random Field [11], [12], or an au-
tomatic thresholding algorithm [13]. Second, several methods
use multiple steps: they perform an unsupervised clustering,
for example with the fuzzy c-means [12], to classify pixels
into three classes, i.e., changed, unchanged and undetermined.
Then, changed and unchanged pixels are used as pseudo-
labels for the supervised training of a change detection model
generally composed of a feature extractor followed by fully-
connected layers for classification. This kind of unsupervised
approach has been employed with various feature-extractor
architectures such as Convolutional Neural Networks (CNN)
and attention mechanisms [14], Transformers [15], with a
specific management of multiscale features [16] or by mixing
spatial and frequency features [17]. Some also use a clustering
algorithm during the loss evaluation [18], or rely on an iterative
process like [19] which aims to refine progressively the labels.
The same is possible for manual labels that are considered
unreliable [20].

None of these methods is designed to produce Constant
False Alarm Rate (CFAR) change detection maps, i.e. the same
probability of false alarm everywhere. In contrast, [21] takes
high-resolution multivariate SAR heterogeneity into account
with a robust spherically invariant random vectors model,
and derives statistics from generalized likelihood ratio test
to verify theoretically CFAR property. We also design a
change detection approach with the goal of obtaining a CFAR
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property. Our contributions are the following:

« we design an unsupervised change detection method for
SAR images that is robust to speckle fluctuations,

o we propose a self-supervised learning strategy to estimate
the uncertainty of any despeckling method that can be
applied to half-look SAR images'

o we address the change detection task as an anomaly
detection and use the decomposition of SAR images into
real and imaginary parts as two views of the same scene
without change, to calibrate our change detection method
and control the probability of false alarm.

II. METHODOLOGY

Our objective is to construct a change detection algorithm
with a CFAR property. We consider the observation of a scene
at two different acquisition dates ¢; and ¢;, corresponding to
two N-pixels SAR images z; € CV and z; € CV after proper
co-registration.

To identify reflectivity changes between these two images,
one could compute the differences between the intensities | z; |
and |z;|? (where the squared modulus is applied pixelwise).
Because of speckle fluctuations, this would lead to extremely
noisy change detection maps with errors located mainly in the
bright areas of the images where the variance of speckle is the
largest (see Fig. 1b). The variance of speckle can be stabilized
by a log-transform, it is therefore more relevant to compare
log-intensities rather than the intensities, but due to speckle
fluctuations, these images are still too noisy (Fig. 1c). Better
yet is the comparison of despeckled images, i.e., the estimated
log-reflectivity images log7; € RY and log7; € R obtained
with a despeckling algorithm (Fig. 1d). However, denoising
methods notoriously perform better in large stationary areas
and more poorly close to edges or point-like structures and
in textured areas with a small spatial extent. The variance
of estimators of the SAR reflectivity is thus non-stationary.
Failing to account for the uncertainties of the despeckling
method leads to a concentration of false alarms detection in
the areas that are difficult to denoise, and thus a non-CFAR
change detector.

To obtain a change detection technique that is both robust
to speckle fluctuations and with a CFAR behavior, we propose
to apply despeckling and uncertainty quantification. In section
II-A, we show how to estimate despeckling uncertainty in a
self-supervised manner for methods that can be applied to half-
look SAR images. Then, in section II-B, we use conformal
prediction [22] to calibrate our change detection method,
inspired by anomaly detection techniques [23].

A. Self-supervised uncertainty quantification

The paper [24] introduced a self-supervised despeckling
strategy based on the decomposition of a SAR image z € CV
into its real and imaginary components @ € RY and b € RY.
Under Goodman’s fully developed speckle model, the phase
of a SAR image is uniformly distributed and @ and b are

Image from only the squared real or imaginary part of the complex image.

