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ABSTRACT

Synthetic aperture radar (SAR) is a widely used modality
for Earth observation, as they provide weather-independent
imaging capabilities. However, interpretation of SAR images
is difficult due to the speckle phenomenon: fluctuations ap-
pear in the image, which are stronger in areas with high radar
reflectivity. As a result, many speckle reduction methods
have been developed, with deep learning approaches standing
out as particularly effective. Our article presents here a deep
learning approach with two novel features: the use of an op-
tical image to improve the restoration of a SAR image, while
using a self-supervised neural network training.

Index Terms— SAR, remote sensing, self-supervised,
deep learning, multi-modal.

1. INTRODUCTION

SAR satellite imaging is widely used for various applications
in mapping, environmental monitoring, and defense. How-
ever, SAR images present high intensity fluctuations limiting
their exploitation due to the speckle phenomenon. Speckle
results from constructive and destructive interferences of co-
herent electromagnetic waves backscattered within each reso-
lution cell. Recent years have witnessed the emergence of nu-
merous neural network-based approaches for speckle reduc-
tion. These encompass supervised, semi-supervised, and self-
supervised methods, with the latter removing the necessity of
providing pairs of speckled/speckle-free images. This article
builds on the MERLIN approach introduced in [1], leverag-
ing the independence of real and imaginary components for
self-supervised network training. Notably, this approach has
been extended in [2] to accommodate input from other dates
acquired on the same orbit. The incorporation of an optical
sensor image, explored in [3] using a patch-based filtering
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method, presents a potential avenue for further enhancing de-
speckling based on deep learning: this is the path followed in
this paper.

2. SELF-SUPERVISED DESPECKLING WITH
MERLIN

This section summarizes the self-supervised MERLIN ap-
proach [1], that we extend in the following section to a multi-
modality context. The methodology relies on decomposing
single-look complex SAR images into real and imaginary
components, to exploit their statistical independence for self-
supervised learning, as detailed in [1, 4].

Complex speckle in the Goodman model [5] is modeled
by a random variable s which follows a complex circular
Gaussian distribution with an identity covariance matrix. The
complex amplitude z = a + jb over an area with reflectivity
r can be modeled by z = s

√
r. As a result, the distribution of
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, (1)

which shows the statistical independence of the real and imag-
inary parts of the complex amplitudes.

This insight paves the way for a self-supervised neural
network training for speckle reduction. In this approach, the
network fθ, parameterized1 by θ, takes one component (e.g.,
the real part a) as input and evaluates the restored reflectiv-
ity image quality (̃r = fθ(a)) based on the other component
(e.g., the imaginary part b) using the following loss function:

1throughout the text, bold font denotes vectors and images
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The index k in the equation represents the k-th pixel of ei-
ther the estimated reflectivity image r̃ or the imaginary part b.
In practical implementation, owing to their independence, the
real and imaginary parts undergo permutation at each iteration
during training. In the inference phase, the trained network is
individually applied to the real and imaginary parts of the test
image. The two intermediate estimations, fθ(a) and fθ(b),
are then averaged to derive the final reflectivity estimation.

For the task of despeckling, it only necessitates a radar
image. The MERLIN approach can be extended by incor-
porating auxiliary information to further enhance the speckle
reduction, as illustrated in [2], where additional dates from
the same orbit are used in a multi-temporal framework.

3. FUSE-MERLIN: INTRODUCTING OPTICAL
DATA TO ENHANCE SAR IMAGE RESTORATION

Our proposal involves expanding the MERLIN framework to
include optical data of the same scene. The objective is to
collectively harness various sources of information pertaining
to the same scene. When data obtained from another remote
sensing modality is accessible, it can offer supplementary in-
formation to radar data, thereby assisting in SAR image de-
speckling, as highlighted in [3]. In this article, our focus is
specifically on the use of optical imagery in this context.

