
Towards Efficient Exploitation of Large
Knowledge Bases by Context Graphs

Nada MIMOUNI a,1, and Jean-Claude MOISSINAC b

a Center for Studies and Research in Computer Science and Communication, CNAM
Paris

b LTCI, Télécom Paris, Institut polytechnique de Paris

Abstract.
One challenge in utilizing knowledge graphs, especially with machine learning

techniques, is the issue of scalability. In this context, we propose a method to sub-
stantially reduce the size of these graphs, allowing us to concentrate on the most
relevant sections of the graph for a specific application or context. We define the
notion of context graph as an extract from one or more general knowledge bases
(such as DBpedia, Wikidata, Yago) that contains the set of information relevant to
a specific domain while preserving the properties of the original graph. We validate
the approach on a DBpedia excerpt for entities related to the Data&Musée project
and the KORE reference set according to two aspects: the coverage of the context
graph and the preservation of the similarity between its entities. The results show
that the use of context graphs makes the exploitation of large knowledge bases more
manageable and efficient while preserving the features of the initial graph.
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1. Introduction

Developments in the semantic web and Linked Open Data (LOD) over the past decade
have enabled the publication and linking of multiple structured data on the web. The LOD
cloud 2 has grown from 12 to 1314 datasets with 16308 links and from 500 million to
over 130 billion RDF triples between 2007 and 2020. These data cover several domains
such as culture, life sciences, government data or geographic data. This development has
demonstrated the interest of linking a dataset from a restricted application domain with
an external dataset in order to get a better understanding and exploitation.In the frame-
work of the Data&Musée project, an exploratory project aiming at improving the infor-
mation systems of cultural institutions, we hypothesize that the promotion of cultural
heritage can benefit from recent techniques of knowledge representation and exploration.
To do so, we need to enrich datasets related to the project domain and ensure their inter-
operability to achieve increased visibility and accessibility by a wider audience. One of
the direct consequences is the improvement of the financial conditions of cultural insti-
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tutions to ensure a better preservation of this heritage. A recognized approach to ensure
this type of data exploitation is the use of semantic web technologies, which have shown
their power for the development of knowledge in various fields such as tourism [21,1],
smart cities [7,8] or cultural heritage valorization. These techniques ensure a unified rep-
resentation of heterogeneous but related data that facilitates their linking and enrichment.
Large knowledge bases such as Yago, DBPedia, DBPedia-Fr and Wikidata are very use-
ful resources because they provide a stock of semi-structured encyclopedic knowledge
on LOD principles. But these resources pose several exploitation problems: access prob-
lems, performance problems, limitations on uses, etc. which are mainly related to their
very large size. We are interested here in the problems of scale and performance that can
arise when we want to exploit links to these large knowledge graphs. In this article, we
propose a simplified, faithful and more accessible alternative representation of a knowl-
edge base, a fortiori a large one, through a context graph. The extraction algorithm we
propose constructs a context graph for a given domain, defined by a set of representative
entities. The resulting graph preserves the properties of the original graph, while limiting
performance and scaling problems.

We evaluate the properties of the extracted graph according to two criteria: its do-
main coverage and its impact on the results of a set of similarity measures between
extracted entities. Indeed, assessing similarity between resources is crucial for several
data-driven applications, such as link discovery, clustering or ranking. We performed a
series of tests to validate our method on data from cultural institutions partners of the
Data&Musée project. The results show that the use of context graphs makes the exploita-
tion of large knowledge bases more manageable and efficient while preserving the prop-
erties of the initial graph.

In what follows, section 2 presents a state of the art on the use of contexts with
knowledge bases. Section 3 recalls the basic notions on semantic graphs, gives the defi-
nitions we use in our approach and describes the process of context graph construction.
Section 4 reviews similarity measures on knowledge graphs and presents our measure
defined for the validation of a context graph. Sections 5 and 6 describe the experiments
and validation tests performed respectively on the Paris Museums data and on the KORE
reference dataset. The conclusion and perspectives are given in section 7.

2. Related work

The notion of context has been used in several works based on the semantic web for
different applications such as the calculation of similarities between entities or between
documents, the discovery of identity links for data binding on the LOD or the vector
transformation of graphs for application to machine learning methods [19,15,2,3,20,13].
These approaches use an extract of the knowledge bases, called context, which consider
it as a part of the large graph carrying semantics for one or several resources.

