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Abstract—This paper evaluates the downlink performance of
cellular networks in terms of coverage and electromagnetic field
exposure (EMFE), in the framework of stochastic geometry. The
model is constructed based on datasets for sub-6 GHz macro
cellular networks but it is general enough to be applicable to
millimeter-wave networks as well. On the one hand, performance
metrics are calculated for β-Ginibre point processes which are
shown to faithfully model a large number of motion-invariant
networks. On the other hand, performance metrics are derived
for inhomogeneous Poisson point processes with a radial intensity
measure, which are shown to be a good approximation for
motion-variant networks. For both cases, joint and marginal
distributions of the EMFE and the coverage, and the first
moments of the EMFE are provided and validated by Monte
Carlo simulations using realistic sets of parameters from two
sub-6 GHz macro urban cellular networks, i.e., 5G NR 2100
(Paris, France) and LTE 1800 (Brussels, Belgium) datasets.
In addition, this paper includes the analysis of the impact of
the network parameters and discusses the achievable trade-off
between coverage and EMFE.

Index Terms—β-Ginibre point process, coverage, dynamic
beamforming, EMF exposure, inhomogeneous Poisson point pro-
cess, Nakagami-m fading, stochastic geometry.

I. INTRODUCTION

Manuscript received 17 August 2023; revised 14 February 2024 and 2
May 2024; accepted 3 May 2024. The work of Q. Gontier is supported by
Innoviris under the Stochastic Geometry Modeling of Public Exposure to EMF
(STOEMP-EMF) grant. The work of M. Di Renzo is supported in part by the
European Commission through the Horizon Europe project titled COVER
under grant agreement number 101086228, the Horizon Europe project titled
UNITE under grant agreement number 101129618, and the Horizon Europe
project titled INSTINCT under grant agreement number 101139161, as well
as by the Agence Nationale de la Recherche (ANR) through the France 2030
project titled ANR-PEPR Networks of the Future under grant agreement NF-
Founds 22-PEFT-0010, and by the CHIST-ERA project titled PASSIONATE
under grant agreement CHRIST-ERA-22-WAI-04 through ANR-23-CHR4-
0003-01.

Q. Gontier, F. Horlin and Ph. De Doncker are with Université Libre de
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Polytechnique de Paris, 91120 Palaiseau, France.

M. Di Renzo is with Université Paris-Saclay, CNRS, CentraleSupélec,
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TELECOMMUNICATION operators are faced with the
challenge of optimizing the coverage of their cellular net-

works while ensuring compliance with public electromagnetic
field exposure (EMFE) limits. On the one hand, the study of
coverage, outage, data rate or spectral efficiency can be carried
out through the evaluation of the signal-to-interference-and-
noise ratio (SINR). On the other hand, the EMFE is subject
to restrictions for public health reasons specified in terms
of incident power density (IPD), or, equivalently, in terms
of electric field strength [1], [2]. However, both metrics are
still most often considered independently even though their
correlation is high and their combination is necessary to fully
address network optimization problems. Both also heavily
depend on the randomness in the network topology. To capture
this aspect, stochastic geometry (SG) theory can be efficiently
employed as an alternative to numerical simulations. Using
this framework, base stations (BSs) are modeled as spatial
point processes (PPs) [3], [4], for which closed-form expres-
sions characterizing the average network performance can be
derived. Motivated by these considerations, the main aim
of this paper is to introduce a mathematical framework,
applicable to real-world networks, for jointly evaluating
the trade-offs between SINR and EMFE to electromagnetic
fields for both motion-invariant (MI), i.e. both stationary
(translation invariant) and isotropic (rotation invariant) net-
works, and motion-variant (MV) networks.

A. Related Works

1) Evaluation of the SINR by using SG: The SINR was
the initial metric explored within the SG framework [5].
Regular hexagonal lattices [6] or perfect square lattices [7]
were the first models of cellular networks being considered.
They were embedded in the SG framework because they
are extreme cases for modeling the repulsion between the
points of a PP. These models are often limited to simulations
because of their lack of mathematical tractability. Another
body of studies [3], [8], [9] employed the homogeneous
Poisson point process (H-PPP), consisting of randomly located
points in the region of interest, without any spatial dependence
between them. Although the H-PPP leads to highly tractable
analytical expressions, which explains its use in most of the
SG literature applied to telecommunication networks, it cannot
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model spatial repulsive or attractive behaviors between points.
Numerical results have shown that H-PPPs provide a lower
bound for the coverage probability of real cellular networks
while hexagonal lattices provide an upper bound [10]. In
another body of works, more advanced PP models are inves-
tigated (e.g., Strauss Hardcore PP [11], Grey Saturation PP
[11], Poisson Hard-core process [12]). A complete taxonomy
of PP models frequently used in the literature of cellular
networks can be found in [13]. Some models lead to tractable
expressions but have not been tested in real-world networks
[12], [14]. Other models have been validated in real-world
networks but the analytical expressions are highly intractable
mathematically: approximations are usually required to obtain
mathematical expressions for useful performance metrics [11],
[15]–[18]. Finally, some studies provide models addressing
tractability and accuracy aspects, but they are only appli-
cable to MI networks [19], [20]. This is for example the
case of β-Ginibre point processes (β-GPPs) which allow for
tractable and accurate modeling of many MI networks, as
shown for the city of Paris, France, in [21] and for thirteen
networks in Western Europe in [22]. Previous analyses for
β-GPP cellular networks are however limited to the SINR
cumulative distribution function (CDF) [23], [24]. Regarding
MV networks, the literature is very scarce. Inhomogeneous
Poisson point processes (I-PPPs) models have been widely
used in the literature, but only to replace equivalent more
complex MI PPs, from the point of view of the typical user for
downlink (DL) analyses [19] or from the point of view of the
typical BS for uplink (UL) analyses [25], [26]. These works
cannot capture the dependence of the network performance on
the location of the user under investigation. The only attempt
to derive the SINR complementary cumulative distribution
function (CCDF) in an inhomogeneous network is in [27]
where the authors consider a generalized PPP setup with
an α-stable distributed BS density (which can be seen as a
generalization of the I-PPP), whose parameters are fitted to
empirical data but at a cost of analytical tractability.

