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Statistical wave field theory

Roland Badeaua

aLTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, 91120, France

Abstract

In this paper, we introduce the foundations of the statistical wave field theory. This the-
ory establishes the statistical laws of waves propagating in a bounded volume, that are
mathematically implied by the boundary-value problem of the wave equation. These laws
are derived from the Sturm-Liouville theory and the mathematical theory of dynamical bil-
liards. They hold after many reflections on the boundary surface, and at high frequency.
This is the first statistical theory of reverberation which provides the closed-form expression
of the power distribution and the correlations of the wave field jointly over time, frequency
and space inside the bounded volume, in terms of the geometry and the specific admittance
of its boundary surface. The statistical wave field theory may find applications in various
science fields, including room acoustics, electromagnetic theory, and nuclear physics.
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1. Introduction

The statistical modeling of wave phenomena has raised a constant interest over the past
century, especially in acoustics and optics.

In the field of room acoustics, it is well known that when waves propagate in a bounded
three-dimensional (3D) space, after many reflections on the room boundaries, and at high
frequency, their collective behavior becomes stochastic, a physical phenomenon that is called
late reverberation. During the 20th century, several researchers aimed to characterize math-
ematically various statistical properties of reverberation, e.g. over time (Moorer, 1979),
frequency (Schroeder, 1962), time-frequency (Polack, 1988) and space (Cook et al., 1955).
In particular, the reverberation time, which is defined as the time it takes for the sound
pressure level to reduce by 60 dB, received special attention, first with the empirical law
proposed by Wallace Clement Sabine at the end of the 19th century from early experiments,
which holds in a diffuse acoustic field and highly reverberant rooms (Joyce, 1975), then with
the modified formula established by Carl F. Eyring (1930), which holds when the absorption
at the boundary is larger, and later with the reverberation theory of Jean-Dominique Polack
(1992), based on the mathematical theory of dynamical billiards.

In the field of underwater acoustics, many works were intended to emulate some physi-
cal properties of the surfaces and of the medium, including volume heterogeneities, through
the introduction of an empirical probability distribution of random "scatterers" in a virtu-
ally infinite medium (Middleton, 1967a,b; Ol’shevskii, 1978; Middleton, 1987; Ratilal and
Makris, 2005; Abraham, 2019). In particular, a general statistical theory of reverberation
was presented in (Middleton, 1967a,b), with many key elements associated with the physical
properties of the environment, as well as the parameters of the sensor system. Propagation
and scattering in waveguides with randomly rough boundaries and random volume hetero-
geneities have also been addressed (Colosi, 2016; Ishimaru, 1978a,b). In particular, Ishimaru
(1978a,b) also mentioned possible applications to atmospheric and biological media.

In the field of optics and optoelectronics, a broad coverage of the topic of fluctuations
associated with random scattered waves can be found (Jakeman and Ridley, 2006; Good-
man, 2000). Finally, irregular boundaries were explicitly modeled in (Ogilvy, 1991), which
describes various classes of random surfaces and associated scattered fields, and cites many
possible applications including medical ultrasonics, radar imaging, sonar detection, solid-
state physics, optics, astronomy, and ultrasonic non-destructive testing.

Contrary to most of the previously-mentioned works from the underwater acoustics and
optics literature dedicated to the statistical modeling of random scattered waves, the statis-
tical wave field theory introduced in this paper is not another heuristic model that would
be intended to emulate some physical properties of the medium or the boundary surface,
through the introduction of random scatterers.

Instead, this is the very first theory that establishes mathematically the statistical laws of
the solutions to the wave equation in a bounded domain. These statistical laws are derived
from the Sturm-Liouville theory (Pearson, 2001) and the mathematical theory of dynamical
billiards (Polack, 1992). They are actually deterministic and chaotic, but the statistical wave
field theory translates them into the more accessible language of the theory of probability by
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modeling the source position as random. In addition, contrary to the previously-mentioned
works, this theory explicitly and accurately accounts for the shape of the boundary, as
complex as it may be, as well as the specific admittance of its surface.

Of course, the basic version of the theory presented in this paper achieves this diffi-
cult mathematical analysis in a much simpler setting than the one generally considered in
underwater acoustics and in some other fields:

• The wave equation has to hold exactly in the whole domain. This means that the
medium is lossless, homogeneous and at rest (Kuttruff, 2014, Chapter 1). So wave
phenomena due to changes or fluctuations in the medium, such as refraction and dis-
persion, are not considered.

• The boundary surface has to be closed and bounded. In particular, no opening is al-
lowed. Moreover, the shape of the boundary has to meet the mathematical conditions
of a mixing dynamical billiard (Polack, 1992), a notion that is related to diffusion. Con-
cretely, this means that most geometric shapes are allowed, especially those including
irregular (rough) surfaces producing wave scattering. Indeed, even though there is no
simple mathematical characterization of mixing billiards, there exist general results
that show basically that the more the boundary is irregular, the more it is mixing,
and on the contrary, the more it is smooth, the less it is mixing. In particular, the
simplest possible geometric shape, namely the sphere, is excluded, because it is highly
non-mixing. Nevertheless, there exist very smooth and simple geometric shapes such
as the Bunimovich stadium (Bunimovich, 1979) which are mixing, though the mixing
rate is rather slow in this case.

• The physical source is assumed punctual. Moreover, the receiver’s response and direc-
tivity are not modeled; instead the statistical wave field theory describes the statistics
of the wave field itself, as a function of space, time and frequency.

• All parameters of the problem, including the random source position and the bound-
aries of the domain, are assumed constant over time.

If we consider any physical problem where these assumptions hold, then no matter the
exact shape of the boundary, no matter the regularity or irregularity of the surfaces, no
matter the exact physical properties of the materials at the boundary: the solutions to the
wave equation have to follow the laws of the statistical wave field theory, because these laws
are mathematically implied by the boundary-value problem of the wave equation.

In room acoustics, these assumptions generally hold, so the statistical wave field theory is
able to investigate the statistical properties of the room impulse response in a mixing room.

Let us now introduce the mathematical grounds of the statistical wave field theory. It is
well known that the solutions to the wave equation in a bounded domain are characterized by
the Helmholtz equation which, along with its boundary conditions, forms a particular Sturm-
Liouville problem (Pearson, 2001). The Sturm-Liouville theory shows that this problem
admits a discrete set of solutions, called normal modes (Kuttruff, 2014, Chapter 3). In several
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dimensions of space, the density of discrete modes increases with the frequency, in a way
that has been investigated mathematically for the first time by Hermann Weyl (1911). Since
then, a rich literature has been devoted to the study of asymptotic expansions of the modal
density as a function of frequency f when f → +∞, in various space dimensions and various
boundary conditions (Arendt et al., 2009). The case of a 3D space and of Robin’s boundary
condition, which is of special interest to us, was first addressed by the physicists Balian and
Bloch (1970). Indeed, there is a strong connection between their asymptotic expansion of the
modal density and the statistical wave field theory, which models the wave field as a random
process. To put it simply, if there is no energy absorption at the boundary surface, then the
wave field is asymptotically wide sense stationary (WSS): all normal modes are uncorrelated
and carry the same quantity of power, so that the modal density as a function of frequency
is proportional to the power spectrum of the wave field. If on the contrary there is energy
absorption, then the wave field is non-stationary, and the statistical wave field theory proves
that its statistics are actually related to the analytic continuation of the modal density to
the domain of complex frequencies. In this paper, we will investigate the first and second
order statistics of the wave field which result from the asymptotic expansion up to order 1 in
frequency. Indeed, up to this order, wave propagation can be approximated by considering
the trajectory of rays undergoing successive specular reflections on the boundary surface,
which explains the relationship with the mathematical theory of dynamical billiards. So the
statistical wave field theory is based on a high frequency approximation, in exactly the same
way as geometric acoustics and optics. Consequently, wave-related phenomena such as edge
diffraction are not taken into account in this paper (but they will be in future publications,
through the second-order terms of the asymptotic expansion).

To sum up, the predictions of the statistical wave field theory hold in a particular region
of the time-frequency plane that we depicted in a previous work (Badeau, 2019, Figure 1): in
the frequency domain, at high frequency, so that the conditions of geometric acoustics and
optics are met, and in the time domain, after the mixing time as defined by Polack (1992), so
that the mixing conditions of a dynamical billiard are met. In this particular time-frequency
region, both the reflections over time and the normal modes over frequency are dense enough
to be represented with a smooth density function.

In room acoustics, the statistical wave field theory is the very first mathematical ap-
proach of reverberation that is able to express in closed-form the asymptotic statistics of
the wave field as an explicit function of the boundary’s shape, as complex as it may be,
and of the specific admittance of the boundary surfaces, which characterizes completely the
physical properties of these surfaces regarding wave reflection. In particular, it permits us
to retrieve the previously-mentioned statistical properties of reverberation, including (Cook
et al., 1955; Schroeder, 1962; Moorer, 1979; Polack, 1988). It is also the very first approach
of reverberation which is able to express in closed-form, not only the reverberation time as a
function of frequency, as in Sabine’s and Eyring’s formulas (Eyring, 1930), but also the exact
asymptotic distribution of the sound power as a function of space and frequency inside the
room’s volume. Moreover, it can do it not only in mixing rooms, where the reverberation
time is uniform and isotropic, but also in certain non-mixing rooms, where the reverberation
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time is a function of both the angle and the frequency (the latter case will be addressed in
a future publication).

In addition, due to its connection with (Balian and Bloch, 1970), we believe that this
theory may also find applications in very different domains such as nuclear physics, e.g.
to model the self-consistent field of a heavy nucleus, and electromagnetic theory, e.g. to
model electromagnetic vector waves in a cavity with perfectly conducting boundary surfaces
(sample applications of electromagnetic reverberation chambers are described in (Besnier
and Démoulin, 2011)).

This paper is structured as follows: in Section 2, we introduce some acronyms and mathe-
matical notations that will be used in the rest of the paper. Then in Section 3 we summarize a
few fundamental notions regarding wave propagation, that we need to develop the statistical
wave field theory, and in Section 3.6, we review a few statistical properties of reverberation
that have been known in room acoustics and that the theory will permit us to retrieve.
In Section 4, we briefly present the Wigner time-frequency distribution that we will use to
characterize the second-order properties of non-stationary processes, and we list the three
mathematical assumptions on which the statistical wave field theory relies. Then in Sec-
tion 5 we introduce the special theory dedicated to Neumann’s boundary condition, and in
Section 6 we introduce the general theory dedicated to Robin’s boundary condition. The
main results of the statistical wave field theory are summarized in Sections 5.4 and 6.6. In
Section 7, we discuss some current limitations of the theory, and we show how they could be
overcome in future work. Finally, in Section 8 we summarize the main contributions of this
paper, and propose a few extensions of the theory.

2. Acronyms and mathematical notations

Acronyms:

ACF auto-covariance function

PCF pseudo-covariance function

RIR room impulse response

WSS wide sense stationary

Mathematical notations:

• ≜: equal by definition to

• N: set of whole numbers

• R, C: sets of real and complex numbers, respectively

• ı =
√
−1: imaginary unit

• R+: set of nonnegative real numbers
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• x (bold font), z (regular): vector and scalar, respectively

• [a, b]: closed interval, including a, b ∈ R, or closed line segment in the complex plane,
bounded by a, b ∈ C

• ]a, b[: open interval, excluding a and b ∈ R

• A\B: relative complement (set difference) of set B in set A

• A∗ = A\{0}: set A minus 0

• A ⊆ B: A is a subset of B, possibly equal to B

• V̊ : interior of a subset V of R3

• V : closure of a subset V of R3

• |V |: Lebesgue measure (volume) of a subset V of R3

• λ = 1
|V | : mean density of sources over space

• ∂V = V \V̊ : boundary of a subset V of R3

• n(x) where x ∈ ∂V : outward normal to the boundary surface of subset V

• S(A): surface area of a 2-dimensional sub-manifold A of R3

• P T : 3× 2 orthonormal matrix whose range space is parallel to plane T ⊂ R3

• ∥.∥2: Euclidean/Hermitian norm of a vector or a function

• z: complex conjugate of z ∈ C

• Re(z) (resp. Im(z)): real (resp. imaginary) part of a complex number z ∈ C

• x⊤: transpose of vector x

• xH : conjugate transpose of vector x

• A⊥: orthogonal complement of set A

• S(0, k): sphere centered at the origin and of radius k: S(0, k) = {k ∈ R3; ∥k∥2 = k}

• B(s, ε): open ball centered at s ∈ R3 and of radius ε: B(s, ε) = {x ∈ R3; ∥x−s∥2 < ε}

• L2(V ) where V is a Borel subset of R3: Hilbert space of measurable functions f
supported in V , such that ∥f∥2 =

√∫
V
|f(x)|2dx < +∞

• S(Rn): Schwartz space of smooth functions on Rn, whose derivatives of all orders are
rapidly decreasing
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• ⟨T |ψ⟩: value of the tempered distribution T on the test function ψ ∈ S(Rn)

• δ: Dirac delta function

• δn1,n2 : Kronecker delta: δn1,n2 = 1 if n1 = n2, δn1,n2 = 0 otherwise

• H(t): Heaviside function: H(t) = 1 ∀t > 0 and H(t) = 0 ∀t < 0

• sign(t): sign function: sign(t) = 1 ∀t > 0 and sign(t) = −1 ∀t < 0

• sinc(x) = sin(x)
x

: cardinal sine function

• ∆ϕ(x): Laplacian of function ϕ(x)

• Convolution of two functions ψ1 and ψ2 : R→ C:

(ψ1 ∗ ψ2)(t) =
∫
τ∈R ψ1(τ)ψ2(t− τ)dτ

• 1D direct and inverse Fourier transforms of a function ψ : R→ C:

ψ̂(f) =
∫
t∈R ψ(t)e

−2ıπftdt and ψ(t) =
∫
f∈R ψ̂(f)e

+2ıπftdf (1)

• 3D direct and inverse Fourier transform of a function ψ : R3 → C:

ψ̂(k) =
∫
x∈R3 ψ(x)e

−2ıπk⊤xdx and ψ(x) =
∫
k∈R3 ψ̂(k)e

+2ıπk⊤xdk (2)

• E[X]: expected value of a random variable X

• Covariance of two complex random variables X and Y :

cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]

3. Fundamentals of waves revisited

In this section, we summarize a few fundamental notions regarding wave propagation, that
we need to develop the statistical wave field theory in the remaining sections of this paper.
Most of these notions are well-known and are described for instance in (Morse and Ingard,
1968). However, a few concepts presented here are not standard, such as the B-function
that will be introduced in Section 3.2, and the source response that we will introduce now,
as well as its closed-form expressions given in Sections 3.3.2 and 3.4.2. Moreover, we will
also introduce here a few non-standard notations.

