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Abstract. The brain surface is composed of humps called gyri, sep-
arated by grooves called sulci. Although the main folds are common
to all individuals, their shape varies, making them unique to each in-
dividual. Cortical folding may contain biomarkers that have yet to be
deciphered. While conventional geometric approaches fail to fully char-
acterize the high inter-individual variability, recent efforts in large-scale
MRI data collection allow us to leverage the statistical power of deep
neural networks. Here, we introduce Champollion V0, a self-supervised
learning (SSL) algorithm to sort sulcal variability based on 21,070 sub-
jects from the UKBioBank dataset. We revisit from scratch an existing
model and optimize its ability to retrieve hand-labeled patterns defined
by the neuroscientific community. Under linear evaluation on the latent
space, Champollion V0 significantly improves the detection of three dif-
ferent kinds of folding patterns: the presence of a parallel sulcus (AUC
increases from 73% to 84%), the presence of specific interruptions (AUC
increases from 50% to 79%) and the detection of a specific folding shape
(R2 increases on each of the six main geometric features), respectively
in the cingulate, the orbital and the central region. These hand-labeled
patterns were found to be correlated to neurodevelopmental pathologies.
Champollion V0 could enable the automatic labeling of larger datasets
for future studies. The code can be found on Github.

Keywords: Brain · folding patterns · MRI · Self-supervised learning.

1 Introduction

The brain is folded, formed of bumps (gyri) separated by folds (sulci). The
major folds are common to all individuals. However, they vary in shape, making
each brain unique. Some sulcal patterns have been identified as biomarkers :
for example, the cingulate region can display either a single main sulcus, or

https://github.com/neurospin-projects/2023_jlaval_STSbabies/tree/Champollion_V0
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an additional paracingulate sulcus (PCS), parallel to the cingulate (Fig. 1a).
The asymmetry of this pattern between the two hemispheres has been linked
to control efficiency in preschoolers [4]. Similarly, different prevalences of the
orbitofrontal cortex (OFC) interruption types (Fig. 1b) have been reported in
schizophrenic and catatonic subjects compared to controls [16, 18].

The brain folds may contain many biologically relevant patterns that have yet
to be discovered. However, identifying and labeling such patterns is very time-
consuming, if not impossible for human experts. The recent acquisitions of large
MRI datasets have enabled the use of deep learning to sort the sulcal variability
and extract patterns automatically. Gaudin et al. developed a contrastive self-
supervised (SSL) model (named thereafter the Orig. model) to encode region-
specific sulcal variability [13]. They optimized it on the cingulate region, training
on 551 subjects from the Human Connectome Project (HCP), with the PCS
detection as downstream task. The model’s generalizability allowed the detection
of a right superior temporal sulcus pattern linked to extreme prematurity [17].
Likewise, using a supervised counterpart of the model, Chavas et al. identified
regions correlated to inhibitory control [6].

However, Gaudin et al. did not observe a significant improvement when train-
ing on 21,070 subjects from UkBioBank [2] instead of HCP, which calls for a
more thorough optimization on UkBioBank to leverage the dataset size. More-
over, their model has been optimized solely for PCS detection. Here, we spec-
ulate that this was due to augmentations whose semantic content was not rich
enough and to a downstream task that was too simple for optimization. There-
fore, we propose the following contributions: by adding as a downstream task
a new dataset hand-labeled for complex folding patterns (the orbitofrontal cor-
tex patterns) and by using UkBioBank for training, we develop a new specific
augmentation, TrimDepth, and revisit the augmentation pool, the loss, and the
backbone. We establish a new state-of-the-art model and prove its ability to de-
tect parallel sulci, their interruptions, and their shape. We name it Champollion
V0, after the man who deciphered hieroglyphics, since the present work aims to
decipher the hitherto unknown language of cortical folding.

2 Methods

Input data : Structural MR images of the brain are processed through the
BrainVisa Morphologist pipeline10 that produces a skeletonized negative cast of
the brain. It transforms the sulci into surfaces (3D objects of one-voxel width)
following the middle of the folding perpendicularly to the brain hull. These
cortical skeletons are affinely normalized in the Talairach space with a 2mm
voxel size while constrained to keep a one-voxel width. This preprocessing is
meant to emphasize the folding while reducing the bias caused by the original
resolution of the acquisition site. Then, a region of interest (ROI) is cropped,
using the deep_folding toolbox [7] 11, to focus on specific sulci (same tool as
10 https://brainvisa.info
11 github: neurospin/deep_folding