Semantics of context In [11], the authors describe a concept of interest C in DBpe-
dia by a graph called a sense graph having C as its root. They propose a solution to the
problem of automatic topic labeling using DBpedia. The topics are extracted by a method
of probabilistic topic modelling (like LDA). For each concept Ci associated to a term of
an identified topic, they extract a sense graph Gi by querying all nodes located at most
two hops from Ci by recursively taking into account all links of type nskos:broader,



rdfs:subClassOf, rdf:type and dcterms:subject. The graphs Gi are then merged
to obtain the topic graph G. In the same direction, the authors in [15,2] show that the
use of contexts allows better description of entities to link them via identity links of type
owl:sameAs. An identity link is valid in a context, corresponding to a subset of proper-
ties, if two instances i1 and i2 have the same values of these properties. They postulate
that two similar instances in one context may not be similar in another with a different
subset of properties. They thus show the importance of taking into account the context
for the similarity computation. The idea of a knowledge base extract has also been stud-
ied in more specific domains such as IoT or environment to reduce the complexity of data
manipulation in these domains. [8] proposes the LOV4IoT system for building semantic
web of objects applications using domain ontologies in order to reduce search spaces
and facilitate querying. The results in [24] show the positive impact of optimizations,
such as domain constraints and neighborhood refinements, on reducing the complexity
of the inference mechanism on animal behavior knowledge bases. These optimizations
have reduced the computation time by half and thus improved the scaling.

Similarity in a context Most methods that compare resources, e.g. in terms of sim-
ilarity, in the semantic web are based on a pre-selected set of triples. For their method
of defining and computing the LCS (Least Common Subsumer: the most specific taxo-
nomic ancestor that subsumes two resources) in RDF graphs, the authors show that it is
important to make explicit the subgraph of the semantic web that serves as the context
for computing the LCS for a resource r. The context of r, called rooted r-graph [6], con-
sists of a set Tr of triples such that all resources in Tr are connected to r by a path in the
RDF graph. In [5], a LOD-based inter-entity similarity measure is defined on a context
(neighbors at depth N) extracted from the available dataset. For the inter-document sim-
ilarity computation, the authors in [3] define the semantic context of analysis extracted
from a knowledge base like DBpedia. From this context, they create a semantic context
vector that outperforms classical inter-document similarity methods. In [4], the authors
describe an algorithm for community detection and characterization based on knowledge
graphs. They address the problem of finding the context that best summarizes the com-
munities nodes. The algorithm uses a similarity measure that integrates the attributes
of the nodes described in domain-specific hierarchical knowledge graphs (HKG). These
graphs provide information relevant to a group of real-world objects.

Learning in context The use of knowledge graphs with machine learning meth-
ods has been mainly favored by the development of graph embedding techniques. This
transformation preserves the relevant properties of the original graph such as topology
(proximity between neighbors) or semantics. In this framework, [20] and [13] propose a
knowledge graph embedding that creates vectors that are more representative of entities.
The approach accounts for explicit (incoming and outgoing links and paths between pairs
of entities) and implicit (contextual connectivity patterns) contexts between unconnected
entities in this graph. An implicit context is constructed from the assumption that entities
connected to the same node are generally implicitly related to each other, even if they are
not directly linked in the graph.

Size of context Context size is a parameter that has been discussed in several works.
In their work on automatic topic labeling with DBpedia [11], the authors use a distance
of 2 jumps from the starting node. This distance was chosen following a series of tests
on the expansion of nodes which showed that as from 3 jumps, the expansion produces
very large graphs and introduces a lot of noise. For the definition of a LOD-based entity



similarity measure [5], the authors restrict themselves to paths of length 2 to retrieve all
possible equivalent resources and enrich the instantiation space of a resource in the LOD.

These works emphasize the value of using contexts. However, in these approaches,
the entire database is considered to calculate the context on the fly at the time of resource
use, which poses access problems linked to the size of the database. In our approach,
we propose to build a context graph, unique for all the resources in a domain, which
will serve as an optimized access point for the various processing operations in a given
application.

3. Domain-driven context graph

3.1. Remarks on semantic graphs

Our approach is based on knowledge bases described by an ontology in OWL and data
represented in RDF. A knowledge base corresponds to a conceptual schema and a set of
facts (statements).

Definition. Ontology An ontology O corresponds to the conceptual part of the base
(schema) which structures the knowledge in a given domain. It can be represented by
a triple O = (C,Pr,A) where C is the set of classes (concepts of a domain), Pr is the
set of properties of classes and A is the set of axioms, which specify constraints on the
properties of a class. In the following, we use T-Box to designate this conceptual part of
the knowledge (see figure 1).

Definition. Facts and knowledge graph A knowledge graph K G is defined by a
set of facts. A fact is represented by a triple of the form ⟨sub ject, predicate,ob ject⟩.
sub ject designates an element on which we want to assert a knowledge; predicate desig-
nates a property that we want to associate to the sub ject; ob ject is the value that the prop-
erty takes for this sub ject. The set of facts constitutes the A-Box of a graph (see figure
1). This definition makes K G a labeled directed graph where V is the set of nodes (ver-
tices) and E is the set of links between two nodes, links labeled by a predicate (edge). A
fact described by ⟨sub ject, predicate,ob ject⟩ ∈ E is such that sub ject,ob ject ∈ V and
predicate ∈P , a set of predicates, for example chosen in a set of properties Pr defined
in an ontology. V is the union of three disjoint sets:

V = {v | v ∈U ∪B∪L }

where U = set of URIs (unique resource identifier), B = set of blank nodes, vertices
that have a technical role to group properties without associating them to a URI,
L = set of literal values; these are typed values: strings, numerical values, dates, etc. A
predicate links two URIs or blank nodes or a URI or blank node with a literal.