2) Evaluation of the IPD by using SG: More recently, the
IPD has progressively gained interest in the SG community to
evaluate the performance of wireless power transfer systems
[28], [29], with the objective to estimate the amount of power
that can be harvested in the context of the Internet-of-Things.
In [30], the energy correlation is investigated in a wireless
power transfer system where the transmitters use dynamic
beamforming (BF). The evaluation of the IPD to assess the
EMFE for public health concerns is more recent. Indeed, the
IPD and EMFE are highly coupled since the objective of
EMF-aware systems is to ensure that the incident power is
low enough to fulfill EMFE thresholds. In the SG context,
a first attempt to model the EMFE can be found in [2].
The authors use an empirical propagation model for a 5G
massive multiple-input multiple-output (mMIMO) network in
the millimeter wave (mmWave) band. In [1], the theoretical
distribution of the EMFE is compared to an experimental
distribution obtained from measurements in an urban en-
vironment. This model is then used in [31] to study BS
densification scenarios. It is worth mentioning that numerous
works employed deterministic models to evaluate the impact

of network densification on the EMFE [32], [33]. The EMFE
has also been numerically assessed in an indoor environment in
[34], by using a methodology akin to the SG framework. This
involves obtaining a large number of ray-launching realizations
by employing a randomized arrangement of scatterers for each
realization. In the context of SG modeling, the EMFE is
analyzed considering a max-min fairness power control in a
5G mMIMO network in [35]. At last, the EMFE is analyzed
in networks where sub-6 GHz and mmWave BSs coexist in
[36]. It is worth noting that all existing works characterizing
the IPD represent the network topology by relying on a H-PPP,
which cannot capture the spatial repulsions and attractions that
characterize general network deployments.

3) Joint evaluation of the IPD and SINR by using SG:
In the context of energy harvesting, SG brought a new
perspective to simultaneous wireless information and power
transfer (SWIPT) analyses by allowing the computation of
the joint CCDF in order to find a trade-off between coverage
and harvested power. These studies take into account many
features including line-of-sight and non-line-of-sight links,
time switching and power splitting schemes, dynamic BF
[37] and mMIMO [38]. Similar tools can be used for a joint
analysis of the EMFE and the SINR. In a recent study [39],
the authors delved into the analysis of the EMFE for DL and
UL transmissions, originating from both BSs and active users’
smartphones, alongside the SINR for DL communication. A
more comprehensive investigation [40] extends the analysis to
include passive EMFE from BSs and active users, while also
considering the impact of EMFE limits on network coverage.
Furthermore, resource allocation optimization to maximize the
number of connected users to a BS is explored in [41] via
MC simulations, taking into account coverage requirements
and EMFE considerations. However, a joint analysis of EMFE
and SINR, merging them into a single metric, remains largely
unexplored in the existing literature. To the best of the authors’
knowledge, the only analytical frameworks studying EMFE
and SINR jointly are reported in [42] for Manhattan networks
and [43] for user-centric cell-free mMIMO networks.

B. Contributions

Motivated by these considerations, the aims of the present
paper are (i) to introduce an analytical framework for jointly
evaluating the trade-offs between coverage and EMFE for two
different PPs (MI and MV) and (ii) to validate the approach
by using realistic datasets for sub-6 GHz macro BSs tailored
to the large majority of urban and rural environments. The
specific contributions of this paper are as follows:

1) Motion-invariant networks: For MI networks, the pro-
posed mathematical approach is based on a β-GPP. The first
contribution is to complement the approaches described in
Subsection I-A1 by developing a framework for calculating
mathematical expressions for the following metrics:

• Mean and variance of the EMFE;
• Marginal CDF of the EMFE;
• Joint CDF of the EMFE and SINR.
2) Motion-variant networks: The MI assumption does not

hold anymore for cities with a historic city center that is



3

TABLE I
COMPARISON BETWEEN THE RELEVANT SG LITERATURE AND THIS WORK. ∗ : STUDY OF THE SNR ONLY.

Ref.
Topology Mathematical performance metrics of interest

Spatial Motion- Real- Tractability Nakagami-m Dynamic SI(N)R IPD Joint DL/ULrepulsion variance world fading beamforming CCDF CCDF distribution
[1], [2], [31] ✓ ✓ ✓ DL

[3], [4] ✓ ✓ /
[5] ✓ ✓ DL

[6], [11] ✓ ✓ DL
[7], [18] ✓ ✓ ✓ DL
[8], [10] ✓ ✓ DL

[9] ✓ ✓ ✓ DL+UL
[12], [14], [23], [24] ✓ ✓ ✓ DL

[15], [21], [22] ✓ ✓ ✓ DL
[16], [17], [19], [20] ✓ ✓ ✓ ✓ DL

[25], [26] ✓ UL
[27] ✓ ✓ ✓ ✓ DL

[28], [29] ✓ ✓ DL
[30] ✓ ✓ ✓ DL
[35] ✓ DL
[36] ✓ ✓ ✓ ✓ DL

[37], [38] ✓ ✓ ✓ DL
[39] ✓ ✓ ✓∗ ✓ DL+UL
[40] ✓ ✓ ✓ ✓ DL+UL

[42], [43] ✓ ✓ ✓ ✓ ✓ DL
This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ DL

characterized by a high BS deployment density and a lower
deployment density as the distance from the city center
increases. In these scenarios, in addition, the BS density is
often found to be angle-independent. We, therefore, go beyond
classical studies applied to MI networks by introducing an
I-PPP model for MV networks, which is characterized by
a radial intensity measure. The second contribution is the
development of a comprehensive framework for calculating
mathematical expressions in MV networks. In particular, the
following metrics are derived:

• Mean and variance of the EMFE;
• Marginal CDF of the EMFE and CCDF of the SINR;
• Joint CDF of the EMFE and SINR.
Finally, the developed frameworks are applied to real-world

networks for both the MI and the MV cases. The network
performance is evaluated using realistic system parameters.

A comparison between this work and the most related works
is summarized in Table I-B2.

C. Structure of the Paper

The paper is organized as follows: Section II introduces the
network topologies and the system model. Section III pro-
vides mathematical expressions for the performance metrics
of interest by using SG. Numerical validations based on two
real-world network deployments are provided in Section IV.
Finally, conclusions are given in Section V.

II. SYSTEM MODEL

A. Mathematical Background

Let B ∈ R2 be the two-dimensional area where the consid-
ered network is located. Let Ψ = {Xi} be the PP of BSs in B,
which are assumed to have the same technology, to belong
to the same network provider and to transmit at the same
frequency f . Ψ is modeled as a realization of a PP of density

λ(u), u ∈ B. Ψ is stationary if its statistical properties remain
unaffected after any translation. It is isotropic if its statistical
properties are invariant under any rotation. Ψ is called MI if
it is stationary and isotropic.