https://brainvisa.info
https://github.com/neurospin/deep_folding
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Fig. 1. The folding patterns studied in this paper. a) The two cingulate patterns (blue):
the “single” type, with only the cingulate sulcus, and the “double parallel” type, with
an additional paracingulate sulcus (PCS) (courtesy from [4]). b) Four orbitofrontal
cortex pattern types with individual labeled orbitofrontal sulci, from the HCP database.
Medial orbital sulcus (MOS) is labeled in red, lateral orbital sulcus (LOS) in blue,
intermediate orbital sulcus (IOS) in green, and transverse orbital sulcus (TOS) in
yellow. The Type I pattern has a discontinuous MOS and continuous LOS, the Type
II a continuous MOS and continuous LOS, the Type III a discontinuous MOS and
discontinuous LOS, and Type IV a continuous MOS and discontinuous LOS (courtesy
from [24]). c). Moving average of the Isomap first dimension on the central sulcus
reveals a continuous change from a single knob (purple) to a double knob (green)
pattern (courtesy from [20]).

Gaudin et al.). Since all datasets are normalized in the same space, a single
dataset with hand-labeled sulci is required to define the mask of the ROI. We
use a custom dataset (n=62) independent from the datasets used in this study
to define the crops of the cingulate, orbitofrontal, and central regions.
Datasets and patterns description : The three datasets used in this paper
are the following :

– UkBioBank [2] (n=21070) is a general population cohort used for SSL
training.

– ACCpatterns (n=341) is a dataset composed of subjects taken from [5, 19,
3, 9, 23], with a hand-labeled paracingulate sulcus (PCS, Fig. 1a), our first
studied pattern. It is used by Gaudin et al. to optimize the Orig. model, and
like Gaudin et al., we focus on the right hemisphere.

– Human Connectome Project [26] (HCP). A subset (n=577) was hand-
labeled in the orbitofrontal cortex (OFC) according to the four main inter-
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ruption patterns (Fig. 1b) [24]. This is our second investigated pattern. We
focus on the left hemisphere because the patterns are more uniformly dis-
tributed than in the right hemisphere [24]. Their distribution in our data is
the following : Type I 49%, Type II 28%, Type III 17%, Type IV 6%. These
subjects were also assigned six continuous shape descriptors for their central
sulcus using Isomap [22], on a shape similarity matrix [21]. The associated
regression tasks are not used during optimization, but only for final evalua-
tion. The first Isomap dimension of the central sulcus is shown in Fig. 1c.

For ACCpatterns and HCP, the data was split into 10 stratified folds according
to the label (PCS for ACCpatterns and OFC for HCP), sex, and acquisition
sites. Moreover, HCP siblings were systematically assigned to the same splits.
The SSL optimization of each task was conducted via 8-fold cross-validation on
8 out of the 10 stratified splits. The remaining 2 splits were retained for the
final evaluation. In the SSL setting, ACCpatterns and HCP were only used for
the downstream tasks. In the supervised baseline settings (described below), the
same 2 splits were utilized for testing, 7 for training and 1 for validation.
Self-supervised learning principle and losses : For each image in a batch,
two views are generated using random data augmentations, forming a positive
pair. SSL losses bring together the positive pairs in the latent space, ensuring in-
variance to the augmentations to build semantically expressive representations.
To avoid trivial solutions, contrastive methods such as SimCLR consider two
views originating from different images as a negative pair and push them away
in the latent space [8]. Conversely, BarlowTwins reduces redundancy by decorre-
lating the latent variables [27]. In this paper, we compare SimCLR, used in the
Orig. model, to BarlowTwins.

Although SimCLR is known to perform better with large batch sizes on
natural images [8], Gaudin et al. observed a plateau beyond a batch size of
16 [13]. We find the same results when training on a much larger database and
hypothesize that the number of latent classes being small, negative pairs in
large batches are likely to belong to the same class. Conversely, BarlowTwins is
considered a negative-sample-free method [25] and thus looks more suitable.
Hyperparameters : For SimCLR, we use a temperature τ = 0.1 and a batch
size of 16 as in the Orig. model. BarlowTwins is reportedly not sensitive to batch
size [27]. We set it to 32 as done in [25] with a similar dataset size. According
to [27], the regularization hyperparameter λ should be close to 1

d , d being the
latent space size. λ = 10−2(= 2.56

d with d = 256) is selected after search in the
range (5 ∗ 10−3 − 10−2). The other hyperparameters are taken from the Orig.
model: 250 epochs, a learning rate of 4 ∗ 10−4, and a dropout rate of 5% in the
backbone.
Domain-specific augmentations : The efficacy of SSL is contingent upon the
meticulous design of augmentations [15, 8, 1] that must maintain the semantics
while introducing sufficient variation within the input space. However, there is
currently no consensus on defining good augmentations for medical imaging due
to the lack of prior knowledge of the semantic content. Consequently, this topic
is often overlooked [11].
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Fig. 2. (Left) Two views examples using TrimDepth. (Right) The augmentation pool.
The augmentations marked by 1 have been first defined in [13]

.