E = {(v1, p,v2) | v1 ∈U ∪B,v2 ∈U ∪B∪L , p ∈P}

In our experiments, we use the French version of DBpedia as a generalist knowledge
base, because of its wide coverage and the abundance and diversity of the links it contains
and the fact that it is linked to many other bases. Figure 1 shows an example of a subgraph
K G of DBpedia.com.
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Figure 1.: Example of a subgraph K G of DBpedia.

Definition. Path A path C of length N, C = (ei)1≤i≤N , is a finite nonempty se-
quence of links of E , with N ∈ N, such that two consecutive links are adjacent. Two
links l1 and l2 are adjacent when they share a node n destination for l1 and origin for l2.
Note that links can be traversed in their normal direction or in reverse. Here is an ex-
ample of a path (Musée du Louvre, located in, Paris)(Paris, capital of,
France)(France, is a, country).

Definition. Excluded predicate We define a set of predicates which will be ex-
cluded from the paths constructed on a graph K G ; we denote this set by P such
that P ⊂ P . The set of links e labeled by predicates p ∈ P is denoted by E
such that E ⊂ E . For example, in the French DBpedia, the value of the predicate
dpb:WikiPageWikiLink is the url of the wikipedia page associated with the subject. If
we don’t use this page, we can exclude this predicate without introducing biases.

Definition. Terminal node A terminal node is a node on which we impose the stop
of the construction of a path (as if this node had no outgoing link). A path C built on a
graph K G stops if it meets a terminal node; we denote this set of nodes by V such that
V ⊂ V .

3.2. Context graph

Given a domain d and a graph K G , our goal is to extract a subgraph of K G con-
taining selected information on the domain d which we note C G (d). Our method is
based on the parts T-Box and A-Box of K G by considering nodes v ∈ (U ∪L ) and
links e ∈ (E \ E ). To reduce the size of the context graph, we take into account ob-
servations made on K G and expert knowledge, when available, about the usefulness
or uselessness of certain nodes and predicates. More precisely, the list V is defined
from V by the automatic exclusion of nodes that belong to the T-Box because of their
very general character (ex. in DBpedia: dbo:Building, dbo:Place or owl:Thing)
and structuring nouns (e.g. DBpedia page formatting, <http://fr.dbpedia.org/
resource/-Model:P.>). In parallel, the list E is defined from E by excluding links
labeled by two types of predicates: predicates considered as little or not informative
for the domain d (list fed by an expert) and predicates of base K G structuring (e.g.,
<http://dbpedia.org/ontology/wikiPageRevisionID>). These nodes and pred-
icates introduce noise without bringing any relevant information for the considered
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domain. As an example, in our experiments on DBpedia, we found 3486 nodes built
on <http://fr.dbpedia.org/\protect\discretionary{\char\hyphenchar\
font}{}{}resource/Modele:****> resulting in 2692515 links and 101235 links to
<http://www.w3.org/2004/02/skos/core#Concept>. For the purpose of our ap-
plication, we have constructed a list of excluded nodes and predicates that can be reused
for applications in other domains. The list is available here 3.

3.3. Building Process

The extraction of a context graph C G (d) of dimension N is a recursive process that stops
when the limit N is reached. The steps of the process are: (1) Seeds identification: a list
of seeds S (d) is defined for a domain of application d. In some domains this list is
obvious as in the case of museums, hotels or restaurants. In the general case, the common
practice is to refer to a reference dataset (such as IMDB for the cinema domain). A list
can also be drawn up with an expert in the field. (2) Construction of neighboring contexts:
a neighboring context C V (a) is generated for any a entity of S (d) and the list of seeds
S (d) is updated with the harvested neighbors. (3) Construction of the context graph: the
context graph C G (d) is constructed as the aggregation of all the neighboring contexts
C V of the seeds.