1) Motion-Invariant Networks: In the MI case, a good
estimator of the true BS density λ is the number of BSs within
B divided by the area of B. Motion-invariance implies that the
performance metrics are statistically identical at any point in
an infinite network. It is common practice to consider a typical
user centered at the origin to facilitate the analysis. In a finite
network, it is often assumed that the results do not vary as the
typical user stays away from the boundaries of the area B.

In Section III, the performance metrics for MI networks will
be derived for β-GPP models, which are characterized by a
constant density λ and a parameter β. This latter is between 0
and 1 [23], with β=0 corresponding to a H-PPP and β=1 to
a Ginibre Point Process (GPP). The main difficulty compared
to other PP models comes from the fact that β-GPPs are
constructed from GPPs, which are defined from a complex
kernel [23]. For these PP models, an analytical expression for
the probability density function (PDF) of the distance to the
nearest BS, fR0,Θ0 , can be obtained as follows. Let Xi, i ∈ N
denote the points of a β-GPP with density λ, which is denoted
by Φβ

λ. Φβ
λ is constructed from the GPP Φ1

λ/β = {Xi}i∈N
with density λ/β by independent thinning with probability
β. The set of square distances, {|Xi|2}i∈N, has the same
distribution as {Yi} such that Yi ∼ Gamma(i, πλ/β), i ∈ N
are mutually independent [24]. This property can be used
to derive performance metrics since it is possible to take
advantage of the existence of an analytical PDF for the square
distance to each BS Xi. The PDF of Yi is given by

fi(u) = ui−1 e
− cu

β (c/β)i/(i− 1)! (1)

with c = λπ. To obtain Φβ
λ from Φ1

λ/β , each element
of Φβ

λ is associated with a mark ξ. Then, {ξi}i∈N is the
set of marks of Φ1

λ/β , which are mutually independent and
identically distributed random variables with P(ξi = 1) = β
and P(ξi = 0) = 1− β. Accordingly, the serving BS denoted
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by X0 is Xi if ξi = 1 and if all the other BSs are located
farther than Xi, i.e. {X0 = Xi} = {ξi = 1} ∩ Ai where
Ai = {ξj = 1, |Xj | > |Xi|} ∪ {ξj = 0}∀j ∈ N \ {i}. Further
details can be found in [23].

2) Motion-Variant Networks: If Ψ is MV, an inhomoge-
neous PP model needs to be selected. Unfortunately, inho-
mogeneous models are intractable mathematically, except for
the I-PPP, which can be viewed as an approximation of
some more complex models. The computation of performance
metrics requires the use of a spatially-varying density function
λ(u), u ∈ B, which is fitted to the empirical BS density by,
e.g., using a least-square method.

Large European cities are often characterized by the pres-
ence of a densely populated historic center, with old buildings
and an irregular street organization, leading to a high density
of BSs to accommodate the large data traffic. As the distance
from the city center increases, the density of antennas de-
creases, leading to an almost radial density [22]. Based on
these considerations, a flexible radial density model is chosen,
which is monotonically decreasing with ρ and is characterized
by 6 parameters ã, b̃, c̃, d̃, ρ̃, θ̃:

λ(ρ, θ) =
ã

∆(ρ, θ)
+ b̃+ c̃∆(ρ, θ) + d̃ (∆(ρ, θ))

2 (2)

with ∆2(ρ, θ) = ρ̃2 + ρ2 − 2ρ̃ρ cos(θ − θ̃). The user is as-
sumed to be located at the origin of the coordinate system.
The 4 parameters ã, b̃, c̃, d̃ must be chosen so that the
conditions λ(ρ, θ) ≥ 0 and ∂λ/∂∆ ≤ 0 are met for ρ ≤ τ ,
where τ is the radius of the disk centered at the origin inside
which the network is studied and can take arbitrary large or
infinite values. For this choice of parameters, (ρ̃, θ̃) is the point
of maximal BS density. The mathematical tractability of the
performance metrics increases if the intensity measure

Λ(D) =

∫
D
λ(u) du, (3)

where D ∈ B, is purely radial, which is the case analyzed here.
The mathematical expressions derived for MV networks in this
paper are only valid for the typical user located at the origin of
the coordinate system but, as shown in Subsection IV-B, they
can be calculated at other user locations through a change of
coordinate system so that the user is located at the center of
this new coordinate system. Practically speaking, the approach
consists of replacing λ(u) by λ(u−uC) in all the expressions,
where uC is the point of interest in the old coordinate system.

B. Propagation Model

The propagation model is defined as

Pr,i = PtGiGr|hi|2li (4)

where Pr,i is the received power from BS Xi, Pt is the transmit
power of Xi, Gi is the gain of Xi in the direction of the user,
Gr is the gain of the receiver, assumed isotropic and equal to
1 to simplify the analysis, |hi|2 accounts for the fading and
li = l(Xi) = κ−1 (r2i + z2)

−α/2 is the path loss attenuation
with exponent α > 2, κ = (4πf/c0)

2 where c0 is the speed
of light, ri is the distance between the user and the BS Xi,
and z > 0 is the height of Xi.

In the following, a Nakagami-m fading model is assumed,
which means that |hi|2 is gamma distributed with a shape
parameter m and a scale parameter 1/m. The CDF of |hi|2
is then F|h|2(x) = γ(m,mx)/Γ(m) where γ(·, ·) is the lower
incomplete gamma function and Γ(·) is the gamma function.

The BSs are assumed to employ dynamic BF, and an
analysis based on BS databases [44], [45] revealed that BSs
implementing dynamic BF have significantly lower sidelobes
compared to the main lobe. Additionally, the analysis indicated
that network providers equip each BS with three similar
antenna arrays oriented at 120◦ intervals, each capable of
covering 120◦. From these considerations and for the sake of
mathematical tractability, the actual antenna array patterns are
approximated using a sectored antenna model. The gain of the
antenna array of a generic BS can be expressed as follows:

Gt =

{
Gmax if |θ| ≤ ω

0 if |θ| > ω
(5)

where ω ∈ [0, 2π/3] and θ ∈ [0; 2π[ is the angle off the
boresight direction and ω is the beamwidth of the main lobe.
The serving BS is assumed to estimate the angle of arrival
and to adjust its antenna steering orientation accordingly.
The model assumes no alignment error. The beams of all
the interfering BSs are considered to be randomly oriented
with respect to each other, uniformly distributed in [0; 2π[.
Consequently, the gains, Gi, of the interfering BSs in the
direction of the user are Bernouilli random variables with
probability 3ω/(2π), which is the probability that the typical
user is illuminated by the main lobe of each interfering BS.
For notational simplicity, Gmax = 1 is normalized, and then
we can simplify the notation as PtGmax → Pt.