independent and identically distributed. The images a® and

b” can be used like two independent observations of the same
scene, in the absence of change, with twice the amount of
speckle compared to the full intensity image |z|? = a® + b°.
In [24], this remark led to the training of a despeckling frame-
work using the Noise2Noise principle [25], only 2a? was fed
to the network and the neg-log-likelihood — log p(2b*|7(a))
was used to learn to predict the reflectivity common to the two
components a and b. In this paper, we leverage the decompo-
sition into real and imaginary parts to characterize the uncer-
tainties of despeckling methods. Indeed, the reflectivities 7(a)
and 7(b) of a given SAR image are expected to differ more
strongly in areas of high uncertainty. The direct computation of
the absolute differences 6% = |log7(a) — log 7(b)|, however,
is not a reliable estimate due to the variance of the reflectivity
estimator. We are rather interested in the expectation E[&Z].
This can be learned using the Noise2Noise principle [25] by
the network g : (a,7(a)) — p, that attempts to predict
the difference between estimated log-reflectivities based on
a single component (either the real or the imaginary part). In
other words, it is trained by minimizing a self-supervised MSE
loss |lgo (a, 7(a)) — 2.

Once the network gg is trained, the inference of an un-
certainty map for a given SAR image can be obtained by
combining the estimates obtained separately from the real
and imaginary parts: 3g¢(a,7(a)) + 39¢(b,7(b)) which is a
good estimation of uncertainty as shown in [26] on images
computed by synthetic speckle. Note that this uncertainty
estimation method is applicable to any despeckling technique
that can be applied to half-look SAR images a? and b® (most
methods can be adapted to a variable number of looks, i.e., to
different speckle levels).

B. CFAR change detection by conformal prediction

To detect changes between two dates ¢; and t;, we form
4 detection maps of the form v¢ = 8%/F(fi,, fiy) where
c € {a;,b;} and d € {a;,b;}, ie., cis one of the real or
imaginary components of the first date and d is a component
of the second date, and F'(-,-) denotes a compromise fusion
operator [27] (discussed in III-B), combining predicted de-
speckling uncertainties based on the components ¢ and d (see
Fig. 2).

Conformal prediction consists of the calibration of an uncer-
tainty heuristic into an uncertainty metric with mathematical
guarantees, like a confidence interval. In our case, by cali-
brating the distribution of normalized differences v¢ in the
absence of change, i.e., when ¢ = a; and d = b; (the two
components extracted from the same date t;), we can later
on identify abnormally large deviations coming from real and
imaginary components c and d extracted from images captured
at different dates ¢; and ¢;. This approach corresponds to an
application of conformal prediction to anomaly detection.

To threshold these change detection maps with controlled
false alarm rates, we learn, thanks to a calibration set D, a
function sp(«) mapping a false alarm rate « to a threshold
applicable to all pixels of v2. Conformal prediction provides



(a) noisy intensities (b) intensity difference
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Detecting radiometric changes in SAR images can be challenging because of speckle noise: (a) a pair of noisy images (on agricultural area undergoing

a change); and changes detected based on (b) intensity difference, (c) log-intensity difference, and (d) log-reflectivity difference.

(a) 8¢ (b) fig © F(fic, fiq) @ ~2
Fig. 2. Representation of different steps of the proposed change detection
method for ¢ = a; and d = a;. From left to right, (a) absolute difference of

estimated log-reflectivities, (b) estimated uncertainty at ¢;, (c) fused estimated
uncertainties, and (d) change detection map.

a method to build the function sp(«) such that the probability
that the change detection map exceeds the threshold sp(«) in
the absence of change, at any given pixel p, is close to the
prescribed probability a:

a—1/(ID|+1) <P((p) > sp(@) <a, (1)

where |D| is the cardinality of the set D used to perform the
calibration. The function sp(«) is given by [22]:

sp(a) = Quantile (D; [(|D| + 1)(1 — a)]/(ID[+1)). ()

The set D used to perform the calibration is formed by all the
pixels of the detection maps v¢ computed using pairs (c, d) of
real and imaginary components extracted from the same date,
i.e., for which no change occur other than an independent
speckle realization.

Four change detection maps can be produced for each pair
of dates (t;,t;). After thresholding, these maps can be fused
into a single map. We suggest the following fusion of binary
change maps:

OR(AND (a2 > spla) 48 > sp(a)] :
3)
AND ['yZ’ > sp(a); ’y;j > sD(a)])

This approach offers a good trade-off between limiting false
alarms and preserving the probability of detection. Note that,
while conformal prediction controls the probability of false
alarm of each map, after the fusion this probability is not con-
trolled as precisely: “AND” test on independent maps leads to?
the approximate false alarm probability o, and “OR” leads to?