1. Seeds identification The seeds S (d) are nodes of K G which constitute the
starting entities for the construction of the context graph C G , S (d) = {v|∀v∈S (d),v∈
(V \ V )}. The list S (d) is defined for a domain d as the set of instances of con-
cepts representative of the domain. For example, in our case (Data&Museum project),
the starting entities correspond to the list of museums and monuments of Paris Mu-
seums and the Centre des Monuments Nationaux. Example. On figure 1: S (d) = {
dbr:Musee_Louvre, dbr:Maison_Balzac }

2. Construction of neighboring contexts A neighboring context C V of an entity
is its direct neighborhood (1-hop) in K G . It is the local structure that interacts with the
entity and reflects various aspects of that entity. More precisely, given an entity a∈S (d),
the neighboring context of a is defined as follows:

C V (a) = C S (a)∪C E (a)

where

C S (a) = {(a, p,o) | ∀(a, p,o) ∈ E ,∀p ∈ (P \P),o ∈ (U ∪L )}

C E (a) = {(s, p,a) | ∀(s, p,a) ∈ E ,∀p ∈ (P \P),s ∈U }

with C S a set of outgoing links from a while C E is a set of incoming links to a
and s or o is the node neighboring a by a link labeled by p. Note here that a /∈ V , so we
do not construct neighboring contexts for the terminal nodes. The list of seeds S (d) is
subsequently updated with the neighbors o and s collected such that o,s /∈ V . Example.
On figure 1 :

3https://gitlab.com/-/snippets/3709662
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C V (dbr:Musee_Louvre) = { (dbr:Musee_Louvre, rdf:type,
dbo:HistoricSite), (dbr:Musee_Louvre, rdf:type,
dbo:Museum), (dbr:Musee_Louvre, dbo:location, dbr:France)}
C V (dbr:Maison_Balzac) = { (dbr:Maison_Balzac,
rdf:type, dbo:Museum), (dbr:Maison_Balzac, dct:subject,
dbr:Honore_Balzac)}

3. Construction of the context graph The construction of a context graph is a
recursive process, based on the following step: C G (d) for a domain d is constructed
as the aggregation of all contexts neighboring seed nodes a ∈S (d) such that S (d) ⊂
(V \V ),

C G (d) =
⋃

a∈S (d)

C V (a)

At the end of each step, the list of seeds S (d) is updated with the harvested v
neighbors such that v /∈ V . The process is repeated N times for a context graph of depth
N. As shown by the work in section 2, N = 2 is the most interesting value for a context.
Indeed, the size of the graph increases exponentially with depth (for entities that have on
average x neighbors, at 1-hop the size is x, at 2-hop the size is x2, at 3-hop the size is x3,
etc.), going beyond 2 increases significantly the space and introduces a lot of noise. In
our experiment, at level 3 we would arrive at a graph of the same order of magnitude as
whole DBPedia. At the end of the process, C G (d) is completed with the T-Box part of
K G (here the DBpedia ontology 4) and for any node in C G (d), we ensure that a link of
type is-a exists with a concept of the part T-Box (if this link exists in the original graph
K G ). The core of the context is the graph obtained at level N− 1. The entities added
at level N are the periphery of the context.

3.4. CONTEXT : Algorithm for context graph construction

The algorithm CONTEXT (algorithm 1) constructs a context graph context from a knowl-
edge graph K G for a domain d. For a set of entities representative of a domain, the seeds
(germsATraiter), NeighborContext(g) extracts a neighbor context Cv from a knowl-
edge graph K G for each g. The final context, context, is enriched by Cv. A list of new
seeds, newSeeds, is updated with the new entities harvested after filtering the terminal
nodes with the method FilteredEntities. The exploration depth level is incremented
by 1 at each step until the desired radius limit is reached. At the end of the process, the
resulting context context is enriched by the classes of the set of entities extracted from
K G by the methods AddClasses and Entities.

4. Validation of context graphs by similarity measure

4.1. Relevance hypothesis of a context graph

The use of a context graph built from a large knowledge graph allows, as mentioned
above, to gain in performance (computing time, memory usage, etc.). This gain should
not penalize its use by methods usually based on the structure and content of the original

4https://www.dbpedia.org/resources/ontology/
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Algorithm 1 CONTEXT BUILDER
Function ContextBuilder(KG, seedsEntities, radius, f ilteredEntities)-

Input :
A knowledge graph KG
A neighborhood depth to reach radius
A set of entities which are used as seeds seedsEntities
A set of entities which are excluded from the seeds f ilteredEntities
Output: Context Graph context

1 level ← 0
2 context ← /0
3 while level < radius do
4 newSeeds← /0
5 foreach s ∈ seedsEntities do
6 Cs ← FindNeighbors(KG, s)
7 context ← context ∪Cs
8 newSeeds← newSeeds ∪ EntityFilter(Cs, f ilteredEntities)

9 level ← level +1
10 seedsEntities← newSeeds

11 context ← context ∪ AddClasses(KG, Entities(context))
12 return context

graph. Indeed, several algorithms use knowledge graphs as a basic structure or as a source
of semantic enrichment to perform several tasks in different domains such as social net-
work analysis (e.g. community detection), recommendation (e-commerce, tourism, mu-
sic), etc. Most of these methods rely on the notion of semantic similarity or semantic
relatedness between entities (class instances) to perform final processing on the origi-
nal data. The computation of these measures has several direct and relevant applications
for automatic language processing (disambiguation, semantic annotation, information
retrieval, etc.), link discovery or classification. Starting from the use cases mentioned
above, we consider that a similarity measure is a necessary condition to evaluate if the
use of a context graph can be sufficient to satisfy the computational needs of the tasks
related to the methods applied to the original graphs. We then speak of the relevance of
a context graph.