The mathematical expressions derived in the following
section are defined for a circular area B of radius τ located
in the z = 0 plane and centered on the calculation point. The
calculations take an exclusion radius re ≥ 0 into account,
representing a non-publicly accessible area around the BSs. A
closest BS association policy is assumed.

Define P̄r,i = P̄r,i(r
2
i ) =Ptli to simplify the notation. This

quantity accounts for the maximal received power at distance
Ri from Xi, averaged over fading. It incorporates both the
transmit power and the attenuation due to the path loss. Let
S0= P̄r,0|h0|2 be the useful power received from the serving
BS X0 that is assumed to be the closest to the user and let I0 =∑

i∈Ψ\{X0} P̄r,iGi|hi|2 be the aggregate interference. Based on
these definitions, the SINR conditioned on the distance to the
serving BS is given by

SINR0 =
S0

I0 + σ2
(6)

where σ2 is the thermal noise power. In the following, the
performance metrics will be derived for the user DL power
EMFE defined as

P =
∑
i∈Ψ

P̄r,i Gi |hi|2 = S0 + I0, (7)
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which can be converted into a total IPD, expressed in W/m2, as

S =
∑
i∈Ψ

Pt Gi |hi|2

4π (r2i + z2)
α/2

=
κ

4π
P1 (8)

by definition, and, finally, into a root-mean-square electric field
strength in V/m as

E[V/m] =
√
120πS. (9)

III. MATHEMATICAL FRAMEWORK
 

PDF of BS Xi,  fi 

Propositions 1, 2 – Characteristic functions 

Theorem 2 – Marginal CDF of EMFE 

Theorem 3 – Marginal CCDF of SINR 

Theorem 4 – Joint CDF of SINR-EMFE 

Subsection III.A – β-Ginibre Point Process 

Theorem 1 – Mean and variance IPD 

Proposition 3 – PDF of the nearest BS,  fR0 

 

Propositions 4, 5 – Characteristic functions 

Theorem 6 – Marginal CDF of EMFE 

Theorem 7 – Marginal CCDF of SINR 

 
Theorem 8 – Joint CDF of SINR-EMFE 

 
Subsection III.B – Inhomogeneous Poisson Point Process 

 

Theorem 5 – Mean and variance IPD 

Fig. 1. Organization of Section III

The structure of this section is illustrated in Fig. 1. Let T
be the SINR threshold for reliable transmission at the user
equipment, and let T ′ be the maximum allowed level of DL
EMFE in power scale. The CDFs, CCDFs and PDFs can
be calculated using Gil-Pelaez’s inversion theorem [46] from
the knowledge of (i) the characteristic functions (CFs) of the
useful signal ϕS and of the interference ϕI , and (ii) the density
function fR0,Θ0

of the position to the serving BS denoted by
the random variables (R0,Θ0).

A. Motion-Invariant Networks: β-Ginibre Point Process

Based on the considerations in Subsections II-A and II-B,
the mean and the variance of EMFE can be calculated.

Theorem 1. The mean of the EMFE of a β-GPP given the
propagation model in (4) is given by

E [P]=β

∫ τ2

r2e

P̄r(u) +
2pgc

[
P̄r(r

2)
(
r2 + z2

)]r=√
u

r=τ

α− 2

Ω(u)

−pgβ

∫ τ2

u

Ω∗(u, v)P̄r(v)dv

]
du (10)

where

Ω(u) =
∑
i∈N

fi(u)Υ
β
i (u), Ω∗(u, v) =

∑
i∈N

fi(u)fi(v)Υ
β
i (u),

Ω∗∗(u, v, w) =
∑
i∈N

fi(u)fi(v)fi(w)Υ
β
i (u),

1Note that the IPD is frequency-independent. The frequency dependence
of κ in the right-hand term of the relationship S = κ

4π
P cancels out due to

the κ−1 dependence of P .

Υβ
i (u) =

∏
j∈N\{i}

(
1− β + β

Γ
(
j, cu

β
, cτ2

β

)
(j − 1)!

)
.

The associated variance is given by V [P] = E [P2]−(E [P])
2,

where E [P2] is given in (11) shown at the top of the next page.
We denote [f(x)]x=b

x=a = f(b)− f(a) for ease of writing.

Proof. The proof of (10) is provided in Appendix A and the
proof of (11) is provided in Appendix B.

The mean has the same expression as for a PPP, as obtained
in [1] and [30], without and with dynamic BF, respectively.
The expressions of the mean and the variance of the EMFE
are given for a network of BSs not employing dynamic BF in
Corollary 1.

Corollary 1. The mean and the variance of the EMFE of a β-
GPP when no dynamic BF is employed are respectively given
by

E
[
P∗] = 2

α− 2
c
[
P̄r(r)

(
r2 + z2

)]r=re

r=τ
(15)

and V [P∗] = E
[
P∗2] − (E [P∗])

2, where E
[
P∗2] is given

in (12) shown at the top of the next page.

Proof. The proof of (15) is provided at the end of Appendix A
and the proof of (12) is provided at the end of Appendix B.

The calculation of the higher-order moments of the EMFE
and the moments of the interference or SINR can be obtained
similarly. The CFs of the interference and EMFE are provided
in Proposition 1 and Corollary 2.

Proposition 1. The CF of the interference of a β-GPP for the
propagation model in (4), conditioned on the BS Xi located
at a distance ri = |Xi| is

ΦI,i(q|u) =
∏
k∈N
k ̸=i

[ ∫ τ2

u

fk(v)
pgβ(

1− jqP̄r(v)/m
)m dv +1− pgβ

]
.

Proof. The proof is provided in Appendix C.

It is worth noting that from the Cauchy-Schwarz theorem
and from the definition of a PDF, the integral is always smaller
than β, proving that the infinite product converges. To mitigate
numerical inaccuracies, the product can be truncated to the
N th term. The impact of such truncation will be analyzed in
Section IV-A.