In a simply connected open domain V ⊆ R3, the homogeneous wave equation states that

∆p(x, t)− 1

c2
∂2p(x, t)

∂t2
= 0 (3)
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where p(x, t) is the wave amplitude at position x ∈ V and time t ∈ R, ∆ is the Laplacian, and
c is the propagation speed of the wave. This differential equation governs the propagation
of sound waves in any lossless fluid (so it ignores the possible attenuation of sound in the
medium) and is therefore of central importance for almost all acoustical phenomena. It
holds not only for the sound pressure p, but also for the density and temperature variations.
Moreover, it relies on the assumption that the medium is homogeneous and at rest, which
guarantees that the speed of sound c is constant with respect to space and time (Kuttruff,
2014, Chapter 1). In nuclear physics, p might be the single particle wave function in the
independent particle approximation. Then (3) with a suitable boundary condition is an
idealization of the actual self-consistent field of a heavy nucleus (Balian and Bloch, 1970).
Finally, in electromagnetic theory, equation (3) governs electromagnetic vector waves in a
cavity with perfectly conducting boundary surfaces (Balian and Bloch, 1971).

By applying the one-dimensional (1D) Fourier transform (1) w.r.t. time to equation (3),
we get the Helmholtz equation1:

∆ϕ(x) + 4π2k2ϕ(x) = 0 (4)

where the scalar k = f
c

is the wave number 2 and f denotes the frequency.
Given a punctual source position x0 ∈ V and a space position x ∈ V , we define the source

response p as the unique causal solution to the following inhomogeneous wave equation:
∀t ∈ R,

∆p(x,x0, t)−
1

c2
∂2p(x,x0, t)

∂t2
= −δ(x− x0)δ̇(t). (5)

Note that the right member of equation (5) involves the derivative of a Dirac delta func-
tion over time, in order to account for the fact that the response of a physical source is always
zero at the zero frequency (Morse and Ingard, 1968, Chapter 7). Replacing the derivative
δ̇(t) with δ(t) in (5) would lead to the usual definition of the room impulse response (RIR)
h(x,x0, t) in room acoustics, which is the causal Green’s function of the wave equation (3).
The RIR h is the unique causal primitive of the source response p defined in (5).

In the free field (i.e. when V = R3), the source response p is expressed as

p(x,x0, t) =
δ̇
(
t− ∥x−x0∥2

c

)
4π∥x− x0∥2

. (6)

3.1. Green’s function
For any simply connected domain V ⊆ R3, given a punctual source position x0 ∈ V and

a space position x ∈ V , a Green’s function G of the Helmholtz equation (4) is a particular
solution to the following inhomogeneous Helmholtz equation:

∆G(x,x0, k) + 4π2k2G(x,x0, k) = −δ(x− x0). (7)

1In (4), ϕ denotes the 1D Fourier transform of p w.r.t. time t, so it is implicitly a function of frequency f .
2Note the unusual presence of the term 4π2 in (4), which induces a normalization of the wave number

different from what is usually found in the literature. This convention is related to our definition of the
Fourier transform in (1) as a function of the frequency, instead of the pulsation or angular frequency.
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The inverse 1D Fourier transform (1) of G w.r.t. frequency f = ck,

g(x,x0, t) =

∫
f∈R

G(x,x0,
f
c
) e2ıπftdf, (8)

is such that its time derivative ġ(x,x0, t) is a solution to (5). However, depending on the
choice of a particular solution G to equation (7), the function ġ(x,x0, t) may not be causal,
so in general ġ(x,x0, t) differs from the causal source response p(x,x0, t) by a function which
is a solution to the homogeneous wave equation (3).

In the free field (V = R3), any Green’s function G solution to (7) can be written as the
translation over space of some Green’s function G0 for a source located at x0 = 0:

G(x,x0, k) = G0(x− x0, k). (9)

In this paper, we will consider the real Green’s function

G0(x, k) =
cos(2πk∥x∥2)

4π∥x∥2
, (10)

which is such that function ġ is an odd function of time. In the free field, the relationship
between ġ and the source response p in (6) can be expressed as

p(x,x0, t) = 2H(t) ġ(x,x0, t) (11)

where H(t) denotes the Heaviside function, which is such that H(t) = 1 ∀t > 0 and H(t) = 0
∀t < 0. The 3D Fourier transform (2) of G0(x, k) w.r.t. space is

Ĝ0(k, k) =
1

4π2(∥k∥22 − k2)
. (12)

Note that the real Green’s function G0 in (10) differs from the complex one that is
usually found in the literature, Gc(x, k) =

e−2ıπk∥x∥2
4π∥x∥2 , which satisfies the Sommerfeld radiation

condition3 (Schot, 1992). Actually, our choice of using the real Green’s function G0 in (10)
instead of Gc is due to the mathematical requirements of the statistical wave field theory.
Indeed, in places our calculations of second order statistics will involve the square of function
Ĝ0(k, k) in (12). The problem with the complex Green’s function Gc is that its 3D Fourier
transform over space Ĝc(k, k) is not a function but rather a Radon measure, so that its
square is not defined mathematically, whereas the square of function Ĝ0(k, k) in (12) is
mathematically well-defined4.

Fortunately, the fact that we consider a free-field Green’s function G0 that does not
satisfy the Sommerfeld radiation condition will not prevent us from calculating the correct

3This condition enforces the causality of the inverse 1D-Fourier transform (1) of f 7→ Gc(x,x0,
f
c ) in the

time domain.
4Actually, G0 is the only free-field Green’s function whose squared 3D Fourier transform is mathematically

well-defined.
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expression of the causal source response. Similarly, in the presence of boundaries, and in
both cases of Neumann and Robin’s conditions, we will also consider Green’s functions G
such that the inverse 1D-Fourier transform (1) of f 7→ G(x,x0,

f
c
) is not causal. Again, this

will not prevent us from calculating the correct expression of the causal source response.

3.2. B-function
Let us now introduce the main calculation tool that we will use in this paper: the B-

function. In the case of a domain V ⊂ R3 with boundaries, any Green’s function G(x,x0, k)
can generally be analytically continued on a mathematical vicinity D of V , which depends
on the geometry and the specific admittance of the boundary surface. In some cases, this
extension holds in the full space D = R3: for instance, it is well known that the Green’s
function of the cuboid in the case of Neumann’s boundary condition can be described with
a periodic discrete set of image sources (Allen and Berkley, 1979), and this parametrization
extends analytically to R3. The extension to R3 also holds in the case of a half-space V with
a plane boundary, both for the Neumann’s boundary condition (Section 3.3.1) and for the
Robin’s boundary condition when the specific admittance β̂ ∈ C has a negative imaginary
part (Section 3.4.1).

We then define the B-function on D ⊆ R3 as:

B(y,x0, k) = −
(
∆G(y,x0, k) + 4π2k2G(y,x0, k)

)
. (13)

By definition of the Green’s function G in (7), the restriction of the B-function to V is
δ(y−x0). Note that, even though there is possibly an infinity of Green’s functions G, all of
them lead to the same unique B-function5.

Reciprocally, when D = R3, a particular Green’s function G is obtained as:

G(x,x0, k) =

∫
y∈R3

G0(x− y, k)B(y,x0, k)dy (14)

where G0 is the real free-field Green’s function defined in (10). Equation (14) permits us
to interpret the B-function as a spatial distribution of image sources in the free field, which
collectively generate inside V the same response as that of the single original source within
the bounded domain V .

Note that both in the free field and in the presence of a boundary with Neumann’s
boundary condition, the B-function is actually independent of k. In this case, we will just
denote it B(y,x0).

3.3. Neumann’s boundary condition
We consider a simply connected domain V ⊈ R3, whose boundary ∂V is a Lipschitz

continuous two-dimensional manifold (i.e. ∂V is locally the graph of a Lipschitz function).

5Indeed, given two Green’s functions G1 and G2 and their image source distributions B1 and B2, G1−G2

is an analytic function which is a solution to the homogeneous Helmholtz equation on V , so it is also a
solution to the homogeneous Helmholtz equation on D, therefore B1 −B2 is zero on D.
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Then Neumann’s boundary condition of the wave equation (3) states that

∀t ∈ R, ∀x ∈ ∂V, ∂p(x, t)
∂n(x)

= 0, (15)

where ∂V denotes the boundary surface of V , and ∂
∂n(x)

denotes partial differentiation in
the direction of the outward normal to this surface at x. With the Helmholtz equation (4),
condition (15) becomes

∀x ∈ ∂V, ∂ϕ(x)
∂n(x)

= 0. (16)

In room acoustics, equations (15) and (16) model the reflection of sound waves by hard
(or rigid) surfaces, which reflect the wave without absorbing any energy (Kuttruff, 2014,
Chapter 3).

3.3.1. Plane boundary
Suppose that V is a half-space delimited by a plane boundary ∂V , so that the outward

normal vector n(x) = n is uniform on the boundary. Without loss of generality, we assume
that ∂V contains the origin of space, and we denote S∂V = I − 2nn⊤ the 3 × 3 matrix of
the reflection symmetry w.r.t. plane ∂V . Then given a punctual source position x0 ∈ V , a
Green’s function of the Helmholtz equation (4) is expressed as

G(x,x0, k) = G0(x− x0, k) +G0(x− S∂V x0, k) (17)

where G0 was defined in (10). Indeed, function G in (17) is a solution to the inhomogeneous
Helmholtz equation (7) in V and satisfies the boundary condition (16) on ∂V .

Note that (17) is formally identical to (14), where the B-function is a Radon measure
on D = R3 that describes the spatial distribution of two sources, one at the original source
position x0 ∈ V , and one at a so-called image source position S∂V x0, which lies outside the
domain V :

B (y,x0) = δ(y − x0) + δ(y − S∂V x0). (18)

3.3.2. Simply connected bounded domain
If V is a bounded domain, then the Sturm-Liouville theory (Pearson, 2001) shows that

the set of eigenvalues kn and unit eigenfunctions ϕn(x), also called normal modes, that are
solutions to (4) and (16) is discrete: it is indexed by n ∈ N. Moreover, both kn and ϕn(x)
are real. So without loss of generality, the eigenvalues kn can be assumed nonnegative and
sorted by non-decreasing order. Finally, the set {ϕn(x)}n∈N is such that

∀x,y ∈ V,
∑
n∈N

ϕn(x)ϕn(y) = δ(x− y). (19)

This set forms a Hilbert basis of the real Hilbert space L2(V ) of square-integrable functions
on V . In addition, note that the constant function ϕ0(x) =

1√
|V |

is always an eigenfunction

of (4) and (16), of eigenvalue k0 = 0.
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Then given a punctual source position x0 ∈ V , we consider the following Green’s function
of the Helmholtz equation (4):

G(x,x0, k) =
∑
n∈N

ϕn(x0)ϕn(x)

4π2(k2n − k2)
. (20)

Indeed, equation (19) shows that function G in (20) is a solution to the inhomogeneous
Helmholtz equation (7) in V , and it satisfies the boundary condition (16) on ∂V because all
functions ϕn(x) satisfy this condition.

Then, by substituting equation (20) into (8), we get ∀x ∈ V , ∀t ∈ R,

ġ(x,x0, t) = −c2
∑
n∈N

∫
f∈R

ϕn(x0)ϕn(x)

4π2(f 2 − c2k2n)
2ıπf e2ıπftdf. (21)

We note that ∀n ∈ N∗, the integrand in the integral over f in (21) has two real poles, one at
f = ckn and one at f = −ckn. In addition, for n = 0, k0 = 0 and the integrand has a simple
pole at f = 0. By applying the residue theorem (Ahlfors, 1979) to (21), we get a simplified
expression of ġ(x,x0, t):

ġ(x,x0, t) =
c2

2
sign(t)

∑
n∈N

ϕn(x0)ϕn(x) cos(2πcknt).

Then, by noticing that function ġ(x,x0, t) is again an odd function of time, the expression
of the source response p is still given by (11). We thus get ∀x ∈ V , ∀t ∈ R,

p(x,x0, t) = H(t) q(x,x0, t), (22)

where q(x,x0, t) is defined as

q(x,x0, t) = c2
∑
n∈N

ϕn(x0)ϕn(x) cos(2πc knt). (23)

It can be readily verified that function p in (22) with q as in (23) is the unique causal
solution to the inhomogeneous wave equation (5) in V which satisfies the boundary condi-
tion (15) on ∂V .

In other respects, every eigenfunction ϕn(.) is holomorphic in V , so it can generally be
continued as an analytic function on a mathematical vicinity D of V , which is a solution
to the Helmholtz equation (4) on D. By substituting (20) into (13), we get the closed-form
expression of the B-function on D:

B(y,x0) =
∑
n∈N

ϕn(x0)ϕn(y). (24)

We note that equation (19) confirms that the restriction of the B-function to V is δ(y−x0),
as already mentioned in Section 3.2.
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3.4. Robin’s boundary condition
We still consider a simply connected domain V ⊈ R3, whose boundary ∂V is a Lipschitz

continuous two-dimensional manifold. Now, the boundary ∂V is characterized by the specific
admittance β̂(x, k) ∈ C, which is an essentially bounded function of the position x ∈ ∂V .
Let β(x, τ) denote the time-domain specific conductance, which is the inverse 1D Fourier
transform (1) of f 7→ β̂(x, f

c
). Then the boundary condition of the wave equation (3)

becomes
∀x ∈ ∂V, ∂p(x, t)

∂n(x)
+ β(x, .)

t∗ 1
c

∂p(x, t)

∂t
= 0, (25)

where
t∗ denotes the convolution product over time t.

With the Helmholtz equation (4), condition (25) becomes:

∀x ∈ ∂V, ∂φ(x, k)
∂n(x)

+ 2ıπkβ̂(x, k)φ(x, k) = 0. (26)

Note that the boundary condition now explicitly depends on the wave number k, so the
solutions to the homogeneous Helmholtz equation also depend on k, thus (4) has to be
rewritten

∆φ(x, k) + 4π2κ(k)2φ(x, k) = 0 (27)

where the wave number is now denoted κ(k) ∈ C.
In room acoustics, equations (25) and (26) permit us to model the reflection of sound

waves by non-rigid surfaces, which absorb a part of the energy of the incident wave (Kuttruff,
2014, Chapter 3). In this case the real part of the specific admittance β̂(x, k) is positive,
and the specific conductance β(x, τ) is real and causal. Moreover, it is assumed that the
room has locally reacting boundary surfaces, which means that β̂(x, k) depends only on the
position x over the boundary surface and on the wave number k, but not on the angle of
sound incidence (Kuttruff, 2014, Chapter 2), so β̂ does not depend on the orientation of
the wave vector k, but only on its norm. The relationship between the specific admittance
and the physical properties of various realistic materials, as well as experimental methods
for measuring β̂, are described in (Kuttruff, 2014, Chapters 2 and 8).