Definition. Relevant context graph A context graph is said to be relevant for a
given domain if it preserves the properties of the original graph for this domain evaluated
in terms of similarity between entities.

Hypothesis. We make the assumption that our context graph is relevant to a domain
if the relative similarities of two entities to a third one in the original graph are preserved
in the context graph.

In knowledge graphs, the semantics describing the resources are coded according
to different aspects such as neighbors or class hierarchy. Most of the existing similarity
measures consider aspects in isolation, which does not allow to cover all the properties
of these resources. We define in the following a more general similarity measure (sec-
tion 4.3) that composes the structural (taxonomic hierarchy links) and semantic (set of



predicates) aspect describing an entity. These measures will be used in sections 5 and 6
to evaluate the relevance of a context graph.

4.2. Review of similarity measures based on knowledge graphs

In the literature, we distinguish three main families of similarity measures that are based
on ontologies, the T-Box part of a knowledge base (for a detailed review see [18,9]).

Link-based measures (edge-counting). These measures use the number of links
separating nodes (cross- cutting relationship) as a criterion of similarity. The most direct
measure is the one defined by [16] which computes the shortest path between two entities
in a K G graph by following the links is-a: dis(a,b) =mini(Ni), Ni length of C⟩ ∈C , C
is the set of paths between a and b. Several improvements of this basic measure have been
proposed to take into account the depth of nodes in the hierarchy (hierarchical relations)
[25,12,14]. Most of these measures are based on LCS computation which has shown
interest for information extraction tasks of the web of data: disambiguation and entity
linking, detection of RDF data communities or automatic extraction of shared properties
between resources [6].

Property-based measures (feature-based). These measures complement path-
based methods by considering the degree of overlap between the properties of the entities
being compared. The similarity is calculated as a function of the properties in common
and the differences between the entities. The basic measure adopted is that defined by
Tversky [23]: simt(a,b) = α. f (P(a)∩P(b))−β . f (P(a)\P(b))−γ. f (P(b)\P(a)), with
P(a) and P(b) respectively the properties of the entities a and b. Several methods have
been proposed depending on the choice of the nature of the properties (e.g. in WordNet,
synsets and glosses have been used) and the computation of the weighting parameters
al pha, beta and gamma.

Content-based measures. These measures rely on text corpora to compute proba-
bilities on word occurrence and thesauri (e.g. WordNet) to compute hyponyms of con-
cepts, an aspect that is outside the scope of this study.

Combined measures. [17] proposes a measure that combines the information con-
tent of entities and their position in the graph. It should be noted that any similarity mea-
sure that utilises information content is contingent upon the corpus from which the infor-
mation content was derived and the specific methodology employed in its generation 5.

Discussion. Similarity measures based purely on the knowledge graph (links, prop-
erties) are characterized by their simplicity and efficiency. They exploit the network of la-
beled vertices and links, unlike content-based methods that require external data sources.
However, these measures consider aspects of resources in isolation and represent less of
the full information around these nodes. In [22], the authors propose a similarity measure
that combines different aspects of an entity and show that it gives a better correlation
with the reference values. These aspects are neighbors, hierarchy and degree of a node
or its specificity. The definition of this measure is close to our goal of representing the
different aspects of resources in a graph. However, as it is defined, it is not applicable to
our case as, by construction of the context graph, the degree aspect of a node (number
of incidental links) is not preserved (in particular for the terminal nodes belonging to the
T-Box). Only the two aspects neighbors and hierarchy can be exploited.

5https://www.nltk.org/howto/wordnet.html search Resnik word, checked 24/4/2024
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The validation of the graph in our approach is thus based on these two aspects by
combining two types of measures: (i) Measures based on links as they allow to cover
the structural aspect in a graph (local structure of a node); (ii) Property-based measures
are preferred as they tap into more semantic knowledge by assessing both commonalities
and differences.

4.3. A similarity measure for context graph validation

We present a new similarity measure that relies on taxonomic links and properties of
entities in a knowledge graph to validate the hypothesis in section 4.1. This measure
consists of two parts. The first part is used to validate the structure of the graph by
following the taxonomic links (of type is-a) to compare two entities. We use for this
the measure of Wu and Palmer [25].

Definition. Similarity of links Let a and b be two entities in the graph, N1 and N2
respectively the number of links is-a6 from a and b to their LCS, N3 is the number of
links is-a from the LCS to the root of the graph (root of the A-Box). The similarity
siml(a,b) between a and b is calculated as follows:

siml(a,b) =
2×N3

N1 +N2 +2×N3
(1)

The second part is based on properties and follows the principle proposed in the
model of Tversky (described in the section 4.2) which considers that the similarity be-
tween two entities is a function of their common and distinctive properties. Secondly, we
consider the set of (property,value) pairs. The same definition is used for both measures
with the set of properties or (property,value) pairs.