2Product of the probability of independent random variables
3Probability of union of equal to disjoint states

the range [a?, 2] (more precisely [(a—1/(|D]+1))?,2a2)).
Yet, the fusion process is beneficial to the detection of changes
because it combines all available information.

III. EXPERIMENTS AND ANALYSIS

In order to compare the results of our method to the state-of-
the-art, we have selected recent unsupervised change detection
methods with available code online: Siamese Adaptive Fusion
Network (SAFNet) [16] and Feature Fusion of Information
Transfer Network (FFITN) [18]. These methods are based
on the unsupervised generation of pseudo-labels by fuzzy c-
means in order to train, as if it was in a supervised way, a
neural network composed of a feature extractor and a classifier.

A. Datasets presentation

First, we use several TerraSAR-X Single Look Complex
(SLC) acquisitions in stripmap mode in order to train the
despeckling uncertainty estimator. These images have a spatial
resolution of 3 meters and a strong speckle noise. The training
set consists of two stacks of 26 images of 1024 x 1024 pixels
each, which we later use for change detection, and 24 images
of size 4096 x4096 to increase the amount of training data. The
two 26 images stacks represent Saint-Gervais and Domancy
areas in France. Changes between the August 6, 2009, and
May 5, 2011, were manually labeled on an area of 384 x 384
pixels for each stack. We chose these dates because optical
images from Google Earth were available on similar dates,
which helps with scene understanding and change labeling.
The first labeled dataset, represented in the top row of Fig. 3,
is an area of Saint-Gervais where the reflectivity of a field
changes and a small building is also built. The second is
an area of Domancy with very small radiometric changes in
some fields, and some complex structural changes without any
strong reflectivity differences, in contrast to the buildings in
the previous dataset, as shown at the bottom of Fig. 3.

B. Analysis of the change detection method

The Saint-Gervais dataset is used for a study of the proposed
method to illustrate the effect of the different parameters both
on agricultural and urban areas.

a) Fusion operator F' study: First, the choice of the
fusion operator F' applied to the uncertainties fi, and fig to
normalize the estimated reflectivities difference impacts the
intensity of changes, in particular when a structure appears
or disappears (Fig. 4). When there is a strong evolution of



(a) Aug. 6, 2009 (b) May 5, 2011

(c) ground truth

Fig. 3. Saint-Gervais (top row) and Domancy (bottom row) datasets: (a) and
(b) represent acquired intensities on Aug. 6, 2009, and May 5, 2011; and (c)
is the manually labeled ground truth.
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Fig. 4. Effect of the choice of the fusion operator F' on (top row) change
detection intensity map, and (bottom row) detected changes after thresholding:
(a) harmonic (recommended), (b) geometric, (c) arithmetic, and (d) quadratic
mean operator.
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the intensity, the uncertainty estimations at the two dates can
differ significantly and the choice of F' defines how to combine
them. The detection maps shown in Fig. 4 for various fusion
operators F' are quite close (especially harmonic and geometric
fusion), we recommend the use of harmonic fusion operator
that is the most sensitive to changes.

b) Selection of the false alarm rate o: Low false alarm
rates can be selected while correctly detecting changes: «
around 1072 is a good compromise, as shown in Fig. 5.

C. Experiments

Based on our previous analysis, we chose a false alarm rate
a = 1/1000 for calibration by conformal prediction, a har-
monic mean operator F' to detect more easily the appearance
or disappearance of a building, and the logical “OR” test to
combine the independent AND-fused change sub-maps. This
leads to a false alarm rate between o and 202 as described
in methodology part II-B. We compare here our method to
FFITN and SAFNet according to four metrics: (i) the False
Alarm Rate (FAR) characterizes the rate of false positive for

107
| —— FAR()
100 identity

S
a

(a) FP fct. o

(b) o =104 ) a= 10?3 (d) o =102

Fig. 5. Effect of false alarm rate choice on change detection. (a) is a plot of
the mean false alarm rate for each date in Saint-Gervais stack, after calibration
by Domancy 26 images stack, as a function of «. (b), (c), and (d) show
changes detected in Saint-Gervais between dates of interest, with the same
color code as in Fig. 4.