Under these assumptions, the absorption coefficient of the material at the boundary
surface, i.e. the ratio of energy of the incoming wave which is absorbed by the material, is
related to the specific admittance as follows, cf. (Morse and Ingard, 1968, Page 580) and
(Kuttruff, 2014, Chapter 2):

a(s, f, u) = 1−
∣∣∣∣∣u− β̂(s, fc )u+ β̂(s, f

c
)

∣∣∣∣∣
2

. (28)

In (28), a(s, f, u) denotes the absorption coefficient for an incident plane wave of frequency f ,
whose direction forms an angle θ ∈ [0, π

2
] with the outward normal n(s) to the boundary at

point s, such that u = cos(θ) ≥ 0. In particular, u = 1 corresponds to normal incidence, i.e.
θ = 0. Note that the inequality Re(β̂(x, k)) ≥ 0 guarantees that 0 ≤ a(s, f, u) ≤ 1.
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3.4.1. Plane boundary
As in Section 3.3.1, suppose that V is a half-space delimited by a plane boundary ∂V , so

that the outward normal vector n(x) = n is uniform on the boundary. Again, without loss of
generality, we assume that ∂V contains the origin of space, and we denote S∂V = I− 2nn⊤

the 3 × 3 matrix of the reflection symmetry w.r.t. plane ∂V , and P ∂V any 3 × 2 matrix
whose columns form an orthonormal basis of ∂V .

Let us now assume that the specific admittance β̂(x, k) = β̂(k) is constant on the bound-
ary plane, and that Im(β̂(k)) < 0. Then given a punctual source position x0 ∈ V , a Green’s
function G of the Helmholtz equation (4) can be expressed as in (14), where G0 was defined
in (10), and the B-function defined on D = R3 now depends on k:

B(y,x0, k) = δ(y − x0) + δ(y − S∂V x0)

−4ıπkβ̂(k)H(n⊤(y + x0))e
−2ıπkβ̂(k)n⊤(y+x0)δ(P⊤

∂V (y − x0)).
(29)

Indeed, the restriction of function B(y,x0, k) in (29) to y ∈ V is δ(y − x0), which shows
that G is a solution to the inhomogeneous Helmholtz equation (7). Moreover, the 3D Fourier
transform (2) of B(y,x0, k) is6

B̂(κ,x0, k) = e−2ıπκ⊤x0 +
n⊤κ− kβ̂(k)
n⊤κ+ kβ̂(k)

e−2ıπκ⊤S∂V x0 , (30)

so the Green’s function G(x,x0, k) can be written as the inverse 3D Fourier transform (2)
of Ĝ(κ,x0, k):

G(x,x0, k) =
∫
κ∈R3

e2ıπκ
⊤(x−x0) + n⊤κ−kβ̂(k)

n⊤κ+kβ̂(k)
e2ıπκ

⊤(x−S∂V x0)

4π2(∥κ∥22 − k2)
dκ

=
∫
κ∈R3

e2ıπκ
⊤(x−x0) + n⊤κ+kβ̂(k)

n⊤κ−kβ̂(k)
e2ıπκ

⊤(S∂V x−x0)

4π2(∥κ∥22 − k2)
dκ

(31)

where we have substituted the 3D Fourier transform of (14), as well as (12) and (30), in the
first equality, and we have applied the change of variable κ 7→ S∂Vκ to the second term in
the second equality. Then it can be easily verified from (31) that G satisfies the boundary
condition (26) on ∂V .

The B-function in (29) is still a Radon measure, but this time it contains not only two
discrete atoms (the original source at x0 ∈ V and its image at S∂V x0), but also a continuum
of image sources located outside V .

When Im(β̂(k)) > 0, the Green’s function can still be expressed in analytic form: a
parametrization of G, which holds ∀ Im(β̂(k)) ∈ R, was presented in (Ochmann, 2004),
where image sources are distributed in a complex space domain. However, G can no longer
be analytically continued on R3, so the B-function is no longer defined on R3, and G can no
longer be expressed as in (14).

6In the case of Robin’s boundary condition, the wave vector will be denoted κ instead of k which is used
in the Neumann case, in order to avoid any confusion in Section 6, where the two notations will coexist.
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3.4.2. Simply connected bounded domain
If V is a bounded domain, then the set of eigenvalues κn(k) and eigenfunctions φn(x, k)

that are solutions to (26) and (27) is still discrete and indexed by n ∈ N. Moreover, at k = 0
the boundary condition (26) is the same as (16), so we get κn(0) = kn and φn(x, 0) = ϕn(x).
When k ̸= 0, β̂(x, k) is complex and Re(β̂(x, k)) > 0. Then both κn(k) and φn(x, k) are
complex and Im(κn(k)) > 0.

In the complex case, the set {φn(x, k)}n∈N is not orthogonal w.r.t. the Hermitian inner
product, so it does not form a Hilbert basis of the complex Hilbert space L2(V ). However,
a weaker property has been recently proved in (Bögli et al., 2022): this set always forms
an Abel basis7 of L2(V ). In addition, similarly to equation (19), if the Robin Laplacian is
diagonalizable, and if the set {φn(x, k)}n∈N forms a basis of L2(V ) (which is always the case
of the real Robin Laplacian), then without loss of generality, this set can be chosen so as to
form a pseudo-orthonormal basis of L2(V ), which means that

∀x,y ∈ V,
∑
n∈N

φn(x, k)φn(y, k) = δ(x− y). (32)

Finally, by changing the sign of k in (26) and (27), we get φn(x,−k) = φn(x, k) and
κn(−k) = −κn(k) (since both κn(k) and κn(−k) have a positive imaginary part). So without
loss of generality, at fixed k ∈ R, the eigenvalues κn(k) can be assumed to have a real part
of the same sign of k ∀n ∈ N.

Then given a punctual source position x0 ∈ V , a Green’s function of the Helmholtz
equation (4) is expressed as

G(x,x0, k) =
∑
n∈N

φn(x0, k)φn(x, k)

4π2(κn(k)2 − k2)
. (33)

Indeed, equation (32) shows that function G in (33) is a solution to the inhomogeneous
Helmholtz equation (7) in V , and it satisfies the boundary condition (26) on ∂V because all
functions φn(x, k) satisfy this condition.

Then, by substituting equation (33) into (8), we get ∀x ∈ V , ∀t ∈ R,

ġ(x,x0, t) = −c2
∑
n∈N

∫
f∈R

φn(x0,
f
c
)φn(x,

f
c
)

4π2
(
f 2 − c2κn(fc )2

) 2ıπf e2ıπftdf. (34)

The integral in (34) can then be calculated by means of the residue theorem. Indeed, suppose
that ∀n ∈ N∗, a root of the equation f

c
= κn(

f
c
) is νn = fn+ıγn with fn, γn > 0. Then because

of the symmetry property κn(−k) = −κn(k), there will be another root at −νn = −fn+ ıγn.
Thus the integrand in the right member of (34) has two simple poles at f = νn and f = −νn.

7This property was proved in (Bögli et al., 2022) when β̂(x, k) is constant on ∂V , but the same proof
actually applies when β̂(x, k) is an essentially bounded function.
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In addition, for n = 0, κ0(0) = k0 = 0, thus the integrand has a simple pole at f = ν0 = 0.
Then applying the residue theorem to (34) leads to the equivalent expression8:

ġ(x,x0, t) = c2

(
λ
2
sign(t) +H(t) Re

(∑
n∈N∗

φn(x0,
νn
c
)φn(x,

νn
c
)e2ıπνnt

))
, (35)

where λ ≜ 1
|V | . The causal source response p is related to ġ by adding the constant term λc2

2
,

which is a solution to the homogeneous wave equation (3) with the boundary condition (25):

p(x,x0, t) = ġ(x,x0, t) +
λc2

2
. (36)

By substituting (35) into (36), we retrieve (22), with

q(x,x0, t) = c2Re

(∑
n∈N

φn(x0,
νn
c
)φn(x,

νn
c
)e2ıπνnt

)
. (37)

Note that equation (37) generalizes (23) which we obtained in the case of Neumann’s bound-
ary condition, to complex eigenfunctions φn and complex frequencies νn.

In other respects, every eigenfunction φn(., k) is holomorphic in V , so it can generally
be continued as an analytic function on a mathematical vicinity D of V , which is a solution
to the Helmholtz equation (27) on D. By substituting (27) and (33) into (13), we get the
closed-form expression of the B-function on D:

B(y,x0, k) =
∑
n∈N

φn(x0, k)φn(y, k). (38)

Again, we note that equation (32) confirms that the restriction of the B-function to V is
δ(y − x0).

3.5. Distribution of the discrete normal modes
We have seen in Sections 3.3.2 and 3.4.2 that in a simply connected bounded domain,

the set of normal modes of the Helmholtz equation is discrete and countable. Note that
in Section 3.3, the wave number was denoted k, whereas in Section 3.4, it was denoted
κ, which actually depends on k, as in equation (27). From now on, we will stick to the
κ notation that we used for Robin’s boundary condition, because it is more general, since
it includes Neumann’s boundary condition as a particular case: indeed, when k = 0, (26)
reduces to (16).

8Actually, the expression in (35) is incomplete, because function φn(x0,
f
c )φn(x,

f
c ) in the numerator of

the fraction in (34) is a meromorphic (i.e. holomorphic except for a set of isolated points) function of f ,
with its own singularities. These singularities are generally ignored by theoretical acousticians, cf. (Morse
and Ingard, 1968, Chapter 9), which amounts to assume that they are located in a region of the complex
plane which is above the set of poles ∪n∈N{νn,−νn}, so that they generate terms in ġ(x,x0, t) that decay
faster than the complex exponentials e2ıπνnt in (35).
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3.5.1. Asymptotic expansion of the modal density
It is well-known that the density of modes is quadratically increasing with the wave

number κ, so when the frequency is high enough, the spectrum is well described by a smooth
density function ρ(κ, k). When the boundary surface of the domain V is smooth enough,
Balian and Bloch (1970) have shown that function ρ(κ, k) admits the following first order
expansion9 when κ→ +∞:

ρ(κ, k) = 4π|V |κ2 + κ

∫
s∈∂V

(
π
2
+ 2arctan

(
k
κ
Im
(
β̂(s, k)

)))
dS(s) +O(1). (39)

This equation holds both in the case of Neumann’s boundary condition, which corresponds
to k = 0 as mentioned previously, and in the case of Robin’s boundary condition if and only
if β̂ is purely imaginary10. In the right member of equation (39), the dominant term 4π|V |κ2
is known as the volume term. The first order term, which involves an integral over the
boundary surface, is called the surface term. Note that the original equation from (Balian
and Bloch, 1970) also includes a second order term called the curvature term, that we will
exploit and generalize in future papers (see Section 7).

In room acoustics, a purely imaginary specific admittance β̂ corresponds to reactive
surfaces, which are free of absorption. If Im(β̂) < 0, which indicates that the motion of the
surface is mass-controlled, then the eigenvalues κn(k) are real-valued and increased w.r.t.
the eigenvalues kn of the rigid-walled room, in a way that turns the modal density ρ(κ, 0)

into ρ(κ, k) as in (39). Conversely, if Im(β̂) > 0, which characterizes a compliance surface,
i.e. a surface with the impedance of a spring, then the eigenvalues κn(k) are real-valued and
lowered w.r.t. the eigenvalues kn of the rigid-walled room, and the resulting modification of
the modal density is again described by (39).

A few applications of (39) to different kinds of waves are mentioned in (Balian and Bloch,
1970): in nuclear physics, the Helmholtz equation describes the actual self-consistent field of
a heavy nucleus, and the distribution of its eigenvalues in (39) provides a description of the
nuclear properties in terms of the deformation; in electromagnetic theory, the distribution
of normal modes of electromagnetic waves in a cavity permits for instance to evaluate the
Casimir effect, considered as the sum of the energy shifts of the electromagnetic eigenmodes
due to the presence of a conductor.

We will explain in Sections 4 to 6 how the asymptotic expansion in equation (39) is related
to the statistical wave field theory. In particular, the mathematical developments in (Balian
and Bloch, 1970) are based on a multiple reflection expansion of the Green’s function G.
Similarly, our mathematical developments will be based on a multiple reflection expansion
of the B-function introduced in Section 3.2.

As explained in (Balian and Bloch, 1970, pp. 435), a condition is required for the asymp-
totic expansion (39) to hold true: the wave number κ should never get close to kβ̂(s, k).

9In equation (39), we have modified the notation used in (Balian and Bloch, 1970) so as to adapt it to
the notation used in this paper.

10Indeed, this assumption is necessary to guarantee that the eigenvalues κn(k) are real, in order to be able
to define a density function ρ(κ, k) over R.
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The authors did not highlight this condition, because in Eq. (39), κ is real, whereas kβ̂(s, k)
is purely imaginary. Nevertheless, their proof is based on an analytic continuation to the
domain of complex wave numbers, in which case an imaginary κ should not get too close
to kβ̂(s, k). However, in the statistical wave field theory, we will also consider the analytic
continuation of Eq. (39) to complex values of β̂(s, k) that are not purely imaginary, so the
condition κ ̸= kβ̂(s, k) should be understood in the broadest sense, i.e. for complex values
of both κ and β̂(s, k).

3.5.2. Oscillations of the modal density
Equation (39) implicitly involves a smoothing kernel acting in the spectral domain, which

turns the discrete distribution of modes into a smooth modal density. When the width of this
smoothing kernel becomes small, fluctuations appear in the modal density, which actually
oscillates around the smooth function κ 7→ ρ(κ, k) predicted by (39). Unfortunately, these
oscillations depend in a complicated way on the domain’s global geometry, and cannot be
described by means of a simple general closed-form expression such as (39).

In (Balian and Bloch, 1972), a systematic investigation of these fluctuations proved that
the dominant oscillations are associated with the shortest closed stationary paths, i.e., the
closed polygons inscribed in the boundary surface ∂V , having their vertices on ∂V and
such that mirror reflections on ∂V (i.e. specular reflections as in geometric acoustics and
optics) take place at each vertex. An extreme case of fluctuating modal density appears
when ∂V is a sphere: the oscillations are then of order 1 in (39), preventing the asymptotic
expansion from being carried out beyond the first order surface term. In this case, the closed
stationary paths are the regular polygons in diametrical planes of the sphere (ordinary or
starred polygons).

In room acoustics, as explained in (Balian and Bloch, 1972), the design of concert halls
requires us to minimize these oscillations, since they tend to emphasize some frequencies
with respect to the others. An elementary rule to follow for this purpose is to avoid shapes
favoring the existence of closed stationary paths.