Our method is based on the same architecture as MER-
LIN, but we use a different encoder for each modality (Fig. 1.
The goal is to perform an Intermediate Fusion by combining
multi-modal information at the latent space of the network.
In contrast to an Early Fusion, raw images are not concate-
nated at input and processed jointly by a common encoder;
but rather their latent representations are merged. The net-
work comprises two independent branches designed to extract
complementary descriptors from the two modalities. Con-
catenating these descriptors results in an enriched latent space
that includes information from the auxiliary modality. The
common branch of the network then reconstructs the denoised
image based on this combined latent space.

While exploring fusion strategies, our investigation also
considered the Early Fusion approach. Both fusion ap-
proaches lead to comparable results. Yet, the Intermediate
Fusion model is more interesting because it offers more flexi-
bility. With an encoder for each modality, it allows for greater
adaptability when considering more additional modalities.
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Fig. 1: Architectures of MERLIN, and Fuse-MERLIN.

4. EXPERIMENTS

4.1. Data Preparation

Self-supervised training offers the possibility of direct train-
ing on the image of interest (yet, a pre-trained network can
also be applied). A single image for training is sufficient given
the network’s capacity for generalization, and the U-Net ar-
chitecture is particularly well-suited for training with limited
data, thanks to its incorporation of residual connections.

Nine interferometric radar images have been captured be-
tween 16/03/2019 and 30/10/2020 by the TerraSAR-X (TSX)
satellite in Stripmap mode during a descending orbit. From
the nine images, only one has been used for the training pro-
cess, all the remaining images were used for test purposes.
The accompanying optical image is a stereo panchromatic im-
age acquired on 22/03/2019 by the Pleiades (PHR) satellite.
The scene, situated in Jeddah, Saudi Arabia, encompasses
both rural and urban areas, including desert and harbor. Four
PHR images acquired between March and April 2019 under-
went orthorectification and a Digital Surface Model (DSM)
was generated through photogrammetry. Both steps were
accomplished using the MICMAC software (IGN). Subse-
quently, the orthorectified image acquired on 22/03/2019 was
projected into radar geometry using the previously computed
DSM.

Given the sensor’s geolocation accuracy, a refinement step
for registration becomes essential. The OSCAR algorithm, as
detailed in [6], was employed for image registration. This
algorithm uses the optical image and the DSM to simulate
radar images, which are then correlated with the radar ampli-
tude image to estimate a geometric transformation involving
rotation, scaling, and translation. The optical image was reg-
istered to the radar image with sub-pixel accuracy, effectively
reducing the initial offset.



4.2. Implementation Details

The MERLIN framework is general and does not restrict the
architecture of the neural network that can be used. In our ex-
periments, we adopt the same U-Net network variant as used
in MERLIN [1] in order to ease the comparison.

In contrast to MERLIN (Fig. 1a), in our method the net-
work includes not only the real (or imaginary) part of the com-
plex SAR image, but also the optical image through two in-
dependent encoders, (as illustrated in Fig. 1b). Each encoder
separately produces its feature maps from the input image.
The outputs of these encoders are concatenated in the latent
space, which is then utilized by a common decoder. This com-
mon decoder incorporates residual connections from the two
encoders, facilitating the fusion of intermediate representa-
tions of two images at different resolution scales, in line with
the U-Net architecture principle.

Both MERLIN and Fuse-MERLIN underwent training
using batches of 12 patches, each of size 256 × 256, for 30
epochs. The stride used was 32, the 9000×4300 pixels image
was decomposed into 34810 partially overlapping patches.

4.3. Results

The validation of the proposed method involves training the
network with the TSX image and the PHR optical image reg-
istered to the radar image.

Quantitative evaluation of the method would be valuable
to compare MERLIN with Fuse-MERLIN. As nine SAR im-
ages are available, an arithmetic temporal mean of the inten-
sity has been computed in order to decrease the speckle noise.
However, in this desertic region, the mean intensity appeared
to be still highly prone to speckle. Thus, it could not be used
as a proxy for image reflectivity. In the following, only quali-
tative results are shown.