(a) ground truth (b) FFITN (c) SAFNet

(d) proposed

Fig. 6. Results on (top row) Saint-Gervais and (bottom row) Domancy
datasets. From left to right, (a) ground truth and change detection by (b)
FFITN, (c) SAFNet, and (d) proposed.

every pixel labeled as unchanged; (ii) the Overall Error (OE)
is the number of errors over the number of pixels; (iii) the
Precision (Pre) is the rate of true positive over the number of
predicted true label; (iv) finally, the F1-score (F1) is useful for
unbalanced classification problems because it characterizes the
number of true positive as a function of the overall error. With
TP, TN, FP and FN denoting the true positive, true negative,
false positive and false negative, respectively, we have:

FAR = FP/(TN -+ FP) @)
OE = (FP + EN)/(TP + TN + FP + FN) (5)
Pre = TP/(TP + FP) (6)

F1 = 2Pre - Rec/(Pre + Rec) (7

with Rec = TP/(TP + FN).

On both Domancy and Saint-Gervais datasets Fig. 6, we can
see that the false alarm rate is lower with our method than with
selected methods, but is higher than the desired false alarm rate
(~ 1/1.000.000): this can be explained by the imprecision of
the manually labeled change maps since it is reasonable to
assume that they contain more than 5% errors. Our method
performs better on hard to detect changes. A change such as
the appearance of a building, which is characterized by a high
intensity difference and a new spatial structure, is more easily
detected by FFITN and SAFNet because they take spatial
correlation into account. However, we should note that FFITN
training is stopped when the x-score with the ground truth
is the best, so this method can not be considered as fully
unsupervised. For more subtle changes, such as an evolution



TABLE I
CUMULATED EVALUATION ON SAINT-GERVAIS AND DOMANCY DATASETS

Methods FAR| (%) OE| (%) Pret (%) F11 (%)
FFITN/-desp. 595/387 1247653 47.6/720 435/729
SAFNet/-desp. 4.34/525 11.1/7.81 548/653 45.6/69.0
Proposed 1.66 4.27 86.1 81.0

“-desp.” means that the method is applied to estimated reflectivities.

of the reflectivity in a field, our method outperforms the others
because it is more robust to speckle noise. We should also note
that applying FFITN and SAFNet on despeckled reflectivities
improves performances as shown in Table I.

Finally, we can show that the computational cost of our
method is much lower than for the other two methods. To do
this, we must divide the duration into three parts: preprocess-
ing, which does not apply to FFITN and SAFNet, training
and inference. The case of our method is a bit particular
because, unlike other methods, the training (of the uncertainty
estimation network and calibration step) does not need to be
updated for new image stacks. Moreover, the inference consists
in the application of the determined threshold during training
to the preprocessed image, i.e. the rate of the absolute value
of the log-reflectivity difference divided by fused uncertainty
estimations, both of which have to be estimated. On the same
laptop with a NVIDIA RTX™ 2000 Ada GPU, training and
inference of FFITN and SAFNet take about 14 and 4 minutes
for a couple of 384 x 384 pixels images, respectively, while
the steps of our method take half a second (3.2 seconds for
1024 x 1024 images).

IV. CONCLUSION

In this paper, we proposed an unsupervised radiometric
change detection method for SLC SAR images. To cope
with strong speckle noise, a despeckling method is used.
Then, in order to compensate for the non-stationary residual
variance, we introduced a normalization by the predicted
uncertainties. The decomposition of SAR images into real and
imaginary components offers a way to calibrate the change
detection method in the absence of change by comparing
the reflectivities estimated from the real and imaginary parts
of the same observation. We used conformal prediction to
control the false alarms in this setting. A data fusion strategy
is then applied to exploit all the information available. Our
experiments indicate that our method effectively controls the
false alarms and presents an improved sensitivity to small
radiometric changes compared to techniques from the state-
of-the-art.
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