Based on this proposition, the CDF of the EMFE, the CCDF
of the coverage and the joint CDF of the EMFE and SINR
are provided in Theorems 2, 3 and 4, respectively.

Theorem 2. The CDF of the EMFE of a β-GPP for the
propagation model in (4) is given by

Femf(T
′) ≜ P [P < T ′]

= β

∫ τ2

r2
e

Ω(u)

2
−
∫ ∞

0
Im

∑
i∈N

fi(u)Υ
β
i (u)ϕE,i(q|u)

e−jqT ′

πq

dq
du.

where ϕE,i(q|u) = ΦS(q|u) ΦI,i(q|u) and

ΦS(q|u) = E|h| [exp (jqS(u))] = (1− jqP̄r(u)/m)−m.

Proof. The proof is provided in Appendix D.
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E
[
P2
]
=

∫ τ2

r2
e

Ω(u)
(
βm+1

m
P̄ 2
r (u) + βpg P̄r(u)

2c
α−2

[
P̄r(r

2)
(
r2 + z2

)]r=√
u

r=τ
+ m+1

m

pgc

α−1

[
P̄ 2
r (r

2)
(
r2 + z2

)]r=√
u

r=τ

− p2gc
2

∫ τ2

u

∫ τ2

u

e
−

c(v+w)

β I0
(
2c
√
vw/β

)
P̄r(v)P̄r(w)dw dv +

(
2pgc

α−2

[
P̄r(r

2)
(
r2 + z2

)]r=√
u

r=τ

)2)
du

−
∫ τ2

r2
e

∫ τ2

u

pgβP̄r(v)

[
Ω∗(u, v)

(
βP̄r(u) +

m+1
m

P̄r(v)+
4pgc

α−2

[
P̄r(r

2)
(
r2 + z2

)]r=√
u

r=τ

)
− 2pgβ

∫ τ2

u

Ω∗∗(u, v, w)P̄r(w)dw

]
dv du

(11)

E
[
P∗2] = 2(m+1)

m(α−1)

[
P̄ 2
r (r)

(
r2 + z2

)]r=re

r=τ
+
(

2c
α−2

[
P̄r(r

2)
(
r2 + z2

)]r=re

r=τ

)2
−c2

∫ τ2

r2
e

∫ τ2

r2
e

e
−

c(v+w)

β I0
(

2c
√
vw

β

)
P̄r(v)P̄r(w)dw dv (12)

G(T, T ′) ≜ E0

[
P
[

S0

I0 + σ2
> T, S0 + I0 < T ′

]]
= β

∫ τ2

r2
e

(
Ω(u)

2
F|h|2

(
T ′

P̄r(u)

)
− 1

πq

∫ ∞

0

Im

[∑
i∈N

fi(u)Υ
β
i (u)ϕI,i(q|u)ζ(T, T ′, P̄r(u))

]
dq

)
du

(13)

with

ζ(T, T ′, P̄r) =
mm

(m− 1)!

γ
(
m, −T ′′

P̄r

(
m+ j qP̄r

T

))
(m+ j qP̄r

T
)m

ejqσ
2

+
mm

(m− 1)!

Γ

(
m;

T ′(m−jqP̄r)
P̄r

,
T ′′(m−jqP̄r)

P̄r

)
(m− jqP̄r)m

e−jqT ′
. (14)

It is noteworthy that, although Gil-Pelaez’s theorem is
widely applied in SG, it may not be easy to be computed
numerically. This originates from the highly oscillatory in-
tegrands, particularly caused by the presence of complex
exponential functions. To mitigate these challenges, we rec-
ommend expressing P [P/T ′ < 1] instead of P [P < T ′]. As
a result, the inner component of the imaginary part operator
can be represented as ϕE(q/T

′)e−jq. In a network of BSs not
employing BF, the expression of Femf (T

′) simplifies as stated
in Corollary 2.

Corollary 2. The CF of the EMFE of a β-GPP where no
dynamic BF is employed is given by

F ∗
emf(T

′) =
1

2
−
∫ ∞

0

1

πq
Im
[
ϕ∗
E(q) e

−jqT ′
]
dq.

where ϕ∗
E(q) = ΦI(q|r2e) with pg = 1.

Proof. The proof of the CF is similar to the proof of Proposi-
tion 1 in Appendix C except that pg=1 and that the summation
and product are over k ∈ N instead of k ∈ N \ {i}. The proof
of the CDF is similar to the proof of Theorem 2 in Appendix D
except that the index i of the serving BS can be ignored.

Theorem 3. The CCDF of the SINR of a β-GPP for the
propagation model in (4) is given by

Fcov(T ) ≜ E0 [P [SINR0 > T ]]

=β

∫ τ2

r2
e

(
Ω(u)

2
+

∫ ∞

0

Im

[∑
i∈N

fi(u)Υ
β
i (u)ϕSINR,i(q|u)

]
dq

πq

)
du

where ϕSINR,i(q|u) = ϕS(q|u)ϕI,i(−Tq|u)e−jTqσ2

.

Proof. The proof is similar to the proof of Theorem 2 in
Appendix D. The only differences are that for the CCDF of
the SINR, Fi(T

′) = 1 − P (S0(i)− TI0(i) ≤ Tσ2,Ai) and
that ϕE,i(q|u) must be replaced by ϕSINR,i(q|u).

In the case of Rayleigh fading, the CCDF of the SINR has
been computed in [24] for a GPP and in [23] for a β-GPP.
Theorem 3 is more general since it can be applied to other
fading distributions, such as the Nakagami-m fading given as
an example, and because it includes dynamic BF.

Theorem 4. The joint CDF of the EMFE and SINR for a
β-GPP is given in (13) shown at the top of the page.

Proof. The proof is provided in Appendix H.

It can be noticed that the conditional distributions of the
EMFE and coverage can also be calculated from these three
CDFs using Bayes’ rule.