Definition. Similarity properties Let a and b be two entities in the graph, Pa = p :
(a,v) | v ∈U ∪L and Pb = {p : (b,v) | v ∈U ∪L } respectively the set of properties
of a and b. The similarity simp(a,b) between a and b is computed according to the
cardinality of their properties as follows:

simp(a,b) =
|Pa∩Pb|

|Pa \Pb|+ |Pb \∩Pa|+ |Pa∩Pb|
(2)

Definition. Property-value similarity Let K G be a knowledge graph and a and
b be two entities in K G , Σa = {(p,v) | p ∈Pa,v ∈ U ∪L } and Σb = {(p,v) | p ∈
Pb,v ∈ U ∪L } respectively the set of property-value pairs of a and b. The similarity
simpv(a,b) between a and b is computed in terms of the cardinality of the set of pairs as
follows:

simpv(a,b) =
|Σa∩Σb|

|Σa \Σb|+ |Σa∩Σb|
(3)

6usually is-a is translated by the predicate rdf:type for rdf graphs. In the case of Wikidata, this corresponds
instead to the predicate wdt:P31. The developments that follow may therefore require adjustments depending
on the graphs used.



Definition. Aggregate similarity measure Let K G be a knowledge graph and a
and b be two entities in K G , the aggregate similarity measure is defined as follows:

sim(a,b) =⊤(siml(a,b),simp(a,b),simpv(a,b)), (4)

where ⊤ is the average of the previous similarities. All measures are normalized in
the interval [0,1], where a score of 0 means that the resources compared are dissimilar,
and a score of 1 means that the resources are identical.

5. Experiments and validation on data from Data&Musée

5.1. Data&Musée

This work is conducted within the framework of Data&Musée project 7. This project
aims to improve the capabilities of different cultural institutions by aggregating and an-
alyzing data from these different institutions. The data collected and processed will be
used in order to broaden the scope, loyalty and better understanding of their audiences.
The partner institutions are the 14 museums of Paris Musées and the 84 monuments of
the Centre des Monuments Nationaux. We present in the following the constitution of a
context graph for these institutions 8.

5.2. Creation of a context graph for Data&Musée

As we have seen in section 3, the context graph is built from a list of entities, represented
by their URIs. The list of entities is either chosen by a domain expert, or is made up of
obvious entities (e.g., for the museums of Paris Musées, we manually search for an entity
from DBpedia-fr corresponding to each museum). The context graph extraction process
is parameterized by the dimension N of the graph. It is a recursive process for collecting
neighboring nodes that depends on the choice of N. Based on the work described in the
previous section and on the observations made during the experiments on our data, we
consider that N = 2 is a good choice for the dimension of a context graph. The context
for Paris Museums was thus constructed with a depth of 2. The core of the context has
therefore a depth of 1. Studying the impact of this depth value choice is beyond the
scope of this work. A blacklist has been created including essentially all the elements of
the T-Box, considered as terminal nodes. Indeed, for example, if a node brought us to
owl:Thing and we followed the links from there, we would bring back 1527645 entities
not necessarily related to our domain.

Table 1 gives a description of a context graph extracted from DBpedia-fr for the
depth N = 2. We test different settings for the constitution of such a graph. The numbers
in this table are therefore only an indication of an example.

On the observed values, it is normal that there are fewer links per node in C G than
in DBPedia-fr, since by construction we have eliminated certain links that are not very

7Data&Musée project was selected in the 23rd call for projects of the Fonds Unique Intermin-
istériel (FUI) and certified by Cap Digital and Imaginove. https://imtech.imt.fr/2017/10/12/
datamusee-data-institutions-culturelles/, checked 24/4/2024.

8Data and code are available here : https://gitlab.telecom-paris.fr/jean-claude.moissinac/
contextgraph.

https://imtech.imt.fr/2017/10/12/datamusee-data-institutions-culturelles/
https://imtech.imt.fr/2017/10/12/datamusee-data-institutions-culturelles/
https://gitlab.telecom-paris.fr/jean-claude.moissinac/contextgraph
https://gitlab.telecom-paris.fr/jean-claude.moissinac/contextgraph


Table 1.: Description of a context graph C G extracted from DBPedia-fr for N = 2

C G DBPedia-fr %
Distinct nodes 451653 10515624 4,29
Distinct predicates 2310 20322 11,36
Links 5150179 185404534 2,78
Links per node (average) 11,4 17,6

informative in our application framework as explained above. We thus have a number L
of links 36 times lower and a number S of vertices 23 times lower in the C G than in the
K G . On an algorithm which is in O(L+ S) -such as the breadth-first search-, we can
thus anticipate a gain of a factor of the order of 30, which can strongly contribute to the
applicability of some methods. The gains can become considerable on algorithms such
as those for searching the shortest path between two nodes if we wish to give a weight
to the links where we can be in O(S2). We will have to look further into these issues
of contribution to scalability, but these first indications are favorable. We will see in the
following other indicators that argue in favor of the context graph.