The results underscore the significance of incorporating a
registered optical image for training. A key attribute of the
model is its capacity to better preserve radar information in
the reconstructed image, ensuring faithful representation of
the original radar data.

Firstly, the networks were run on the first radar acqui-
sition. Comparison between MERLIN and Fuse-MERLIN
are shown on three areas in Fig. 2. For the two first areas,
it is clearly visible that Fuse-MERLIN restores some details
pointed by red arrows that MERLIN did not succeed to re-
store (circles in the first area and a thin road in the second
area). One could wonder if Fuse-MERLIN adds some infor-
mation derived from the optical image but absent from the
SAR image. In the third area located in the harbour, there
is a ship pointed by a blue arrow in the optical image that is
missing in the radar image. In this case, the results of MER-
LIN and Fuse-MERLIN are equivalent, showing that the latter
network does not add any information specific to the optical
image only (no cross-modality contamination).

Fig. 2: Comparison of MERLIN and Fuse-MERLIN results.
First row: original noisy amplitude image. Second row: op-
tical image. Third row: square root of the reflectivity esti-
mated by MERLIN. Fourth row: square root of the reflec-
tivity estimated by Fuse-MERLIN. Each column corresponds
to a different area. Red arrows show improvements of Fuse-
MERLIN over MERLIN, while blue arrows indicate optical
local information that was not spread into the radar image.

Secondly, MERLIN and Fuse-MERLIN were tested over
the whole SAR temporal series. The square root of the tem-
poral mean of the reflectivities estimated by each method is
shown on Fig. 3 on another area. It clearly appears that for
the whole time series, MERLIN does not succeed to restore
the fine contrasts in the road details (subdivided in two parts)
that were correctly restored by Fuse-MERLIN. It can be ob-
served that the details of the road that were revealed by Fuse-
MERLIN appear on the square root of the temporal mean of
the intensities. These details are not artificial information
purely driven by the optical data as they are present in the
square root of the temporal mean of the radar intensities.

Tests on other acquisitions from different sensors con-
firmed a qualitative improvement, particularly on thin and/or
low-contrasted structures. Preliminary tests also demon-
strated the network’s robustness to a small optical-radar mis-
registration of 2 pixels.



Fig. 3: Top left : square root of the mean of nine noisy inten-
sities. Top right : optical image. Bottom left and bottom right
respectively : square root of the mean of nine reflectivities es-
timated by MERLIN and Fuse-MERLIN.

5. CONCLUSION

The integration of optical data within the Fuse-MERLIN
model has revealed notable improvements in the quality of
denoised SAR images compared to the original MERLIN
approach. The ability to leverage complementary informa-
tion from different modalities, particularly from registered
optical imagery, has demonstrated promising results in better
restoring finer details and enhancing the overall accuracy of
speckle reduction in SAR images.

One significant observation is the capacity of Fuse-
MERLIN to preserve radar-specific information while bene-
fiting from auxiliary data. This aspect emphasizes the model’s
ability to use multi-modal inputs effectively without introduc-
ing artifacts or bias derived solely from the auxiliary data. It
suggests a balanced integration that enhances rather than
distorts the inherent radar information.

The initial tests presented in this study showcase the
promising potential of the Fuse-MERLIN approach by en-
hancing results in specific areas compared to MERLIN.
However, it is imperative to subject this approach to a more
extensive evaluation using a diverse set of radar and optical
data or other modalities, characterized by varying resolutions
and acquired by different sensors. Additionally, the study
sites should be diversified to ensure the generalizability of the
proposed method.

Currently, no quantitative validation of the algorithm’s
performance has been conducted. A perspective for future
work involves the calculation of validation metrics to quan-

titatively compare the performance of different MERLIN
variants and alternative despeckling algorithms. It is ac-
knowledged that one challenge associated with unsupervised
algorithms is the absence of ground truth for comparison, as
highlighted in [7]. Therefore, obtaining an image for which
speckle has been perfectly filtered, especially through multi-
temporal filtering of a long series of acquisitions, would be
essential for a robust validation process.
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