In the context of cortical skeletons, typical natural image augmentations such
as flips or color jittering are not adapted, given that the data is normalized in
space and binary. In [13], Gaudin et al. craft domain-specific augmentations for
cortical skeletons. Inspired by the popular Cutout [10], they design BranchClip-
ping, which masks skeleton branches until a given percentage of the positive
voxels are removed. They also try Cutout and Cutin, which keeps the inside of
the mask instead of the outside, but they eventually select BranchClipping as
the main augmentation and combine it with a small rotation.

In this paper, we introduce a new augmentation, TrimDepth, which randomly
selects folds in the image to trim them of a given depth starting from the bottom.
This should help the algorithm focus on sulci shapes rather than depth, which
is more relevant. Indeed, sulci shapes are fixed throughout life once the brain is
folded but sulci become more shallow with aging. In [3], Cachia et al. define fold-
ing patterns as objects invariant with age. Therefore, this augmentation should
preserve the subjects’ sulcal signatures.

Furthermore, we replace the rotations with small translations (they are faster
to compute and don’t risk affecting the semantics of images that are not rota-
tion invariant). Differently from Gaudin et al., which look for the augmentation
that gives the best result, we hypothesize that using a diverse set of augmenta-
tions prevents from learning their individual biases (e.g. the PCS may be erased
by BranchClipping). We here redesign the augmentation framework so that one
augmentation among the following pool is picked for each view with equal prob-
ability (except for the translation, which is always applied): BranchClipping,
Cutout, Cutin, TrimDepth. By doing a gridsearch, we find that combining all
the augmentations yields the best results. Because all the augmentations re-
move voxels, we do not allow them to be mixed on the same view to prevent
the erasure of too many voxels. Additionally, with a probability of 0.2, we apply
solely the translation so that the algorithm can learn to represent full images.
For Cutout/Cutin, we select a mask covering 30% of the voxels and get the best
results when keeping the bottom lines of the masked folds. We hypothesize that
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maintaining a trace of the global topology helps to rely on the entire image,
as opposed to natural images where the semantics are primarily local (e.g. an
object on a background). For BranchClipping, we find that removing too many
branches is detrimental to the OFC classification, so we choose to remove a sin-
gle branch. But as it may remove a very small number of voxels in some cases,
we remove all the bottom voxels aswell. Finally, we select a 2mm depth to be re-
moved by TrimDepth. An illustration of TrimDepth and the new augmentation
pool is presented in Fig. 2.
Backbones : We start with the Orig. model’s six-layer convolutional network
and examine deeper architectures. First, we double the number of layers and
filters and increase the initial kernel size from 3 to 7 for 2mm resolution in-
puts and to 11 for 1.5mm resolution. Second, we try a deeper network, the 3D
ResNet18 [14] (implemented by [11]). To save computation time, the models us-
ing a larger backbone than the original one are trained for 70 epochs, which is
found to be enough for convergence.
Model Evaluation : We use the Area Under the Receiver Operating Charac-
teristic Curve (AUC) for classification and the coefficient of determination R2

for regression. In the multiclass case, we measure the AUCs in a One-vs-Rest
scheme and report their weighted average. Deep learning models are trained 5
times to compute a standard deviation. SSL performance is evaluated using a
linear model on the latent space (here a linear SVM), the standard way to assess
representation quality.
Baselines : The SSL is compared to several baselines of increasing complexity:

– PCA : a Principal Component Analysis (PCA) is fit on the UkBioBank
skeletons to reduce dimensionality to the latent space size, applied to the
datasets of interest, and followed by a linear SVM.

– Linear models (Logistic regression, ElasticNet) and rbf-SVM : we use
these supervised methods on the skeletons as they are classically used to
compare with deep learning models in brain MRIs [11]. The regularization
and other hyperparameters are detailed in Appendix Table 1.

– Supervised deep learning : we tried to either use the SSL augmentation
pool or remove the augmentations except for the translation. We obtained
best results without the augmentation pool for both classification tasks. We
tested the best convolutional network found for SSL and a ResNet18 and
found the 12-layer ConvNet backbone to be better for both tasks. We train
for 200 epochs and use early stopping to limit overfitting. To handle the OFC
class imbalance, we try weighting the loss, but don’t achieve better results.
The hyperparameter search is detailed in Appendix Table 2.

3 Experiments and Results

SSL optimization : The Orig. model is here completely redesigned, and the
steps are illustrated in Fig. 3. First, we find that increasing the dimension of
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Fig. 3. Summary of the SSL improvements for the PCS and OFC classification. Each
model is evaluated with linear SVM using 8-fold cross-validation on the train/validation
splits. Training time is reported for a Quadro RTX 5000.

the latent space (from 10 to 256) is critical for capturing the pattern informa-
tion in the OFC. Gaudin et al. selected a latent space size of 10 but did not
explore values beyond 30, as the parameter did not appear to benefit the PCS
detection. Then, the augmentations are replaced with the new pool (Fig. 2). We
observe a dramatic increase in performance, especially on the OFC patterns,
without additional computational cost. Next, we replace the SimCLR loss with
BarlowTwins. It leads to a slight improvement in both tasks and better stability
(a standard deviation of 2.5% for SimCLR against 1.0% for BarlowTwins on
the OFC patterns), although it does not appear as crucial as the choice of the
augmentations.