At the time of writing, we do not have comparative execution time measurements.
However, we can judge that with the significant reduction in the size of the processed
graph (see Table 1), we can achieve significant reductions in processing time due to the
computational complexity of the task. Furthermore, it is possible to operate locally on
the graph, whereas a complete installation of DBpedia is a time-consuming, complex and
resource-intensive operation. Consequently, if such an installation is not carried out, all
queries on the graph have to be made via the network, which necessarily has a significant
impact on processing times.

5.3. Validation of the obtained context

5.3.1. Domain coverage by the context graph

To evaluate the relevance of our context, we wanted to see if it maintains a good coverage
of the main elements concerning us in the Joconde database. The Joconde database is
made up of metadata concerning nearly 600,000 Works of French heritage and is avail-
able in Open Data. Each work is mainly described by its location (city and institution), its
creator(s), its title, the techniques of which it is part and time information. This database
is important in our project since it brings a considerable amount of authoritative data
for the description of the French heritage. Table 2 illustrates the coverage of Joconde
database by our context graph. We took cities; to ensure that they cover the majority of
the entities of interest to us -the artworks-, we have selected 10 cities associated with the
greatest number of works in Joconde database and found them in DBPedia-Fr and veri-
fied that they are in our context graph. We proceeded in the same way for the creators, the
domains and the museums associated with works. Entities are found by label matching,
then verified by a human to ensure that the entity corresponds to the element sought.

We see that the cover is excellent. Only one creator has not been found, J.B.Barla: he
is a naturalist who made many drawings of plants, but is not well referenced by DBpedia-
Fr on this subject and therefore is not recognized as an element of our domain. For
the coverage in number of works, we have, for example, 333114 works associated to
the mentioned cities, that is to say more than half of the captured works for only 10



Table 2.: Coverage of the Joconde database by our context graph

List In C G
Cities Paris, Saint-Germain-en-Laye, Marseille, Strasbourg,

Sèvres, Chantilly, Bordeaux, Montauban, Communauté
urbaine Creusot-Montceau, Rennes

10/10

Domains Dessin, Archéologie, Peinture, Ethnologie, Estampe,
Sculpture, Photographie, Céramique, Costume,
Néolithique

10/10

Creators A.Rodin, H.Chapu, E.Boudin, G.Moreau, JB.Barla,
Y.Jean-Haffen, T.Chassériau, Manufacture nationale de
Sèvres, JBC.Corot, E.Delacroix

9/10

Museums Louvre, Musée d’Archéologie nationale, Cité de la
céramique, Musée Rodin, Musée Condé, Musée Ingres,
Musée des beaux-arts(Strasbourg), Musée des beaux-
arts(Rennes), Musée des beaux-arts(Angers), Musée
Gustave-Moreau

10/10

cities. This demonstrates that our context graph provides good coverage of the Joconde
database, which is one of the most important for the French cultural heritage domain.

5.3.2. Pertinence of a context graph by similarity measure

In this section we show that properties of the original graph, important for our work, are
preserved in the constructed context graph.

Similarity links First, let us note that since we retrieve the types (links is-a) of all
the entities present in the C G , by construction, the LCS of two entities computed on the
K G (DBpedia-Fr) and on our C G are identical for all entities. This constitutes a first
index of relevance of the C G . This first property allows us to assert that, for each pair
of entities of our C G , the similarity measure of Wu-Palmer (formula (1), section 4.3)
obtained on our C G is identical to the one obtained on the K G , since it depends only on
(i) the LCS measurements that are identical on both graphs, (ii) the distance from the LCS
to the root of the used T-Box, which is identical for both graphs since we have included
in our C G the T-Box of DBPedia-Fr. We can therefore use this similarity measure on our
C G without losing information. This constitutes a second index of relevance of our C G .

Similarity properties We used the similarity measure of the properties of the enti-
ties defined by the Tversky measure (formula (2), section 4.3). As not all properties are
conserved in our C G , this similarity measure gives different results on the C G and on
the K G . In this case, using rank correlation as a metric to evaluate the relationship be-
tween two variables is a good indicator of preserving this measure. We thus define a rank
correlation property and we have verified its validity on C G .