Since the power spectrum of the statistical wave field theory (that will be introduced in
Section 4.4) is related to the asymptotic expansion of the modal density in (39), one could
expect it to be prone to the same problem of fluctuations. However, the statistical wave
field theory as it is presented in this paper is based on the mixing assumption (that will be
introduced in Section 3.6.1), which precisely implies that the domain’s shape is such that
closed stationary paths are negligible. Therefore the fluctuations are also negligible, and
the asymptotic expansion can be carried out up to the second order terms, including the
previously-mentioned curvature term. As a counterexample, the sphere is known as a typical
example of non-mixing billiard (Polack, 1992). Therefore non-mixing geometric shapes such
as the sphere are excluded in the statistical wave field theory.

3.6. Review of known statistical properties in room acoustics
In room acoustics, a room impulse response is made of a first impulse, which corresponds

to the direct path between the source and the receiver, followed by a succession of reflections
on the room boundary, whose density increases quadratically over time. It is well known that
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after many reflections, i.e. after a time which is known as the transition time or mixing time,
and at high frequency, the collective behavior of the reflected waves becomes stochastic, a
physical phenomenon that is called late reverberation. In the literature, several works aimed
to model various aspects of this stochastic behavior. We summarize here a few important
contributions, which are closely related to the statistical wave field theory.

3.6.1. Reverberation as a dynamical billiard
We have seen in Section 3.5.1 that when the frequency is high enough, the spectrum of

the source response can be considered continuous. Moreover, at high frequency, it is well
known that wave propagation can be approximated by considering the trajectory of rays
which undergo successive specular reflections on the domain’s boundary, similarly to optical
rays (Kuttruff, 2014, Chapter 4). The ray trajectory can then be interpreted as a dynamical
billiard which, depending on the boundary geometry, may follow different statistical prop-
erties (Polack, 1992). In particular, a dynamical billiard is ergodic when over time t, the
position x(t) and the unit direction vector d(t) of the ray are jointly uniformly distributed
in the phase space V × S(0, 1), where S(0, 1) denotes the unit sphere. A stronger statisti-
cal property, mixing, can be formulated in the following way: if the source corresponds to
time 0 and the receiver corresponds to time T , then in addition to their uniform distribution
in the phase space, when the elapsed time T is long enough, the receiver’s position x(T )
and direction d(T ) are statistically independent of the source’s position x(0) and direction
d(0). Consequently, in a mixing billiard, the statistics of the reflections undergone by any
ray, during an elapsed time T sufficiently long, are defined independently of the source and
from the receiver’s positions and directions.

In room acoustics, Polack (1992) applied the billiard theory to investigate the properties
of the reverberation time in mixing rooms, ergodic rooms, and some non-ergodic rooms. He
showed that the classical definition of a diffuse field can be considered as equivalent to the
mixing property. Theoretically, the mixing and ergodic properties depend on the room’s
shape in a very complex way, so that there exists no simple geometric characterization of
ergodic and mixing rooms. Nevertheless, Polack (1992) mentioned that in practice, most
rooms are mixing, even when their shape is theoretically non-mixing: the unavoidable ir-
regularities of a real room’s surfaces are sufficient to create mixing conditions in almost any
room.

3.6.2. Reverberation time over frequency
In room acoustics, the reverberation time, which is often denoted T60, is the time it takes

for the sound pressure level to reduce by 60 dB. In a diffuse acoustic field, i.e. in a mixing
room according to Polack (1992), the early experiments carried out by Wallace Clement
Sabine in the late 19th century showed that the reverberation time approximately matches
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the following empirical law (Joyce, 1975) 11:

T60(f) =
24 ln(10)

c

|V |∫
s∈∂V a(s, f)dS(s)

(40)

where a(s, f) denotes the absorption coefficient of the room surface at point s and fre-
quency f , averaged over all directions of incidence. Actually, Sabine’s formula only holds
in highly reverberant rooms (i.e. when a(s, f) is small). In order to account for larger
absorptions, this formula was modified by Carl F. Eyring in 1930:

T60(f) =
24 ln(10)

c

|V |
−
∫
s∈∂V ln(1− a(s, f))dS(s) . (41)

Eyring’s formula has been both verified experimentally and derived mathematically from
a simple probabilistic model (Eyring, 1930). In Section 6.6, we will establish a relation-
ship between Sabine’s and Eyring’s formulas and the expression of the reverberation time
predicted by the statistical wave field theory.

3.6.3. Time-frequency distribution
In his PhD thesis The transmission of sound energy in rooms, Jean-Dominique Polack

(1988) derived an expression of the Wigner time-frequency distribution12 of the room impulse
response, based on a simple probabilistic model that assigns the same reverberation time to
all directions and all frequencies: ∀t > 0,

Wh(f, t) = B(f) e−2αt, (42)

where the attenuation coefficient α is related to the reverberation time via T60 = 3 ln(10)
α

.
In order to account for the dependency of the attenuation coefficient α on frequency f , he

also proposed an empirical generalization of (42), which holds in all mixing rooms: ∀t > 0,

Wh(f, t) = B(f) e−2α( f
c
)t. (43)

In Section 6.6, the statistical wave field theory will permit us to retrieve and to generalize
equation (43).

3.6.4. Spatial correlation over frequency
In the spectral domain, still in the case of a diffuse acoustic field, i.e. of a mixing room,

Cook et al. (1955) calculated the correlation of the reverberated wave field between two
points x1 and x2 as a function of frequency f :

γ(x1,x2, f) = sinc

(
2πf∥x1 − x2∥2

c

)
. (44)

11In (40) we have replaced the discrete sum in the formula which is generally presented in the literature
by an integral over the boundary surface, and we have explicitly written the dependency on frequency of the
absorption coefficient a.

12The Wigner distribution of a non-stationary random process will be formally defined in Section 4.1.
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This formula is remarkably simple and was initially derived from a probabilistic model in-
volving a discrete sum of plane waves coming uniformly from all directions. However, equa-
tion (44) only holds when there is no absorption on the room boundary.

In Section 5.4, the statistical wave field theory will thus permit us to retrieve it in the
case of Neumann’s boundary condition. In the case of Robin’s boundary condition, we will
obtain a generalization of (44) which accounts for the non-stationarity of the wave field (see
equation (115) in Section 6.4).

4. Fundamentals of the statistical wave field theory

The statistical wave field theory aims to describe mathematically the statistical properties
of waves propagating in a bounded domain V ⊂ R3. More precisely, it represents the source
response p introduced in (5) as a stochastic process, and aims to characterize its probability
distribution, especially in terms of the Wigner time-frequency distribution (Section 4.1).
When the frequency is high enough (Assumption 2 in Section 4.3), wave propagation can be
interpreted as a dynamical billiard, as already explained in Section 3.6.1. In this paper, we
focus on the most usual case of mixing billiards13, so we reformulate the statistical properties
of mixing billiards in terms of probabilistic distributions, first of the punctual source position
(Assumption 1 in Section 4.2), then of the B-function (Assumption 3 in Section 4.4).

4.1. Wigner distribution
In the case of Robin’s boundary condition, the source response p will be modeled as a non-

stationary random process in Section 6, due to the exponential damping of the normal modes
over time (see equation (37)). In signal processing, the standard tool for characterizing the
second-order statistics of a non-stationary random process is the Wigner distribution (Cohen,
1989), also known as the Wigner-Ville distribution, which describes how the power of this
random process is distributed in the time-frequency plane. So let

Γq(x1,x2, t1, t2) = cov[q(x1, t1), q(x2, t2)] (45)

denote the auto-covariance function (ACF) of a non-stationary random process q(x, t). Its
(cross-)Wigner distribution Wq is defined as follows:

∀f, t ∈ R, Wq(x1,x2, f, t) =

∫
R
Γq(x1,x2, t+

τ
2
, t− τ

2
) e−2ıπfτdτ. (46)

In the same way, the Wigner distribution of a complex function w(t) with t ∈ R is defined
as:

∀f, t ∈ R, Ww(f, t) =

∫
R
w(t+ τ

2
)w(t− τ

2
) e−2ıπfτdτ. (47)

In Sections 5.4 (for Neumann’s boundary condition) and 6.6 (for Robin’s boundary condi-
tion), we will calculate an asymptotic expansion (when f → +∞) of the Wigner distribution

13Non-mixing and non-ergodic billiards will be addressed in future publications (see Section 7).
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of the random process q, which is such that p(x, t) = H(t) q(x, t) as in (22) (the expres-
sions of q for the two boundary conditions were given in (23) and (37), respectively), rather
than the Wigner distribution Wp of the source response p, which is defined similarly to (46)
and (45) by replacing q with p. Indeed, Wq admits a simpler closed-form expression, and
is more meaningful, than Wp. Moreover, the Wigner distribution is a theoretical analysis
tool, which in practice is approximated by another time-frequency distribution from Cohen’s
class (Cohen, 1989) such as the spectrogram, which results in smoothing the Wigner distri-
bution in the time-frequency plane14. However, the spectrogram of the source response at
positive times can be equally obtained from the Wigner distribution of p, or that of q.

Anyway, note that the exact expression of Wp can be easily derived from that of Wq, by
applying the formula which expresses the Wigner distribution of a product, here p(x, t) =
H(t) q(x, t):

Wp(x1,x2, f, t) =

(
WH(., t)

f∗Wq(x1,x2, ., t)

)
(f), (48)

where the Wigner distribution of the Heaviside function is obtained by applying (47) to
w(t) = H(t):

WH(f, t) = 4t sinc(4πft)H(t). (49)

4.2. Assumption 1: Random source position
The first assumption of the statistical wave field theory concerns the position of the source

in the domain space V :

Assumption 1: The punctual source’s position is a random variable uniformly
distributed in V .

As explained in the introduction, the randomized source position permits us to trans-
late certain mathematical properties of dynamical billiards which are actually deterministic
and related to chaos, into the more accessible language of the theory of probability. More
precisely, the uniform distribution of the source’s position x0 is in agreement with the er-
godic property15 introduced in Section 3.6.1. Moreover, Assumption 1 makes the statistics
of the source response at any space position x independent of the actual source position, in
agreement with the mixing property.

Assumption 1 implies that the values of the eigenfunctions at the source position also are
random variables:

Lemma 1 (White noise property).

14Indeed, the Wigner distribution has one main advantage, which is its high time-frequency resolution, but
two serious drawbacks: it is non-local and prone to interference terms. On the contrary, the spectrogram,
when computed with a window of bounded temporal support, is local over time and does not produce
interference terms, at the cost of a degraded time-frequency resolution.

15Assuming that the orientation of the source is also uniformly distributed would not make sense here,
since a punctual source response is isotropic (see equation (6)).
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• In the case of Neumann’s boundary condition, ϕ0(x0) =
√
λ, and the real random

sequence {ϕn(x0)}n∈N∗ is white noise of variance λ = 1
|V | .

• In the case of Robin’s boundary condition, the complex random variables φn(x0, k) are
such that

∀n1, n2 ∈ N, E [φn1(x0, k)φn2(x0, k)] = λ δn1,n2 . (50)

Proof. Let us first consider Neumann’s boundary condition. We already know that ϕ0(x0) =√
λ (cf. Section 3.3.2). If we multiply both members of (19) with ϕn(y) and if we integrate

over y in V , we get ∀n1, n2 ∈ N,
∫
x∈V ϕn1(x)ϕn2(x)dx = δn1,n2 . If we apply this equality to

n2 = 0 and n1 = n ̸= 0, we get E [φn(x0)] = 0, so the random variables ϕn(x0) are centered
for n ∈ N∗. In addition, the same equation proves that E [ϕn1(x0)ϕn2(x0)] = λ δn1,n2 . We
conclude that the random variables ϕn(x0) are uncorrelated and of variance λ for n ∈ N∗.

Let us now consider Robin’s boundary condition. If we multiply both members of (32)
with φn(y, k) and if we integrate over y in V , we get ∀n1, n2 ∈ N,

∫
x∈V φn1(x, k)φn2(x, k)dx =

δn1,n2 , which proves (50).

Moreover, in the case of Neumann’s boundary condition, remember that the expression of
the source response p(x,x0, t) in (22) involves the random process q(x,x0, t) defined in (23).
Then, by applying Lemma 1, we get from (23) the expected value of the random process q:

µq(x, t) ≜ E[q(x, t)] = λc2,

which means that q is first order stationary over both space and time, of mean λc2.
Regarding the ACF defined in (45), we get

Γq(x1,x2, t1, t2) =
λc4

2

∑
n∈N∗

ϕn(x1)ϕn(x2) (cos(2πckn(t1 − t2)) + cos(2πckn(t1 + t2))) . (51)

If we now consider the Wigner distribution of q, by substituting (51) into (46), we get

Wq(x1,x2, f, t) =
λc4

4

∑
n∈N∗

ϕn(x1)ϕn(x2) (δ(f − ckn) + δ(f + ckn) + 2δ(f) cos(4πcknt))

= λc2

2
(q̂(x1,x2, f) + δ(f) (q(x1,x2, 2t)− 2λc2)) .

(52)
where q̂(x1,x2, f) denotes the 1D Fourier transform (1) of q(x1,x2, t) w.r.t. time.

When f ̸= 0, equation (52) reduces to

Wq(x1,x2, f, t) =
λc2

2
q̂(x1,x2, f), (53)

which is stationary over time. Therefore, if we omit the zero frequency, we conclude that q is
a WSS process over time, which means that its mean value and covariances are well-defined
and invariant to translations of time. However, under the sole Assumption 1, it is not second
order stationary over space, because the Wigner distribution Wq in (53) is not a function of
x1 − x2.

In Section 4.4, we will introduce the additional Assumption 3, that will permit us to
define a stationary Wigner distribution by calculating stationary second order statistics of
the B-function. Before doing that, we need to investigate here the consequences of the sole
Assumption 1 on the statistics of the B-function.
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4.2.1. Neumann’s boundary condition
In the case of Neumann’s boundary condition, the expression of the B-function was given

in (24). Regarding its first order statistics, we have

µB(y) ≜ E[B(y,x0)] = λ

∫
x0∈V

B(y,x0)dx0. (54)

Then, by substituting (24) into (54), Lemma 1 implies that

µB(y) = λ, (55)

so the B-function is first-order stationary. Regarding the second order statistics, we have

ΓB(y1,y2) = cov[B(y1,x0), B(y2,x0)] = λ

∫
x0∈V

B(y1,x0)B(y2,x0)dx0 − λ2. (56)

By substituting (24) into (56), Lemma 1 implies that

ΓB(y1,y2) = λ
∑
n∈N∗

ϕn(y1)ϕn(y2) = λB(y1,y2)− λ2 (57)

so the B-function is not second-order stationary (ΓB is not a function of y1 − y2).