B. Motion-Variant Networks: Inhomogeneous Poisson Point
Process

Proposition 2. The PDF of the distance from the user located
at the origin to the nearest BS, is given by

fR0
(r0) =

Λ(1)(r0) e
−Λ(r0)

e−Λ(re) − e−Λ(τ)

where

Λ(r) = 4ã

∫ r

0

|u− ρ̃|−1K (u)u du+ πb̃r2

+ 4c̃

∫ r

0

|u− ρ̃|E (u)u du + πd̃

(
r4

2
+ ρ̃2 r2

)
(16)

is the intensity measure,

Λ(1)(r)=2πr

(
2ãK (r)

π|r − ρ̃| + b̃+
2c̃

π
|r − ρ̃|E (r) + d̃

(
r2 + ρ̃2

))
(17)

is its derivative,

K(u) =

∫ π/2

0

1√
1− k(u) sin2 φ

dφ =
π

2
2F1

(
1

2
,
1

2
, 1; k(u)

)



7

P̄Ir(r0) = pg

∫ τ

r0

P̄r(r)Λ
(1)(r)dr = − 2πd̃ pg

(4−α)(α−2)

[(
(α− 2)r2 + 2z2

)
P̄r(r)

(
r2 + z2

)]r=r0

r=τ

+ pg

(
2πb̃+ 2πd̃ρ̃2

) [P̄r(r) (r
2 + z2)

]r=r0

r=τ

α− 2
+ 4pg

∫ τ

r0

P̄r(r)r
(

ã
|r−ρ̃|K (r) + c̃|r − ρ̃|E (r)

)
dr (18)

P̄I2
r
(r0) = pg

m+ 1

m(α− 1)

(
πb̃+ πd̃ρ̃2

) [
P̄ 2
r (r)

(
r2 + z2

)]r=r0

r=τ
+ 4pg

m+ 1

m

∫ τ

r0

P̄ 2
r (r)r

(
ã

|r−ρ̃|K (r) + c̃|r − ρ̃|E (r)
)
dr

− pg
(m+1)πd̃

m(α−2)(α−1)

[(
(α− 1)r2 + z2

)
P̄ 2
r (r)

(
r2 + z2

)]r=r0

r=τ
+ p2gP̄

2
Ir
(r0). (19)

is the complete elliptic integral of the first kind,

E(u) =

∫ π
2

0

√
1− k(u) sin2 φdφ =

π

2
2F1

(
1

2
,
−1

2
, 1; k(u)

)
,

is the complete elliptic integral of the second kind and k(u) =
−4u ρ̃(u− ρ̃)

−2.

Proof. From the definition of Poisson’s law, it follows that the
void probability, i.e., the probability of having 0 BS within a
disk of radius r0 centered at the origin of an infinite network,
is exp (−Λ(r0)) with Λ the intensity measure of the PP. The
probability of having the nearest BS at a distance r0 is then
1 − exp (−Λ(r0)). The nearest BS can be located in a ring
of inner radius re and outer radius τ . Thus, the CDF of the
distance to the nearest BS is given by

FR0
(r0) =

e−Λ(r0)

e−Λ(re) − e−Λ(τ)

so that the integration over the ring gives 1. Proposition 2 is
then obtained by differentiating this CDF with respect to r0.
The intensity measure is obtained from (3).

We calculate hereafter the mean and variance of the EMFE.

Theorem 5. The mean of the EMFE for an I-PPP network
with the intensity measure in (16) for the propagation model
in (4) is given by

E [P] =

∫ τ

re

(
P̄r(r0) + P̄Ir(r0)

)
fR0

(r0)dr0

where P̄Ir(r0) is given in (18) shown at the top of the page.
The associated variance is given by V [P] = E [P2]−(E [P])

2,
where E [P2] is given by

E
[
P2
]
=

∫ τ

re

(
m+1
m

P̄ 2
r (r0) + P̄r(r0)P̄Ir (r0) + P̄I2

r
(r0)

)
fR0

(r0)dr0

(20)
with P̄I2

r
(r0) given in (19) shown at the top of the page.

Proof. The proof is provided in Appendix E.

Corollary 3. The mean of the EMFE for an I-PPP network
with the intensity measure in (16) when no dynamic BF is
employed is given by E [P∗] = P̄Ir(re) with pg = 1. The
associated variance is given by V [P∗] = E

[
P∗2]−(E [P∗])

2,
where E

[
P∗2] is given by P̄I2

r
(re).

Proof. If no dynamic BF is used, there is no need to analyze
the terms S0 and I0 separately. Campbell’s theorem can
therefore be applied to the sum S0 + I0.

It is worth noting that the mean of the EMFE is proportional
to the BS density. The calculation of the higher-order moments
of the EMFE and the moments of the interference or SINR can
be obtained similarly. The CF of the interference is provided
in Proposition 3.

Proposition 3. The CF of the interference for an I-PPP with
the intensity measure in (16) for the propagation model in (4),
conditioned on the distance between the typical user at the
origin and the nearest BS, is given in (21) shown at the top
of the next page.

Proof. The proof is provided in Appendix G.

Based on these propositions, the CDF of the EMFE, the
CCDF of the coverage and the joint CDF are provided as
Theorems 6, 7 and 8, respectively.

Theorem 6. The CDF of the EMFE for an I-PPP with the
intensity measure in (16) for the propagation model in (4) is

Femf(T
′) ≜ P [P < T ′]

=

∫
r0

(
1

2
−
∫ ∞

0

1

πq
Im
[
ϕE(q|r0) e−jqT ′

]
dq

)
fR0

(r0)dr0

where ϕE(q|r0) = ΦS(q|r0) ΦI(q|r0) and

ϕS(q|r0) = E|h|2 [exp (jqS0)] =
(
1− jqP̄r,0/m

)−m
.

Proof. The proof follows from Gil-Pelaez’s theorem.

In a network of BSs not employing BF, the expression of
Femf (T

′) simplifies as stated in Corollary 4.

Corollary 4. The CF of the EMFE of an IPPP where no
dynamic BF is employed is given by

F ∗
emf(T

′) =
1

2
−
∫ ∞

0

1

πq
Im
[
ϕ∗
E(q) e

−jqT ′
]
dq.

with ϕ∗
E(q) = ΦI(q|r2e) with pg = 1.