Property. Rank correlation Let a, b and c be three entities of C G such that a,b,c /∈
V 9. A rank correlation exists between the entity pairs (a,b) and (a,c) if:

simK G
p (a,b)> simK G

p (a,c)⇒ simC G
p (a,b)> simC G

p (a,c) (5)

9defined in 3.1



with simK G
p and simC G

p are the respective similarity measures on K G and C G . To
verify property (5), we have applied the following algorithm on a set of entities a and e
chosen randomly among the set of central nodes:

• choose {a1, ..am} /∈ V and {e1, ..en} /∈ V .
• ∀l ∈ {1,2, ..m},∀i ∈ {1,2, ..n}, calculate simK G

p (al ,ei) and simC G
p (al ,ei)

• ∀(ei,e j) | i, j ∈ {1,2, ..n}, i ̸= j , check the condition:

simK G
p (al ,ei)> simK G

p (al ,e j)⇒ simC G
p (al ,ei)> simC G

p (al ,e j)

and count the number of times it is verified.

We chose m = 100 and n = 10 then m = 20 and n = 20 and we performed n(n+1)
2 ×m

checks to validate the rank correlation measure. Table 3.(a) shows the results of a series
of tests for these different values of m and n:

Table 3.: (a) Rank correlation K G et C G . (b) Spearman’s correlation for similarity
measure on K G and C G

m n Nb. Nb. %
verifications success

100 10 5500 5070 92,18
100 10 5500 5137 93,40
20 20 4200 3778 89,95
20 20 4200 3873 92,21

m n Spearman
correlation

20 10 0.944
20 20 0.949
20 10 0.964
20 20 0.934

Thus, when we use this similarity to compare items and propose items to a user, in
90% of cases or more, the proposal we can make will be identical to the one we would
have made on the full K G .

Rank-order correlation coefficient of Spearman. We also calculated the correla-
tion coefficient of Spearman which is the classical metric used in the literature to eval-
uate similarity measures. This correlation evaluates the monotonic relationship between
two variables. Similarly, we computed this coefficient for simK G

p (a,e) and simC G
p (a,e)

on a set of randomly selected a and e entities. We repeated this process several times and
computed the overall measure simK G (a,e) and simC G (a,e). The results, described in Ta-
ble 3.(b), show very good correlation values. The global similarity sim(a,e) is computed
as the average of siml(a,e) and simp(a,e). Experiments on the similarity simpv(a,e) de-
fined by the formula (3) give less good results. This is due to the fact that not all value-
properties are preserved in C G (as described above). The first results seem very encour-
aging and persuade us to pursue the exploitation of context graphs in the Data&Musée
project.

6. Experiments and validation on KORE data

In a general framework, benchmark data exists to evaluate similarity between entities. In
order to compare the use of C G context graphs with the use of K G graph, we use the



KORE [10] benchmark dataset. It contains 21 main entities in 5 different domains: IT
companies, Hollywood celebrities, Television series, Video games and Chuck Norris. For
each of the main entities, it contains 20 entities ranked by similarity to it, with the most
similar ranked first. This results in 420 pairs of entities ranked from most to least simi-
lar. We use Spearman’s correlation as the evaluation metric. We have semi-automatically
identified the set of KORE entities in DBpedia. For each of the 5 domains of KORE we
have created a context graph using as seeds the set of its entities that we pass as input
to the CONTEXT algorithm. As output we have 5 context graphs on which we evaluate
the similarity for the pairs of entities of the dataset. We performed similarity calculations
between KORE entities on these graphs and on DBPedia, in order to compare the ob-
tained results. Table 4 gives the results of the Spearman correlation between K G and
C G on the reference dataset. Each row of the table describes the correlation values for
the corresponding similarity measure. The last row corresponds to the correlation on the
ranking of the similarity measure calculated as the average of the previous three. The col-
umn ’Average’ describes the correlation values for all entities of the considered KORE
domains (the treatment of the domain Video Games had to be postponed for technical
reasons).

Table 4.: Spearman correlation for similarity measures on K G and C G (KORE)

Measure IT Companies Hollywood Television Chuck Average
Celebrities Series Norris

siml(a,b) 1.0 0.999 0.995 0.898 0.973
simp(a,b) 0.997 0.998 0.994 0.998 0.997
simpv(a,b) 0.590 0.807 0.646 0.806 0.712
sim(a,b) 0.994 0.996 0.957 0.986 0,983

We observe on the table that the measures siml(a,b), simp(a,b) and sim(a,b) give
very good values of correlation between the rankings obtained on K G and those on C G ,
which is an element of confirmation in favor of the use of context graphs. As in the case
of the context graphs of Paris Musées (section 5.3.2), on the context graphs of KORE the
measure simpv(a,b) gives less good results. Tests are underway to improve the results of
this measure.

7. Conclusion and outlook

In this article we introduced the notion of a context graph for a domain. We define it as an
extract of a larger graph and which targets the knowledge on this domain. We have shown
that this graph can be constructed simply by starting from a few important entities of the
domain using a starting dataset or with little expert knowledge if available. We have also
shown that the obtained graph presents characteristics that allow it to be substituted to
the large graph for classical exploitations of the knowledge graph (study on the similarity
between elements). In the near future, we intend to apply this technique to other domains
and to exploit the obtained context graphs to apply learning techniques on graphs.
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