4.2.2. Robin’s boundary condition
In the case of Robin’s boundary condition, the expression of the B-function was given

in (38). Regarding its first order statistics, we have

µB(y, k) ≜ E[B(y,x0, k)] = λ

∫
x0∈V

B(y,x0, k)dx0. (58)

The mean µB(y, k) can only be calculated in closed-form for k = 0, which corresponds
to Neumann’s boundary condition:

µB(y, 0) = λ, (59)

so B(y, 0) is first-order stationary. However, for k ̸= 0, the B-function is generally not
first-order stationary (µB(y, k) in (58) does depend on y).

Regarding the second order statistics, as mentioned in Section 3.4.2, the eigenfunctions
φn are not orthogonal w.r.t. the Hermitian inner product when k ̸= 0. For this reason, we
cannot calculate in closed-form the covariances

ΓB(y1,y2, k) = cov[B(y1,x0, k), B(y2,x0, k)]

= λ
∫
x0∈V B(y1,x0, k)B(y2,x0, k)dx0 − |µB(y, k)|2

of the complex random processB. However, the expression of its pseudo-covariances JB(y1,y2, k)
can be simplified in the same way as the covariances in the case of Neumann’s boundary
condition in Section 4.2.1:

JB(y1,y2, k) = cov[B(y1,x0, k), B(y2,x0, k)]
= λ

∫
x0∈V B(y1,x0, k)B(y2,x0, k)dx0 − µB(y, k)

2.
(60)
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Indeed, by substituting (38) into (60), Lemma 1 shows that

JB(y1,y2, k) = λ
∑
n∈N

φn(y1, k)φn(y2, k)− µB(y, k)
2 = λB(y1,y2, k)− µB(y, k)

2, (61)

which is similar to (57). Yet, the B-function is not pseudo-stationary (JB is not a function
of y1 − y2).

4.3. Assumption 2: High frequency
As stated in Section 4.2, in the case of Neumann’s boundary condition, if we omit

the zero frequency, the random process q(x,x0, t) is WSS over time, of power spectrum
Γ̂q(x1,x2, f) ≜ λc2

2
q̂(x1,x2, f) (see equation (53)). In order to further investigate the spec-

tral properties of this WSS process, we need to introduce the second assumption:

Assumption 2: The frequency f (or equivalently the wave number k) is large.

This assumption will permit us to consider only small delays τ = t1− t2 between times t1
and t2, and small distances ∥x1−x2∥2 between two space positions x1 and x2, as explained
in the following.

Remember that at high frequency, the density of modes increases quadratically, so the
spectrum is better described by a smooth spectral density (see Section 3.5.1). However,
we note that smoothing the discrete spectrum Γ̂q(x1,x2, f) over frequency f is equivalent
to smoothing the source frequency response q̂(x1,x2, f) over f . This can be achieved by
multiplying q(x1,x2, τ) with a window function wε(τ) of finite temporal support ]−ε,+ε[ for
a given ε > 0. Indeed, this multiplication in the time domain is equivalent to convoluting in
the frequency domain q̂(x1,x2, f) with the 1D-Fourier transform (1) of the window function
wε(τ). Consequently, the smoothed spectrum is characterized by function q(x1,x2, τ) at
times |τ | < ε, or equivalently by the source response p(x1,x2, |τ |) at times |τ | < ε. However,
because p is the causal solution to the inhomogeneous wave equation (5), p is identically zero
in the time interval [0, ε[ as soon as ∥x1 − x2∥2 ≥ c ε. If on the contrary ∥x1 − x2∥2 < c ε,

then the direct path
δ̇
(
τ− ∥x1−x2∥2

c

)
4π∥x1−x2∥2 between x1 and x2 (see equation (6)) falls in the time

interval [0, ε[. If in addition x1 and x2 belong to a certain vicinity of the boundary of V ,
then the first reflection between x1 and x2 may also fall in the time interval [0, ε[.

To summarize, we can distinguish two cases when ε→ 0:

1. if both x1 and x2 belong to the vicinity V ⊂ V of an interior point s ∈ V , then the
windowed function wε(τ) q(x1,x2, τ) includes only the direct path between x1 and x2.
This situation is illustrated in Figure 1: the vicinity of s (inside the red circle) is the
open ball V = B(s, c ε

2
), which implies ∥x1 − x2∥2 < c ε, so that the direct path from

x2 to x1 (green arrow) follows in the time interval [0, ε[.
2. if both x1 and x2 belong to the vicinity V ⊂ V of a boundary point s ∈ ∂V , then

the windowed function wε(τ) q(x1,x2, τ) includes both the direct path and the first
reflection on the boundary near s. This situation is illustrated in Figure 2: the domain’s
boundary is represented in blue, its tangent plane T (s) and outward normal vector
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V

s

x1

x2

Figure 1: Interior points: the two space positions x1 and x2 belong to the same vicinity V ⊂ V (red circle)
of an interior point s ∈ V , so that the direct path from x2 to x1 (green arrow) is included in V.

n(s) at s in black, and the exterior of the domain is hatched. The direct path and
the first reflection are represented with green arrows. The image of x2 is x′

2 = x2 −
2n(s)n(s)⊤(x2 − s).

∂V

T (s)

V

s
n(s)

x1

x2

x′2

Figure 2: Boundary points: s now belongs to the boundary surface (blue curve), which is locally approx-
imated be its tangent plane T (s) (black line), that is orthogonal to the outward normal vector n(s). The
two space positions x1 and x2 still belong to the same vicinity V ⊂ V , which is now bounded by T (s) and
by the red semicircle. The image of x2, denoted x′

2, lies in the exterior of the domain (hatched region). The
direct path and first reflection are represented with green arrows.

Now let us focus again on the statistics of the B-function. In the two cases of Neumann
and Robin’s boundary conditions, the second order statistics ΓB(y1,y2) and JB(y1,y2, k)
have been expressed in terms of the B-function itself in equations (57) and (61), respectively.
Considering the previous discussion, we can distinguish the same two cases for y = y1 and
small values of z = y1 − y2:

1. if y belongs to the vicinity V ⊂ V of an interior point s ∈ V , then after spectral
smoothing the term involving the B-function in (57) and (61) includes only the direct
path: B(y1,y2, k) = δ(y1 − y2).

2. if y belongs to the vicinity V ⊂ V of a boundary point s ∈ ∂V , then after spec-
tral smoothing the term involving the B-function in (57) and (61) includes both the
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direct path and the first reflection on the boundary near s. Moreover, under the
high frequency Assumption 2, ∂V can be locally approximated by its tangent plane
T (s) represented in Figure 2, so that the two expressions of the B-function in (18)
and (29), which we obtained in the case of a plane boundary, can be substituted into
equations (57) and (61), respectively.

4.4. Assumption 3: Stationarity of the B-function
As briefly discussed in Section 3.6.1, in a mixing billiard, the statistics of the reflections

are defined independently of the source position (which led us to Assumption 1), and they
are also independent of the receiver position and orientation. In the formalism used in this
paper, the reflections are implicitly described by the B-function, which defines the spatial
distribution of the image sources, as explained in Section 3.2. So the mixing property can
be reformulated in terms of the B-function as follows: the statistics of the B-function are
independent of the spatial position and orientation, or more precisely:

Assumption 3: The mean and (pseudo-)covariances of the B-function are sta-
tionary and isotropic.

This assumption will be formalized by averaging the first and second order statistics
of the B-function that we calculated in Section 4.2 based on the sole Assumption 1 about
the source position, so as to make them both stationary and isotropic. More precisely, we
will calculate space-averaged statistics of the B-function, which will be obtained as sums
of contributions coming from all points s in V . Indeed, we have seen in Section 4.3 that
the smoothed spectrum of the source response is related to the local statistics of the B-
function in the vicinity V of points s that may lie either in the interior V or at the boundary
∂V . These local statistics will now be formally defined and averaged, in the two cases of
Neumann’s (Section 4.4.1) and Robin’s (Section 4.4.2) boundary conditions.

4.4.1. Neumann’s boundary condition
For a given vicinity V of a point s in V , we introduce the WSS process ξ(y,V), whose

statistics are defined as follows:

• The local mean µξ(V) is defined as a weighted integral of µB(y) in (55) over V :

µξ(V) = λ

∫
y∈V

µB(y) dy = λ2|V|. (62)

• For a given vector z in a mathematical vicinity of 0 (which is such that y − z ∈ D
∀y ∈ V), the local stationary ACF Λ0(z,V) is defined as a weighted integral over y ∈ V
of ΓB(y,y − z) in (57) (in order to enforce stationarity):

Λ0(z,V) = λ
∫
y∈V ΓB(y,y − z) dy

= λ2
∫
y∈V B(y,y − z) dy

(63)

where we have substituted (57), from which we have removed the constant term λ2,
since we are working under the high frequency Assumption 2.
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• For a given wave number k ∈ R+, the local isotropic power spectrum Λ̂0(k,V) is
defined as the integral over k ∈ S(0, k) (in order to enforce isotropy) of the 3D Fourier
transform (2) of Λ0(z,V) in (63):

Λ̂0(k,V) =
∫
k∈S(0,k)

Λ̂0(k,V)dS(k). (64)

Note that we consider in (64) the 3D Fourier transform Λ̂0(k,V) of the ACF Λ0(z,V),
which implicitly involves an integral over z ∈ R3, whereas Λ0(z,V) was actually defined
for small values of z only in (63). Indeed, we will see in Section 5.1 that, in both cases
of interior and boundary points s, the closed-form expression of Λ0(z,V) that we will
get from (63) naturally leads to a smooth power spectrum Λ̂0(k,V) in (64), so this
smooth power spectrum will be defined independently of the window function wε(τ)
which we introduced in Section 4.3 and which explicitly restricts z to small values.

When integrating over the whole domain, i.e. when V = V , the random process ξ(y, V ) is
identified to the B-function B(y), so we retrieve from (62) the mean value µB(y) = µξ(V ) =
λ (equation (55)) and we get from (64) the expression of the isotropic power spectrum of
the B-function:

Γ̂B(k) ≜ Λ̂0(k, V ) =

∫
k∈S(0,k)

Λ̂0(k, V )dS(k). (65)

4.4.2. Robin’s boundary condition
In the case of Robin’s boundary condition, we also want to introduce stationary statistics

of the B-function, as we did in Section 4.4.1. However, contrary to the case of Neumann’s
boundary condition, we cannot assume that the covariances are stationary. Indeed, when
there is absorption at the domain’s boundary, the normal modes are exponentially decaying
over time, so the source response is non-stationary over time (see equation (37)). Because
it is a solution to the wave equation, it is therefore also non-stationary over space. So the
power of the source response actually depends on the space position, thus the variance of
the B-function also depends on the space position. Yet, the mixing property suggests a form
of second order stationarity of the B-function, as in Section 4.4.1. Considering the formal
similarity between equations (61) and (57), we will thus define an isotropic pseudo spectrum
ĴB, similarly to the isotropic power spectrum Γ̂B in equation (65). For a given vicinity V
of a point s in V , we introduce the complex random process ζ(y,V , k), whose statistics are
defined as follows:

• The local mean µζ(V , k) is defined as a weighted integral of µB(y, k) in (58) over V :

µζ(V , k) = λ

∫
y∈V

µB(y, k)dy. (66)

• For a given vector z in a mathematical vicinity of 0 (which is such that y − z ∈ D
∀y ∈ V), the local stationary pseudo-covariance function (PCF) Jζ(z,V , k) is defined
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as a weighted integral over y ∈ V of JB(y,y − z, k) in (61) (in order to enforce
stationarity):

Jζ(z,V , k) = λ
∫
y∈V JB(y,y − z, k) dy

= λ2
∫
y∈V B(y,y − z, k) dy

(67)

where we have substituted (61), from which we have removed the mean term (which
would have resulted in a constant term due to (69)), since we are working under the
high frequency Assumption 2.

• For a given wave number κ ∈ R+, the local isotropic pseudo spectrum Ĵζ(κ,V , k) is
defined as the integral over κ ∈ S(0, κ) (in order to enforce isotropy) of the 3D Fourier
transform (2) of Jζ(z,V , k) in (67):

Ĵζ(κ,V , k) =
∫
κ∈S(0,κ)

Ĵζ(κ,V , k)dS(κ). (68)

As in Section 4.4.1, note that we consider in (68) the 3D Fourier transform Ĵζ(κ,V , k)
of the PCF Jζ(z,V , k), which implicitly involves an integral over z ∈ R3, whereas
Jζ(z,V , k) was actually defined for small values of z only in (67). Indeed, we will
see in Section 6.1 that, in both cases of interior and boundary points s, the closed-
form expression of Jζ(z,V , k) that we will get from (67) naturally leads to a smooth
pseudo spectrum Ĵζ(κ,V , k) in (68), so this smooth pseudo spectrum will be defined
independently of the window function wε(τ) which we introduced in Section 4.3 and
which explicitly restricts z to small values.

When integrating over the whole domain, i.e. when V = V , the random process ζ(y, V , k)
is identified to the B-function B(y, k), so by substituting (58) into (66), the mean of the
B-function is

µB(k) = µζ(V , k) = λ2
∫
y∈V

∫
x0∈V B(y,x0, k) dx0dy

= λ2
∫
y∈V

∫
x0∈V δ(y − x0) dx0dy = λ2|V | = λ,

(69)

which generalizes (59) to all k ∈ R. We also get from (68) the expression of the isotropic
pseudo spectrum of the B-function:

ĴB(κ, k) ≜ Ĵζ(κ, V , k) =

∫
κ∈S(0,κ)

Ĵζ(κ, V , k)dS(κ). (70)

5. Special Theory (Neumann’s boundary condition)

Let us start with the case of Neumann’s boundary condition. According to Assumption 3
introduced in Section 4.4, the B-function is a 3D WSS process defined on R3. Its second
order statistics are thus characterized by its power spectrum Γ̂B(k), which is a measure (see
Proposition 8.2.I. in (Daley and Vere-Jones, 2003, Chapter 8)), defined on the wave vector
space R3. It turns out that the asymptotic expansion of the smoothed power spectrum can be
informally derived from the developments in Section 3 by using a few intuitive arguments.
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Indeed, before spectral smoothing, equation (24) shows that B(y,x0) =
∑

n∈NBn(y,x0)
with Bn(y,x0) = ϕn(x0)ϕn(y). Since every eigenfunction ϕn is a solution to the Helmholtz
equation (4) with the eigenvalue kn, then so is the ACF Γn(z) of the WSS process Bn.
Therefore its 3D-Fourier transform, i.e. the measure Γ̂n(k), is supported in S(0, kn) 16. In
other respects, the eigenfunctions ϕn form a Hilbert basis of L2(V ), so they are unitary.
Therefore the average energy of each mode Bn is λ2

∫
x0∈V

∫
y∈V Bn(y,x0)

2dydx0 = λ2. We
thus conclude that Γ̂B(kn) ≜

∫
S(0,kn) dΓ̂n(k) = λ2.