Theorem 7. The CCDF of the SINR for an I-PPP with the
intensity measure in (16) for the propagation model in (4) is
given by

Fcov(T ) ≜ E0 [P [SINR0 > T ]]

=

∫
r0

(
1

2
+

∫ ∞

0

Im [ϕSINR(q, T |r0)]
1

πq
dq

)
fR0(r0)dr0

where ϕSINR(q, T |r0) = ϕS(q|r0)ϕI(−Tq|r0) exp (−jTqσ2).
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ϕI(q|r0) = exp

[
4pg

∫ τ

r0

ã|ρ̃− u|−1 K(u) + c̃|ρ̃− u|E(u)(
1− jqP̄r(u)/m

)m udu− [Λ(r)]r=τ
r=r0

+ pg

[
πd̃
α−2

(
r2 + z2

)2−α
2F1

(
m, 2− 4

α
, 3− 4

α
;
jqP̄r(r)

m

)
+ π b̃+d̃(ρ̃2−z2)

α−1

(
r2 + z2

)1−α
2F1

(
m, 2− 2

α
, 3− 2

α
;
jqP̄r(r)

m

)]r=τ

r=r0

]
(21)

G(T, T ′) ≜ E0

[
P
[

S0

I0 + σ2
> T, S0 + I0 < T ′

]]
=

∫
r0

[
1

2
F|h|2

(
T ′

P̄r,0

)
−
∫ ∞

0

1

πq
Im
[
ϕI(q|r0) ζ(T, T ′, P̄r)

]
dq

]
fR0(r0)dr0 (22)

where ζ(T, T ′, P̄r,0) is given by (14).

Proof. The proof is obtained by applying Gil-Pelaez’s theorem
and by applying the expectation over the distance to the nearest
BS R0 and over the angle Θ0.

Theorem 8. Let T ′′ = T (T ′ + σ2)/(1 + T ). The trade-off
between the EMFE and network coverage for an I-PPP is
provided by the joint CDF of the EMFE and SINR, given in
(22) shown at the top of the next page.

Proof. The proof is provided in Appendix H.

The expressions of Theorems 7 and 8 can be simplified
because the integral over θ0 is equal to 2π.

IV. NUMERICAL RESULTS

A. Motion-Invariant Networks: β-Ginibre Point Process
In this section, the performance of a β-GPP network is

analyzed based on the system model described in Section II.
In order to have a realistic set of parameters, the 5G NR 2100
network of a major network provider in Paris (France) is
studied. The BSs located inside a disk of radius τ =6000m
and center (652, 6862) km in the Lambert 93 conformal conic
projection [47] are considered. The β-GPP with β = 0.75
was found to be the best fit for this MI network by applying
the methodology proposed in [22]. The system parameters
extracted from the operator’s database [44] are given in Ta-
ble IV-A. The half-power beamwidth of the observed antenna
patterns, 0.0982 rad, is taken as the value of ω, leading to pg=
0.0469. Based on propagation models used in similar urban
environments [1], [48], [49], we set the path loss exponent to
α=3.2. The noise power is σ2=10 log10(k T0 Bw)+30+FdB

in dBm where k is the Boltzmann constant, T0 is the standard
temperature (290 K), Bw is the bandwidth and FdB = 6dB is
the receiver noise figure [50]. The carrier frequency f and the
bandwidth Bw correspond to the official band allocated to the
operator in DL. Numerical results are presented for Rayleigh
fading (m=1), justified by the considered frequency band for
non line-of-sight propagation environments.

TABLE II
SYSTEM PARAMETERS USED FOR SUBSECTION IV-A

f 2 132.7MHz Bw 14.8MHz
λ 6.17BS/km2 re 0m
α 3.2 τ 6 km

PtGmax 66 dBm β 0.75
z 33m σ2 −96.27 dBm
pg 0.0469

1) Numerical validation: The mean EMFE is found to
be 1.38 · 10−4 W/m2 (0.23V/m) with a variance of 3.92 ·
10−7 W2/m4 using Theorem 1, (8) and (9). The value of
the mean EMFE obtained using 108 realizations of Monte
Carlo (MC) simulations shows a difference of 2 ·10−8 W/m2,
showing that the approximation made in the proof in Ap-
pendix A is insignificant. The marginal distributions of the
EMFE (Theorem 2) and SINR (Theorem 3) are validated in
Figs. 2 and 3 via MC simulations. The convergence of the
corresponding expressions is also illustrated as a function of
N , representing the number of terms considered within the
summation in Femf(T

′) and Fcov(T ). Figs. 2 and 3 illustrate
that truncating the infinite sums and products to N=10 yields
a highly accurate approximation of the CDFs. Extending the
truncation to N = 50 results in a maximal absolute error of
0.4% for the CDF of the EMFE in the head of the distribution
and an absolute error of 0.2% in the CCDF of the SINR. The
area around the 95th percentile has been magnified in Fig. 2
as it is an important statistical measure for EMFE assessment.
By way of comparison, the Paris authorities set the maximum
cumulative EMFE threshold at 5 V/m 900MHz equivalent
[51], i.e. 7.44 V/m at 2 132.7MHz, which corresponds to
-6.36 dBm using the formulas in (8) and (9). The values
of EMFE obtained in this section are well below the legal
threshold but we draw the reader’s attention to the fact that the
legal limit corresponds to a cumulative sum of EMFE caused
by all operators and all cellular frequency bands, whereas this
study deals with a single frequency band of a single operator
at a time.
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Fig. 2. CDF of EMFE with the model parameters from Table IV-A

Isocurves depicting the joint CDF of the EMFE and SINR
are presented in Fig. 4 for different values for the probability
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Fig. 3. CCDF of the SINR with the model parameters from Table IV-A
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Fig. 4. Isocurves of the joint CDF of the EMFE and SINR with the model
parameters from Table IV-A.

p such that G(T, T ′) = p. Due to the intricate nature of
the equations, the analytical computation of G(T, T ′) can be
time-consuming. To address this, an efficient solution is to
determine the Fréchet lower bound (FLB) and the Fréchet
upper bound (FUB), which are respectively defined by

FLB = max (0, Fcov(T ) + Femf(T
′)− 1) (23)

and
FUB = min (Fcov(T ), Femf(T

′)) . (24)

such that FLB ≤ G(T, T ′) ≤ FUB. Observing Fig. 4, it is
evident that the lower bound is close to G(T, T ′) and becomes
even closer as p increases. In the pursuit of a conservative
analysis, the lower bound can be employed as a substitute for
the more intricate expression of G(T, T ′).