Fig. 4. Comparison between SSL and different baselines on the PCS detection and
OFC patterns classification. Each model is evaluated on the test set.

Furthermore, we investigate larger backbones and achieve a 5% AUC im-
provement on the OFC patterns (at a non-negligible computational cost). First,
we double the number of layers and filters of the original backbone. Subsequently,
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we observe two distinct performance regimes while training multiple models, with
an AUC for OFC detection of approximately 78% for some models and 65% for
others, with no obvious difference in the loss value. We hypothesize that the first
convolutional layer may be crucial for capturing interruptions before the deeper
layers with stride potentially erase them, which may cause instability. Drawing
inspiration from ResNet18, we increase the initial kernel size from 3 to 7, which
stabilizes the learning, with all models giving an AUC of ∼ 78%. We try to
further increase the backbone size using ResNet18 but we only achieve random
performance. We hypothesize that it may be oversized for our problem.

Finally, we attempt to increase the image resolution to 1.5mm. We find that
the initial kernel must be scaled to 11 for stability, but we do not observe any im-
provement, while training is significantly slowed down. At first, the results were
surprising, as we expected the interruptions to be clearer at higher resolution,
leading to a better classification of the patterns. However, a quick visualization
indicates that the interruptions at 1.5mm are still visible at 2mm.

Champollion V0 outperforms the Orig. model on the test set by 29 points
on OFC and 11 points on PCS (AUC, Fig. 4). Although our hyperparameter
search may not have been exhaustive, we could not beat SSL with a supervised
algorithm. Moreover, all supervised methods failed to classify the type IV OFC
pattern (not shown on graph), present in only ∼ 6% of the population. By
contrast, Champollion V0 performs well on all OFC types (type I: 77.2± 0.6%,
type II: 83.1 ± 0.7%, type III: 77.4 ± 0.3%, type IV: 81.4 ± 1.4%). Thus, SSL
pretraining appears to be particularly valuable for detecting rare patterns.
Application to Isomap regression : We compare Champollion V0 and the
Orig. model in their ability to encode sulcus shape features, which was not
assessed by the tasks used for optimization, by performing linear support vector
regressions between the latent space of the central sulcus region and the first
six dimensions of the central sulcus Isomap. The first dimension is illustrated in
Fig 1c. Champollion V0 encodes all these geometrical features better (Table 1).

Isomap Dim. 1 2 3 4 5 6
Orig. Model 48.2± 2.2 42.1± 3.2 43.7± 12.3 34.5± 1.5 0.1± 0.1 11.3± 2.1

Champollion V0 54.8± 1.2 58.5± 2.3 68.8± 1.0 56.6± 1.8 26.3± 1.5 38.7± 1.3

Table 1. Comparison of the regression coefficient R2 between the latent space and the
6 Isomap components, computed on the HCP test set.

4 Conclusion and perspectives

This paper describes Champollion V0, a region-specific encoder that provably
detects sulci, their shape, and how they are interrupted. The algorithm achieves
84% AUC on PCS detection and 79% on OFC pattern classification. Given the
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often ambiguous boundary between classes (e.g., a very short PCS), it is likely
that Champollion V0 has reached a plateau for these humanly defined patterns.

We underscore the design of domain-specific augmentations as a cornerstone
of our model, while it is largely overlooked in medical imaging [11]. We believe
always enriching the augmentation set is the path to further improvements. A
possible augmentation would be a lateral trimming of the sulci to highlight the
interruptions. Another improvement would be to combine the augmentations
differently as large augmentation combinatorics benefit SSL [15].

To further establish Champollion as a foundation model for cortical folding,
it will soon be trained on more subjects, 50,000 UkBioBank subjects. Second,
we can enforce the latent space to encode biologically relevant patterns using
supervision (e.g., pathological patterns) and y-aware loss with metadata [12]
(e.g., genetically driven patterns using UkBioBank genetic distances).

We have shown that Champollion V0 bridges the gap between automated
and manual labeling of folding patterns. It can now automatically detect known
folding patterns for large-scale studies. This has a strong implication regarding
the links between folding patterns and clinical endpoints. For example, the OFC
patterns have been linked to schizophrenia, but only on small databases [16].
Champollion V0 can now permit the study of such links between folding patterns
and schizophrenia on all available schizophrenia datasets.
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