However, in Section 3.5.1, equation (39) shows that the modal density admits the fol-
lowing asymptotic expansion in the case of Neumann’s boundary condition: ρ(k, 0) =

4π
(
|V |k2 + S(∂V )

8
k
)
. By spectral smoothing, we thus get the following asymptotic expansion

of the power spectral density:

Γ̂B(k) = λ2 ρ(k, 0) = 4πλ
(
k2 + λS(∂V )

8
k
)
. (71)

This equation will be formally proved in Section 5.1.3 (see equation (80)).
Then we will be able to deduce the asymptotic expansion when f → +∞ of the Wigner

distribution Wq(x1,x2, f, t) defined in (46) of the random process q between two points
x1 and x2 (Section 5.4). We will show that it can be factorized as Wq(x1,x2, f, t) =

Wq(f) γ(x1,x2, f) (equation (90)) where Wq(f) = c3

4
Γ̂B(

f
c
) = πλc

(
f 2 + λcS(∂V )

8
f
)

(equa-
tion (91)) is the stationary Wigner distribution at any point x ∈ V , and γ(x1,x2, f) is the
spectral correlation (44) presented in Section 3.6.4.

5.1. Asymptotic expansion of the power spectrum
As explained in Section 4.3, we will now distinguish the two following cases for y = y1

and small values of z = y1 − y2:

• if y belongs to the vicinity V ⊂ V of an interior point s ∈ V , then the local power
spectrum Λ̂0(k,V) introduced in Section 4.4.1 is asymptotically dominated by the direct
path between y1 and y2 (Section 5.1.1);

• if y belongs to the vicinity V ⊂ V of a boundary point s ∈ ∂V , then the local power
spectrum Λ̂0(k,V) is asymptotically dominated by both the direct path and the first
reflection on the boundary near s (Section 5.1.2).

Important remark: from now on and until the end of this paper, all the mathematical
expressions will hold as asymptotic expansions when the frequency f or the wave number,
denoted either k or κ, tends to infinity, as in Section 3.5.1. However, for simplicity of notation,
the remainder of the expansion (such as O( 1

k
)) will not be written explicitly. Nevertheless,

the reader should keep in mind that even when we write the expression of a function of space,

16Since Γn(z) =
∫
k∈R3 e

2ıπk⊤zdΓ̂n(k), the Helmholtz equation (4) applied to Γn(z) yields 4π2(k2n −
∥k∥2)Γ̂n(k) = 0, therefore either k ∈ S(0, kn) or Γ̂n(k) = 0.
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such as Λ0(z,V) in the following, without saying it, we imply that this expression holds at
high frequency, i.e. that the resulting expression of its 3D Fourier transform (2), denoted
Λ̂0(k,V), holds asymptotically when ∥k∥2 → +∞.

5.1.1. Interior points
In a vicinity V ⊂ V of a point s ∈ V , we have

B(y1,y2) = δ(y1 − y2) (72)

(see Figure 1 in Section 4.3). Substituting this equation into (63), we get: Λ0(z,V) =

λ2|V| δ(z), whose 3D Fourier transform (2) is Λ̂0(k,V) = λ2|V|. So by integrating Λ̂0(k,V)
over the sphere S(0, k), we get the expression of Λ̂0(k,V) defined in (64):

Λ̂0(k,V) = 4πλ2|V|k2. (73)

Then, based on (62) and (73), the spectral representation theorem (see Theorem 8.4.IV
in (Daley and Vere-Jones, 2003, Chapter 8)) shows that the WSS process ξ(y,V) can be
represented as17

ξ(y,V) = λ2|V|+
∫
k∈R3

e2ıπk
⊤(y−s)dξ̂0(k,V) (74)

where k 7→ ξ̂0(k,V) is a centered complex random measure with uncorrelated increments on
R3, which is Hermitian symmetric w.r.t. k, such that for any Borel set K ⊂ R3,

E
[(
ξ̂0(K,V)

)2]
= 0 and E

[∣∣∣ξ̂0(K,V)∣∣∣2] = ∫
k∈R+

S(K∩S(0,k))
S(S(0,k)) Λ̂0(k,V) dk (75)

with Λ̂0(k,V) the nonnegative spectral measure on R+ × V expressed in (73).

5.1.2. Boundary points
As done in (Balian and Bloch, 1970, Section III-A), we will now use the plane approx-

imation: the boundary surface in the vicinity V ⊂ V of point s ∈ ∂V , i.e. V ∩ ∂V , will
be approximated by V ∩ T (s), where T (s) is the plane tangent to ∂V at s (see Figure 2 in
Section 4.3). So in a vicinity V ⊂ V of s ∈ ∂V , equation (18) shows that

B(y1,y2) = δ(y1 − y2) + δ(y1 − y2 + 2n(s)n(s)⊤(y2 − s)) (76)

where y2 − 2n(s)n(s)⊤(y2 − s) is the image of y2 by the reflection symmetry through
plane T (s). Then by substituting (76) into (63), we get

Λ0(z,V) = λ2
∫
y∈V δ(z) + δ(z + 2n(s)n(s)⊤(y − z − s)) dy

= λ2
(
|V|δ(z) + 1

2
δ(P⊤

T (s)z)
∫
y∈V δ(n(s)

⊤(y − s− z
2
)) dy

)
= λ2

(
|V|δ(z) + S(V∩T (s))

2
δ(P⊤

T (s)z)H(−n(s)⊤z)
)
,

17Note that vector s is subtracted to y in (74), because s is locally the origin of space in V.
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which holds asymptotically when z → 0, and where P T (s) denotes any 3 × 2 orthonormal
matrix whose range space is parallel to plane T (s). Its 3D Fourier transform (2) is

Λ̂0(k,V) = λ2
(
|V|+ S(V∩T (s))

4

(
−1

ıπn(s)⊤k
+ δ(n(s)⊤k)

))
.

So by integrating Λ̂0(k,V) over the sphere S(0, k), we get the expression of Λ̂0(k,V) defined
in (64):

Λ̂0(k,V) = 4πλ2
(
|V|k2 + S(V∩T (s))

8
k
)
, (77)

where we have used the fact that the circumference of the circle S(0, k) ∩ n(s)⊥ is 2πk.
Then, based on (62) and (77), the spectral representation theorem shows that the WSS

process ξ(y,V) can be represented as in (74), where k 7→ ξ̂0(k,V) is still a centered complex
random measure with uncorrelated increments on R3, which is Hermitian symmetric w.r.t. k,
such that for any Borel set K ⊂ R3, equation (75) holds with Λ̂0(k,V) the nonnegative
spectral measure on R+ × V expressed in (77).

5.1.3. Integrated power spectrum
If we assume that the random processes ξ(y,V1) and ξ(y,V2) are uncorrelated as soon

as V1 ∩ V2 = ∅, then by integrating over all points s ∈ V , we get from (73), (74), and (77)
the following spectral representation of the resulting WSS random process B(y):

B(y) = λ+

∫
k∈R3

∫
s∈V

e2ıπk
⊤(y−s)dξ̂0(k, s) (78)

where ξ̂0(k, s) is a centered complex random measure with uncorrelated increments on R3×V ,
which is Hermitian symmetric w.r.t. k, such that for any Borel sets K ⊂ R3 and V ⊂ V ,
equation (75) holds with Λ̂0(k,V) the nonnegative spectral measure on R+ × V defined as

Λ̂0(k,V) = 4πλ2
(
|V|k2 + S(V∩∂V )

8
k
)
, (79)

where S(V ∩ ∂V ) replaces S(V ∩ T (s)) in (77).
Hence the B-function is a WSS random process of mean µB = λ, whose power spectrum

Γ̂B(k) is obtained by substituting (79) into (65):

Γ̂B(k) = Λ̂0(k, V ) = 4πλ
(
k2 + λS(∂V )

8
k
)
. (80)

5.2. Green’s function
Substituting (12) and (78) into (14) leads to the following spectral representation of the

Green’s function:

G(x, k) = µG(k) +

∫
k∈R3

∫
s∈V

e2ıπk
⊤(x−s)

4π2(∥k∥22 − k2)
dξ̂0(k, s) (81)

with
µG(k) = λ Ĝ0(0, k) = −

λ

4π2k2
. (82)
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5.3. Source response
Substituting (81) into (8) leads to

ġ(x, t) = µġ(t)− c2
∫
k∈R3

∫
s∈V

(∫
f∈R

2ıπf e2ıπk
⊤(x−s)

4π2(f 2 − c2∥k∥22)
e2ıπftdf

)
dξ̂0(k, s), (83)

where (82) implies

µġ(t) =

∫
f∈R

µG(
f
c
) 2ıπf e2ıπftdf = λc2

2
sign(t). (84)

We note that the integrand in the integral over f in (83) has two real poles, one at f = c∥k∥2
and one at f = −c∥k∥2. By applying the residue theorem to (83), we get a simplified
expression of ġ(x, t):

ġ(x, t) = µġ(t) +
c2

2
sign(t)

∫
k∈R3

cos(2πc∥k∥2t)
∫
s∈V

e2ıπk
⊤(x−s)dξ̂0(k, s). (85)

Substituting (85) into (11) leads to the same factorization of the source response as in (22):

p(x, t) = H(t) q(x, t) (86)

where the random process q(x, t) admits the following spectral representation:

q(x, t) = c2
(
λ+

∫
k∈R3 cos(2πc∥k∥2t)

∫
s∈V e

2ıπk⊤(x−s)dξ̂0(k, s)
)

(87)

which is to be compared to (23).
Based on (87), the ACF of q defined in (45) is a tempered distribution, so that ∀ψ(f) ∈

S(R) such that ψ(0) = 0 at f = 0 (remember that we are working under the high frequency
Assumption 2),〈

Γq(x1,x2, t+
τ
2
, t− τ

2
)
∣∣∣ψ̂(τ)〉 = c4

4

∫
k∈R+

sinc(2πk∥x1 − x2∥2) (ψ(ck) + ψ(−ck)) Γ̂B(k)dk

(88)
where the power spectrum Γ̂B(k) was expressed in (80).

5.4. Wigner distribution
By substituting (88) into (46), we get the asymptotic expression of the Wigner distribu-

tion of the random process q, which holds when f → +∞:

Wq(x1,x2, f, t) =
c3

4
sinc(2π f

c
∥x1 − x2∥2) Γ̂B(

f
c
). (89)

Then by substituting (80) into (89), we get

Wq(x1,x2, f, t) = Wq(f) γ(x1,x2, f) (90)

where
Wq(f) ≜ Wq(x,x, f, t) = πλc

(
f 2 + λcS(∂V )

8
f
)

(91)

is the stationary Wigner distribution at any point x ∈ V , and γ(x1,x2, f) is the spectral
correlation defined in equation (44).
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6. General Theory (Robin’s boundary condition)

Let us now move on to Robin’s boundary condition. Our main purpose will be to prove
that the specific admittance β̂ induces a non-linear distortion of the wave numbers:

κ(k) = k + ıλ
8π

∫
s∈∂V

(
ln
(

1+β̂(s,k)

1−β̂(s,k)

)
− β̂(s, k)2 ln

(
β̂(s,k)+1

β̂(s,k)−1

)
+ 2β̂(s, k)

)
dS(s)

(see equation (117)) and we will show that this equation is related to Sabine’s and Eyring’s
formulas presented in Section 3.6.2.

Then we will be able to deduce the closed-form expression of the Wigner distribution
Wq(x1,x2, f, t) of the random process q between two points x1 and x2 (Section 6.6). We
will show that it can be factorized as in Polack’s formula (43):

Wq(x1,x2, f, t) = Wq(x1,x2, f) e
−2α( f

c
)t

(see equation (122)) where α(k) is the spectral attenuation, and Wq(x1,x2, f) involves a
term (115) that generalizes the spectral correlation (44) in Section 3.6.4.

6.1. Asymptotic expansion of the pseudo spectrum
As explained in Section 4.3, we will now distinguish the two following cases for y = y1

and small values of z = y1 − y2:

• if y belongs to the vicinity V ⊂ V of an interior point s ∈ V , then the pseudo spectrum
Ĵζ introduced in Section 4.4.2 is asymptotically dominated by the direct path between
y1 and y2 (Section 6.1.1);

• if y belongs to the vicinity V ⊂ V of a boundary point s ∈ ∂V , then the pseudo
spectrum Ĵζ is asymptotically dominated by both the direct path and the first reflection
on the boundary near s (Section 6.1.2).

6.1.1. Interior points
In a vicinity V ⊂ V of a point s ∈ V , the B-function is as in (72). By substitut-

ing (72) into (67), we get Jζ(z,V , k) = λ2|V| δ(z), whose 3D Fourier transform (2) is
Ĵζ(κ,V , k) = λ2|V|. So by integrating Ĵζ(κ,V , k) over the sphere S(0, κ), we get the ex-
pression of Ĵζ(κ,V , k) defined in (68):

Ĵζ(κ,V , k) = 4πλ2|V|κ2. (92)

6.1.2. Boundary points
As in Section 5.1.2, we will now use the plane approximation: the boundary surface in

the vicinity V ⊂ V of point s ∈ ∂V , i.e. V ∩ ∂V , will be approximated by V ∩ T (s), where
T (s) is the plane tangent to ∂V at s (see Figure 2 in Section 4.3). So in a vicinity V ⊂ V

of s ∈ ∂V , if Im(β̂(s, k)) < 0, equation (29) shows that

B(y1,y2, k) = δ(y1 − y2) + δ(y1 − y2 + 2n(s)n(s)⊤(y2 − s))

−4ıπkβ̂(s, k)H(n(s)⊤(y1 + y2 − 2s))e−2ıπkβ̂(s,k)n(s)⊤(y1+y2−2s)δ(P⊤
T (s)(y1 − y2))

(93)
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where the local origin of space s ∈ V has been subtracted to both vectors y1 and y2.
By substituting (93) into (67), we get

Jζ(z,V , k) = λ2
∫
y∈V δ(z) + δ(z + 2n(s)n(s)⊤(y − z − s))

−4ıπkβ̂(s, k)H(n(s)⊤(2y − z − 2s))e−2ıπkβ̂(s,k)n(s)⊤(2y−z−2s)δ(P⊤
T (s)z) dy

= λ2
(
|V|δ(z) + δ(P⊤

T (s)z)
∫
y∈V

1
2
δ(n(s)⊤(y − s− z

2
))

−4ıπkβ̂(s, k)H(n(s)⊤(y − s− z
2
))e−4ıπkβ̂(s,k)n(s)⊤(y−s−z

2
) dy

)
= λ2

(
|V|δ(z) + S(V ∩ T (s))δ(P⊤

T (s)z)H(−n(s)⊤z)(
1
2
− 4ıπkβ̂(s, k)

∫ 0

u=
n(s)⊤z

2

e
−4ıπkβ̂(s,k)

(
u−n(s)⊤z

2

)
du

))
= λ2

(
|V|δ(z) + S(V ∩ T (s))δ(P⊤

T (s)z)H(−n(s)⊤z)
(
−1

2
+ e2ıπkβ̂(s,k)n(s)⊤z

))
which holds asymptotically when z → 0, where P T (s) denotes any 3×2 orthonormal matrix
whose range space is parallel to plane T (s), and where we have introduced the change of
variable u = n(s)⊤(y − s). Its 3D Fourier transform (2) is

Ĵζ(κ,V , k) = λ2
(
|V|+ S(V∩T (s))

4π

(
1

ın(s)⊤κ
− πδ(n(s)⊤κ) + 2ı

n(s)⊤κ−kβ̂(s,k)

))
. (94)

Then the expression of Ĵζ(κ,V , k) defined in (68) is obtained by integrating Ĵζ(κ,V , k) over
the sphere S(0, κ). Considering the last term in (94), we first note that

1
2π

∫
κ∈S(0,κ)

1

n(s)⊤κ−kβ̂(s,k)
dS(0, κ) = κ2

∫ 1

u=−1

1

κu−kβ̂(s,k)
du = κ

(
ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
− ıπ

)
(95)

where ln(.) denotes the principal branch of the complex logarithm, to which the term ıπ is
subtracted rather than added, because the sign of the imaginary part of the left member
of (95) is negative, since we assumed that Im(β̂(s, k)) < 0, whereas the sign of the imaginary
part of the logarithm in the right member is positive, for the same reason.

By substituting equations (94) and (95) into (68), we get

Ĵζ(κ,V , k) = 4πλ2
(
|V|κ2 + S(V∩T (s))

4π

∫
κ∈S(0,κ)

(
− δ(n(s)⊤κ)

4
+ ı 1

2π
1

n(s)⊤κ−kβ̂(s,k)

))
dS(κ)

= 4πλ2
(
|V|κ2 + S(V∩T (s))

4π

(
−πκ

2
+ ıκ

(
ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
− ıπ

)))
= 4πλ2

(
|V|κ2 + S(V ∩ T (s))κ

(
1
8
+ ı

4π
ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

)))
(96)

where again we have used the fact that the circumference of the circle S(0, κ)∩n(s)⊥ is 2πκ.
Equation (96) is to be compared to (77), that we obtained in the case of Neumann’s

boundary condition (β̂ = 0).
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6.1.3. Integrated pseudo spectrum
If we assume that the random processes ζ(y,V1, k) and ζ(y,V2, k) are pseudo-uncorrelated

as soon as V1 ∩V2 = ∅, then by integrating (92) and (96) over all points s ∈ V , the isotropic
pseudo spectrum of B defined in (70) is

ĴB(κ, k) = Ĵζ(κ, V , k) = 4πλ

(
κ2 + λκ

(
S(∂V )

8
+ ı

4π

∫
s∈∂V

ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
dS(s)

))
(97)

where dS(s) denotes the infinitesimal surface element that replaces S(V ∩ T (s)) in (96).
Equation (97) is to be compared to (80), that we obtained in the case of Neumann’s

boundary condition. Note that, similarly to (71), we have

ĴB(κ, k) = λ2 ρ(κ, k), (98)

where ρ(κ, k) denotes the analytic continuation of the asymptotic expansion of the modal
density in (39), from a purely imaginary to a complex-valued specific admittance β̂(s, k) 18.

6.2. Wave numbers distortion
We will now show that the power spectrum Γ̂B(K) in (80) and the pseudo spectrum

ĴB(κ, k) in (97) are related through the equation

Γ̂B(K) = ĴB(K(K, k), k) dK(K,k)
dK

. (99)

In (99), function K 7→ K(K, k) is such that K(K, 0) = K and K(0, k) = 0, and it can be
interpreted as a distortion of the wave number K when the specific admittance β̂ is non-zero.

Indeed, with the change of variable κ = K(K, k) in the right member of (99), integrat-
ing (99) w.r.t. K yields ∫ K

0

Γ̂B(κ)dκ =

∫ K(K,k)

0

ĴB(κ, k) dκ. (100)

Then substituting (80) and (97) into (100) yields∫ K

0

(
κ2 + λS(∂V )

8
κ
)
dκ =

∫ K(K,k)

0

(
κ2 + λS(∂V )

8
κ+ ıλ

4π

∫
s∈∂V

κ ln
(

κ−kβ̂(s,k)

κ+kβ̂(s,k)

)
dS(s)

)
dκ,

which can be rewritten

K3

3
+ λS(∂V )

8
K2

2
= K(K,k)3

3
+ λS(∂V )

8
K(K,k)2

2

+ ıλ
4π

∫
s∈∂V

(
K(K,k)2

2
ln
(

K(K,k)−kβ̂(s,k)

K(K,k)+kβ̂(s,k)

)
− k2β̂(s,k)2

2
ln
(

kβ̂(s,k)−K(K,k)

kβ̂(s,k)+K(K,k)

)
− kβ̂(s, k)K(K, k)

)
dS(s).

(101)

18Equation (98) can be easily proved by using the well-known identity arctan(x) = 1
2ı ln

(
1+ıx
1−ıx

)
.
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Equation (101) defines function K(K, k) implicitly, but it is hardly exploitable. Instead,
we will prove that asymptotically (i.e. when K → +∞), K(K, k) admits the following
asymptotic expansion:

K(K, k) = K+ ıλ
8π

∫
s∈∂V

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
−
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
+ 2kβ̂(s,k)

K(K,k)

)
dS(s).

(102)
Indeed, let ϵ(K, k) = K(K, k) − K, and suppose that K(K, k) is large with respect to

both ϵ(K, k) and λS(∂V ). Then by substituting K = K(K, k)− ϵ(K, k) in the left member
of (101) and by then dividing both members by K(K, k)2, we get

ϵ(K, k) = ıλ
8π

∫
s∈∂V

(
ln
(

K(K,k)+kβ̂(s,k)

K(K,k)−kβ̂(s,k)

)
−
(

kβ̂(s,k)
K(K,k)

)2
ln
(

kβ̂(s,k)+K(K,k)

kβ̂(s,k)−K(K,k)

)
+ 2kβ̂(s,k)

K(K,k)

)
dS(s),

which finally proves (102).
We note that function K in (102) satisfies the following symmetry property:

K(K,−k) = K(K, k). (103)

6.3. Green’s function
The tempered distribution JB(z, k) is such that, for any analytic function ψ ∈ S(R3),〈

JB(z, k)
∣∣∣ψ̂(z)〉 =

〈
ĴB(∥κ∥2,k)
4π∥κ∥22

∣∣∣ψ(κ)〉
=

∫
κ∈R3

ĴB(∥κ∥2,k)
4π∥κ∥22

ψ(κ) dκ

=
∫
κ∈R+

ĴB(κ, k) ψ̆(κ) dκ,

(104)

where ĴB(∥κ∥2,k)
4π∥κ∥22

is the isotropic 3D Fourier transform of JB(z, k) (which sums to ĴB(∥κ∥2, k)
on the sphere S(0, ∥κ∥2)), and ψ̆(κ) is a rapidly decreasing analytic function:

ψ̆(κ) =
1

4πκ2

∫
κ∈S(0,κ)

ψ(κ)dS(κ).

Then, by analytic continuation of the pseudo spectrum ĴB(κ, k) in (97) and of the analytic
function ψ̆(κ), the Cauchy’s integral theorem applied to the last member of (104) proves that〈

JB(z, k)
∣∣∣ψ̂(z)〉 =

∫
κ∈K(R+,k)

ĴB(κ, k) ψ̆(κ) dκ. (105)

Indeed, function K(., k) is such that limK→0+ K(K, k) = 0 and limK→+∞K(K, k) −K = 0,
and ∀K > 0, function κ 7→ ĴB(κ, k) in (97) is holomorphic inside the simply closed contour
C = [0, K] ∪ K([0, K], k) ∪ [K,K(K, k)].

By applying the change of variable κ = K(K, k) in (105), we then get〈
JB(z, k)

∣∣∣ψ̂(z)〉 =
∫
K∈R+

ĴB(K(K, k), k) ψ̆(K(K, k)) dK(K,k)
dK

dK

=
∫
K∈R+

Γ̂B(K) ψ̆(K(K, k)) dK
(106)
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where we have substituted (99).
In other respects, equation (13) shows that

JB(z, k) =
(
∆+ 4π2k2

)2
JG(z, k). (107)

We deduce from (106) and (107) that〈
JG(z, k)

∣∣∣ (∆+ 4π2k2
)2
ψ̂(z)

〉
=
〈
JB(z, k)

∣∣∣ψ̂(z)〉 =

∫
K∈R+

Γ̂B(K) ψ̆(K(K, k)) dK. (108)

Therefore the tempered distribution JG(z, k) can equivalently be written as a function:

JG(z, k) =

∫
K∈R+

sinc(2πK(K, k)∥z∥2)
(4π2(K(K, k)2 − k2))2

Γ̂B(K) dK, (109)

which indeed satisfies equation (108) 19.
Then, if we assume that the spectral representation of the random process G(x, k) is

a distortion of the spectral representation (81) that we obtained in the case of Neumann’s
boundary condition, we can write

G(x, k) = µG(k) +

∫
k∈R3

∫
s∈V

e
2ıπ

K(∥k∥2,k)
∥k∥2

k⊤(x−s)

4π2(K(∥k∥2, k)2 − k2)
dξ̂0(k, s), (110)

where ξ̂0 denotes the same complex random measure as in (81), and with the same mean as
in (82): µG(k) = µB(k) Ĝ0(0, k) = − λ

4π2k2
, where µB(k) = λ was given in (69).

Indeed, the PCF of G(x, k) in (110) satisfies (109):

cov[G(x1, k), G(x2, k)] =
∫
k∈R3

∫
s∈V

e
2ıπ

K(∥k∥2,k)
∥k∥2

k⊤(x1−s)

4π2(K(∥k∥2,k)2−k2)
e
−2ıπ

K(∥k∥2,k)
∥k∥2

k⊤(x2−s)

4π2(K(∥k∥2,k)2−k2)
dΛ̂0(∥k∥2,s)

4π∥k∥22
dk

=
∫
k∈R3

e
2ıπ

K(∥k∥2,k)
∥k∥2

k⊤(x1−x2)

(4π2(K(∥k∥2,k)2−k2))2
Λ̂0(∥k∥2,V )

4π∥k∥22
dk

= JG(x1 − x2, k),

due to (65).
Finally, note that the expression of G(x, k) in equation (110) involves function K(K, k)

defined in (102), which depends analytically on β̂. Even though (110) has been established
by assuming that Im(β̂) < 0 (which permitted us to use the expression of the B-function
in (29)), in other respects we know that the Green’s function of the Helmholtz equation,
in the case of the Robin boundary condition with a Lipschitz continuous boundary, is an
analytic function of the specific admittance20 β̂. Therefore we can conclude that the same
formula (110) also holds when Im(β̂) > 0.

19(108) can be retrieved from (109) by using the identity
(
∆+ 4π2k2

)2 ( sinc(2πK(K,k)∥z∥2)

(4π2(K(K,k)2−k2))2

)
=

sinc(2πK(K, k)∥z∥2).
20The analyticity of function G(x,x0, k) in (33) w.r.t. β̂ is a corollary of Theorem 1.1 in (Bögli et al.,

2022).
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6.4. Source response
Substituting (110) into (8) leads to

ġ(x, t) = µġ(t)− c2
∫
k∈R3

∫
s∈V

∫
f∈R

2ıπf e
2ıπ

K(∥k∥2,
f
c )

∥k∥2
k⊤(x−s)

4π2(f 2 − c2K(∥k∥2, fc )2)
e2ıπftdf

 dξ̂0(k, s) (111)

with µġ(t) as in (84).
Let κ(k) ∈ C be the unique solution to the equation κ(k) = K(k, κ(k)) with both

nonnegative real and imaginary parts. Then because of the symmetry property (103), we
get K(k,−κ(k)) = κ(k). Then the equation f 2 = c2K(k, f

c
)2 admits two solutions f = cκ(k)

and f = −cκ(k), which are both in the upper half complex plane.
By applying the residue theorem to (111), we thus get21:

ġ(x, t) = µġ(t) + c2H(t) Re

(∫
k∈R3

∫
s∈V

e
2ıπ
(

κ(∥k∥2)
∥k∥2

k⊤(x−s)+c κ(∥k∥2)t
)
dξ̂0(k, s)

)
(112)

where we have used the symmetry property (103). By substituting (84) and (112) into (36),
we retrieve (86), with the following spectral representation of q:

q(x, t) = c2
(
λ+Re

(∫
k∈R3

∫
s∈V

e
2ıπ
(

κ(∥k∥2)
∥k∥2

k⊤(x−s)+c κ(∥k∥2)t
)
dξ̂0(k, s)

))
(113)

which is to be compared to the discrete expression (37) established before spectral smoothing,
and which generalizes (87) that we obtained in the case of Neumann’s boundary condition
to β̂ ̸= 0. Based on (113), the ACF of q defined in (45) is a tempered distribution, so that
∀ψ(f) ∈ S(R) such that ψ(0) = 0 at f = 0 (remember that we are working under the high
frequency Assumption 2),〈

Γq(x1,x2, t+
τ
2
, t− τ

2
)
∣∣∣ψ̂(τ)〉 = c4

4

∫
k∈R+

∫
s∈V e

−4πc Im(κ(k))t(
γ(x1 − s,x2 − s, κ(k))ψ(cRe(κ(k))) + γ(x1 − s,x2 − s, κ(k))ψ(−cRe(κ(k)))

)
dΛ̂0(k, s)dk

(114)
where the spectral measure Λ̂0(k,V) was defined in (79), and function γ is defined as
∀y1,y2 ∈ R3, ∀κ ∈ C,

γ(y1,y2, κ) = sinc

(
2π

√
(κy1 − κy2)

⊤ (κy1 − κy2)

)
(115)

21Actually, the expression in (112) is incomplete, because function f 7→ e
2ıπ

K(∥k∥2,
f
c
)

∥k∥2
k⊤(x−s) in the nu-

merator of the fraction in (111) has its own singularities. As we did in Section (3.4.2) regarding function
f 7→ φn(x0,

f
c )φn(x,

f
c ) in (34) (cf. footnote 8), we will ignore these singularities, which amounts to assume

that none of them is located below the set of poles ∪k∈R+
{cκ(k)} when Re(κ)→ +∞.
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where sinc(.) denotes the analytic continuation of the cardinal sine function on C, and
√
(.)

can denote any of the two complex square roots of opposite sign, since function sinc(.)
in (115) is even. Function γ defined in (115) generalizes the γ function (44) of the spectral
correlation introduced in Section 3.6.4. Finally, equation (114) generalizes equation (88)
that we obtained in the case of Neumann’s boundary condition to β̂ ̸= 0.

6.5. Simplification of the wave numbers distortion
In Section 6.4, κ(k) was defined as the unique solution to the equation κ(k) = K(k, κ(k))

with both nonnegative real and imaginary parts. Then by substituting K ← k and k ← κ(k)
into equation (102), we get the asymptotic expansion

κ(k) = k + ıλ
8π

∫
s∈∂V

(
ln
(

1+β̂(s,κ(k))

1−β̂(s,κ(k))

)
− β̂(s, κ(k))2 ln

(
β̂(s,κ(k))+1

β̂(s,κ(k))−1

)
+ 2β̂(s, κ(k))

)
dS(s).

(116)
Equation. (116) provides an implicit expression of function κ(k). Note that κ(k) − k is

bounded. Thus if limk→+∞
dβ̂(s,k)

dk
= 0, then β̂(s, κ(k)) ∼

k→+∞
β̂(s, k).

Eq. (116) can then be simplified into an explicit expression:

κ(k) = k + ıλ
8π

∫
s∈∂V

(
ln
(

1+β̂(s,k)

1−β̂(s,k)

)
− β̂(s, k)2 ln

(
β̂(s,k)+1

β̂(s,k)−1

)
+ 2β̂(s, k)

)
dS(s). (117)

Note that the wave number distortion in (117) can equivalently be written in the following
form:

κ(k) = k + ıλ
4π

∫
s∈∂V

(∫ 1

u=0

ln
(

u+β̂(s,k)

u−β̂(s,k)

)
u du

)
dS(s),

which implies

Im(κ(k)) = λ
8π

∫
s∈∂V

(∫ 1

u=0

ln

(∣∣∣u+β̂(s,k)

u−β̂(s,k)

∣∣∣2)u du) dS(s). (118)

Since Re(β̂(s, k)) ≥ 0, this last expression confirms that Im(κ(k)) is nonnegative.

6.6. Wigner distribution
By substituting (114) into (46), we get the asymptotic expansion of the Wigner distribu-

tion of the random process q, which holds when f → +∞:

Wq(x1,x2, f, t) =
c4

4

∫
l∈R+

δ(f − cRe(κ(l))e−4πcIm(κ(l))t

∫
s∈V

γ(x1 − s,x2 − s, κ(l)) dΛ̂0(l, s)dl

(119)
where γ(.) was defined in (115) and the spectral measure Λ̂0(l,V) in (79). With the change
of variable k = Re(κ(l)), equation (119) yields asymptotically:

Wq(x1,x2, f, t) =
c3

4
e−4πcIm(κ( f

c
))t

∫
s∈V

γ
(
x1 − s,x2 − s, f

c
+ ıIm(κ(f

c
))
)
dΛ̂1(f

c
, s), (120)
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where the distorted spectral measure Λ̂1(k,V) is expressed as

Λ̂1(k,V) = Λ̂0((Reκ)−1(k),V)
(Reκ)′((Reκ)−1(k))

. (121)

In addition, equation (120) can be rewritten

Wq(x1,x2, f, t) = Wq(x1,x2, f) e
−2α( f

c
)t (122)

where

Wq(x1,x2, f) ≜ Wq(x1,x2, f, 0) =
c3

4

∫
s∈V

γ
(
x1 − s,x2 − s, f

c
+ ıIm(κ(f

c
))
)
dΛ̂1(f

c
, s)

(123)
and (117) yields the expression of the spectral attenuation:

α(k) ≜ 2πc Im(κ(k))

= λc
8

∫
s∈∂V

(
ln

(∣∣∣1+β̂(s,k)

1−β̂(s,k)

∣∣∣2)+ 2Re
(
β̂(s, k)

(
2− β̂(s, k) ln

(
β̂(s,k)+1

β̂(s,k)−1

))))
dS(s).

We note that the Wigner distribution Wq(x1,x2, f, t) in (122) has the same factorized
form as the Polack time-frequency distribution (43) (which was originally known only for
x1 = x2), introduced in Section 3.6.3. Moreover, we get the closed-form expression of the
reverberation time in mixing rooms:

T60(f) ≜
3 ln(10)

α( f
c
)

= 24 ln(10)
c

|V |∫
s∈∂V

ln

∣∣∣∣∣1+β̂(s, f
c
)

1−β̂(s, f
c
)

∣∣∣∣∣
2
+2Re

(
β̂(s, f

c
)

(
2−β̂(s, f

c
) ln

(
β̂(s, f

c
)+1

β̂(s, f
c
)−1

)))dS(s)

.

(124)
Equation (124) may look hardly interpretable, but actually equation (118) shows that (124)
can be rewritten in exactly the same form as Eyring’s formula (41), provided that the average
absorption coefficient a(s, f) is defined so that

1− a(s, f) = exp (⟨ln (1− a(s, f, u))⟩) , (125)

with

⟨ln (1− a(s, f, u))⟩ =
∫ 1
u=0 ln(1−a(s,f,u))u du∫ 1

u=0 u du
=

∫ π
2

θ=0

ln (1− a(s, f, cos(θ))) sin(2θ) dθ. (126)

In (126), ⟨ln (1− a(s, f, u))⟩ denotes the average value of ln (1− a(s, f, u)) for all possible
angles of incidence θ, where the angle-dependent absorption coefficient a(s, f, u) with u =
cos(θ) was defined in (28). This average is weighted by u, which is proportional to the
apparent area of the surface element dS(s) for the incident plane wave of angle θ.

Note that the expression of the average absorption coefficient a(s, f) in (125) involves a
geometric mean rather than an arithmetic mean over all angles of incidence. However, when
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the absorption coefficient a(s, f, u) is small, equations (124), (125) and (126) lead exactly
to Sabine’s formula (40), where a(s, f) =

∫ π
2

θ=0
a(s, f, cos(θ)) sin(2θ) dθ is exactly the Paris

formula of the average absorption coefficient for a random and uniformly distributed sound
incidence (Kuttruff, 2014, Chapter 2).

Finally, when x1 = x2, by substituting (115) into (123), we get the simplified expression
of the power distribution over space at frequency f :

Wq(x,x, f) =
c3

4

∫
s∈V

sinhc
(
4πIm(κ(f

c
))∥x− s∥2

)
dΛ̂1(f

c
, s)

where sinhc denotes the hyperbolic cardinal sine function: sinhc(u) = sinh(u)
u

. Since the sinhc
function is strictly convex, Wq(x,x, f) is a strictly convex function of x (as a sum of strictly
convex functions), which reaches its minimum value at some point xmin which is a weighted
mean of all points in V . Moreover, function Wq(x,x, f) increases exponentially with the
distance ∥x− xmin∥.

7. Limitations of the approach and future work

In this section, we discuss some current limitations of the statistical wave field theory,
and show how they will be overcome in future work.

7.1. Non-mixing billiards
In this paper, we have addressed the most usual case of mixing billiards, where the

position x(t) and the direction d(t) of any ray trajectory are jointly uniformly distributed
in the phase space V × S(0, 1) (cf. Section 3.6.1). This property is related to the geometric
shape of the domain, and it has been translated into the language of the probability theory
through Assumptions 1 and 3 in Section 4. As explained in Section 3.5.2, it guarantees that
the oscillations in the power spectrum Γ̂B (or in the pseudo spectrum ĴB), which are not
accounted for in equations (80) and (97), are indeed negligible. However, some common
geometric shapes are non-mixing, so it will be interesting to study how the statistical wave
field theory can be generalized to such geometries.

For instance, we will address the case of non-mixing and non-ergodic billiards, in which
the position space V is still explored in an ergodic manner by any ray trajectory, but not the
direction space S(0, 1). This is e.g. the case of the cuboid, where almost all trajectories reach
almost all positions, but only take eight different directions (Polack, 1992). Assumption 3
will then be relaxed: the isotropy assumption will be replaced by a detailed mathematical
study of the dynamical process which leads to a complete isotropy in the case of mixing
billiards, and which is left incomplete in other geometric shapes. We will then show that
the wave vector space is distorted in an anisotropic way when the specific admittance is
non-zero, resulting in an exponential decay rate that depends not only on the wave number,
but also on the wave vector direction.

In other respects, Polack (1992) also mentions the case of billiards whose phase space
breaks down into a finite number of distinct subsets. In this case, each trajectory explores
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one subset only, in a mixing manner. The statistical wave field theory can be adapted to
this kind of billiard, by computing different space-averaged statistics of the B-function in
every subset.

7.2. Wave-related phenomena
In this paper, the statistical wave field theory has been introduced as a high frequency ap-

proximation (cf. Section 4.3), which holds under the same conditions as geometric acoustics
and optics. This permitted us to approximate wave propagation by considering the trajec-
tory of rays that undergo successive specular reflections, and to establish a relationship with
the mathematical theory of dynamical billiards (cf. Section 3.6.1).

However, it is well known that the sound ray interpretation does not hold at lower
frequencies, because it ignores wave-related phenomena, such as edge diffraction. In order
to take wave phenomena into account, we will need to pursue the asymptotic expansions
introduced in Sections 5.1 and 6.1 up to the second order.

When the boundary ∂V is twice continuously differentiable, considering the relationships
between the power spectrum Γ̂B(k) and the modal density ρ(k, 0) in (71) on the one hand,
and the pseudo spectrum ĴB(κ, k) and the modal density ρ(κ, k) in (98) on the other hand,
we will introduce a second order curvature term as in (Balian and Bloch, 1970).

Moreover, in order to explicitly account for edge diffraction, when the boundary is piece-
wise twice continuously differentiable with edges and vertices, which is e.g. the case of
polyhedral surfaces, we will show that vertices actually generate negligible terms in the
asymptotic expansion, whereas edges generate a second order edge term, which will be ex-
pressed in closed-form.

Equipped with the two curvature and edge second order terms, the predictions of the
statistical wave field theory will then hold more accurately at lower frequencies.

7.3. Other limitations
Some other limitations of the basic version of the statistical wave field theory presented

in this paper are related to the other physical assumptions that we mentioned in the intro-
duction (Section 1) and at the beginning of Section 3.4:

• We assumed that the medium was free of losses. So in room acoustics, the attenuation
of sound in air is ignored in the expression of the reverberation time (124), whereas it
is often taken into account via a very simple correction term brought to Sabine and
Eyring’s equations (40) and (41) (Kuttruff, 2014, Chapter 5). A similar correction
term could be introduced in the statistical wave field theory.

• We assumed that the wave equation holds exactly in the whole domain V , which means
that the medium is homogeneous and at rest, in addition to being lossless. So wave
phenomena related to changes or fluctuations in the medium, such as refraction and
dispersion, were not considered. However, modeling a weakly turbulent or inhomoge-
neous medium is of the utmost importance in certain applications including underwater
acoustics, and could be achieved in future work, e.g. by introducing random scatterers
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as in several studies (Middleton, 1967a,b; Ol’shevskii, 1978; Middleton, 1987; Ratilal
and Makris, 2005; Abraham, 2019).

• We have considered omnidirectional punctual sources, and in future work the spa-
tial spread and the directivity of realistic physical sources could be accounted for.
Moreover, in practical applications, signal measurements involve sensors, or sensor ar-
rays, and the response and directivity of these sensors could also be accounted for, as
in (Middleton, 1967a,b) for instance.

• In this paper, all parameters of the problem, including the random source position and
the boundaries of the domain, were assumed constant over time, which excludes any
kind of Doppler effect. In future work, we could consider modeling moving sources,
receivers, medium, and boundaries (Middleton, 1967a,b; Ol’shevskii, 1978; Middleton,
1987; Abraham, 2019; Goodman, 2000; Jakeman and Ridley, 2006).

• In room acoustics, as mentioned in Section 3.4, Robin’s boundary condition as formu-
lated in (25) and (26) amounts to assuming that the room surfaces are locally reacting,
which means that the specific admittance β̂(x, k) does not depend on the angle of sound
incidence. However, there is no mathematical difficulty in relaxing this assumption by
making β̂ depend on the wave vector k instead of the wave number k.

Last, we have only investigated the first and second order statistics of the source response.
However, it is well known in acoustics that the statistics of reverberation are asymptotically
normal (Middleton, 1967b; Badeau, 2019). To retrieve this property, higher order statistics
could also be investigated, by remarking that the random process y 7→ ξ(y, s), involved in
the spectral representation of the source response and introduced in Section 4.4.1, is actually
a simple point process, at both interior and boundary points s (see Sections 5.1.1 and 5.1.2).

8. Conclusion

In this paper, we have presented the foundations of the statistical wave field theory,
which for the first time establishes mathematically the statistical properties of the solutions
to the wave equation in a bounded volume, after many reflections on the boundary surface,
in terms of power distribution and correlations, jointly over time, frequency, and space. The
first and second order statistics of the wave field have been expressed in closed-form, via
asymptotic expansions that hold at high frequency, w.r.t. the geometry and the specific
admittance of the boundary surface. In particular, the properties of second order statistics
have been highlighted by calculating the Wigner time-frequency distribution between two
space positions.

In room acoustics, the statistical wave field theory has permitted us to retrieve the well-
known statistical properties of reverberation that hold in the mixing case, which provides
a first confirmation of the theory predictions, through the experimental work of scientists
from the 19th and 20th centuries. However, the theory predictions go far beyond these few
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properties, and even though they have been derived mathematically from the wave equation
and its boundary conditions, they still need to be tested by experiments in future work22.

In Section 7, we have listed several limitations of the current version of the theory, and
proposed future developments that should permit us to overcome these limitations. Other
possible extensions of the Statistical Wave Field theory include the ones that were mentioned
by Balian and Bloch (1970) regarding the asymptotic expansion of the modal density: the
generalization of the theory to a space of arbitrary dimension, and its extension from scalar
to vector waves in order to represent electromagnetic fields, as in (Balian and Bloch, 1971), as
well as the transposition of the theory to other equations of physics, such as the Schrödinger
equation, which can also be formulated as a Sturm-Liouville problem.
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