2) Impact of the β-parameter: The marginal distributions
of the EMFE (Theorem 2) and SINR (Theorem 3) for several
values of β are shown in Fig. 5 and 6, respectively. Recalling
that the limiting case β = 0 corresponds to a H-PPP and
β = 1 corresponds to a GPP with more regularity, the EMFE
is lower when the distributions of points is more random while
the coverage is improved in networks that are more regularly
deployed. This can be explained from three observations. First,
in a more regular network, the typical user is on average closer
to the serving BS but also to the most interfering BSs, as can
be observed from the simulations in Fig. 7. Second, the nth
nearest BS gets closer on average as n is smaller. Third, the
signal power decreases as r−α. As a consequence, the more
regular the network, the larger the power of the useful signal

and the larger this latter power in comparison with the power
of the interfering signals. To maximize both the SINR and the
EMFE, the joint CDF of the EMFE and SINR can be analyzed.
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Fig. 5. CDF of the EMFE for different values of β in a β-GPP

-15 -10 -5 0 5 10 15 20 25 30

T (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Isocurves of the joint CDF of the EMFE and SINR are
shown in Fig. 8 for G(T, T ′) = 0.5, G(T, T ′) = 0.9 and
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G(T, T ′) = 0.95 for a H-PPP, a β-GPP with β = 0.5 and
a GPP. In general, for a fixed pair (T, T ′), the higher β the
better the network performance. For low values of T ′, the
trend is opposite. In other words, the benefit of an increase in
β in terms of coverage outweighs the negative impact on the
EMFE, provided that the EMFE threshold is not too low. Figs.
5, 6 and 8 reveal the error made by modeling the Paris network
with a simple H-PPP rather than a β-GPP. The Kolmogorov-
Smirnov distance between the two, indicating the maximal
absolute error, is 7.3% for the CDF of the EMFE, 6.1% for
the CCDF of the SINR and 7.3% for the joint CDF. These
results highlight the importance of an accurate representation
of the network topology.

B. Motion-Variant Networks: Inhomogeneous Poisson Point
Process

In this section, we illustrate the results for the I-PPP based
on the density model in (2). As an example, we consider a MV
network that corresponds to a cellular network in Brussels,
Belgium. At the time of writing, no 5G network has been
deployed in Brussels. We decided to use the LTE 1800 BS
network of a major telecommunications operator whose data
have been extracted from the database [45]. These BSs do
not use dynamic BF. The zone under investigation is a disk
centered at (797, 7085) km in Lambert 93 projection. It is the
origin of the coordinate system in which the calculations are
done. In order to cover the whole Brussels-Capital region, the
radius of the disk is set at 12 km as can be seen in Fig 9.
The fitted parameters and the network parameters are listed in
Table III. The central carrier frequency f and the bandwidth
Bw correspond to the official band allocated to the operator for
the DL. Numerical results are presented for Rayleigh fading
(m= 1), justified by the considered frequency band for non
line-of-sight propagation environments. In the following, the
network performance is calculated for several user locations,
using the change of variable explained in Subsection II-A2.
The area under investigation is each time a disk with arbitrary
radius τ=7km, contained in the larger 12 km-radius disk.

TABLE III
SYSTEM PARAMETERS USED FOR SUBSECTION IV-A

f 1 837.5MHz Bw 15MHz
α 3.2 x0 −0.145 km

PtGmax 62.75 dBm y0 −0.569 km
z 33m ã 0.050 km−1

re 0m b̃ 5.241 km−2

τ 7 km c̃ −0.973 km−3

σ2 −96.21 dBm d̃ 0.048 km−4

pg 1

1) Impact of the user location in the network: The metrics
of the I-PPP network are calculated at the origin and at
(−3 km, −3 km) in the first coordinate system. For each user
location, the network area is limited to a disk of radius τ
centered at the user location. The two disks are illustrated
with a red and green border in Fig. 9. Due to the potential
time-consuming computation of the mathematical expressions,
we suggest local approximations using a H-PPP. For each

location, the network performance is further compared with
two approximations: (a) a H-PPP network with a BS density
equal to the average BS density inside a small disk ϵ of radius
150m centered at the user location and (b) a H-PPP network
with a density equal to the average density inside the 7 km-
radius disk centered at the user location. The mathematical
expressions for the metrics of these H-PPPs can be obtained
by setting ã = 0km−1, c̃ = 0km−3, d̃ = 0km−4 and

b̃ =

∫
ϵ
λ(S)dS∫
ϵ
dS

.

The marginal distribution of the EMFE, given by Corollary 4,
is displayed in Fig. 10. The solid lines correspond to the results
obtained from MC simulations and the markers correspond
to values obtained from the mathematical expressions. The
user at the origin of the coordinate system experiences a
higher EMFE because of its smaller distance to the maximal
density (x0, y0), leading to a higher number of neighboring
BSs. The approximation (a) is very good and gets better as
the distance from the maximal density increases, contrarily
to the approximation (b). This shows that homogenizing the
BS density over a very local area gives a good estimate of
the EMFE experienced by the user. When considering large
networks however, the homogeneity assumption does not hold
anymore. The 95th quantile is −34.77 dBm (0.24V/m) for
the user at the origin and −39.34 dBm (0.14V/m) for the
user at (−3 000m, −3 000m). The same remarks as for Paris
apply when comparing these values to the 14.57 V/m 900MHz
equivalent [52] threshold set by the Brussels authorities (i.e.
20.82 V/m at 1 837.5MHz, corresponding to 2.58 dBm using
formulas in (8) and (9)). The CCDF of the SINR, given
by Theorem 7 and shown in Fig. 11, is on the contrary
almost unchanged at the different locations, with only a slight
improvement for the user at the origin of the coordinate
system.

Fig. 9. Density function in (2) with model parameters from Table III. The
two disks are centered at the two calculation points used in Figs. 10, 11. The
borders of the Brussels-Capital region are in light blue.

At last, isocurves of the joint CDF of the EMFE and SINR,
G(T, T ′) = p, given by Theorem 8 are shown in Fig. 12 for
p = [0.5; 0.95; 0.99] and validated via MC simulations.

2) Overview of the metrics in the network: In the following,
the focus is put on the EMFE since it could be concluded from
the previous numerical results that the spatial dependence of
the coverage is relatively low. The average EMFE calculated
by Theorem 5 at 2500 locations in the center of Brussels is
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Fig. 10. CDF of the EMFE at several locations in the LTE 1800 network
of a major Belgian operator in Brussels and comparison with a H-PPP
approximation
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Fig. 11. CCDF of the SINR at several locations in the considered LTE 1800
network and comparison with a H-PPP approximation
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Fig. 12. Isocurves of the joint CDF of the EMFE and SINR G(T, T ′) = p
with p = [0.5; 0.95; 0.99]. FLB = Fréchet lower bound.

presented in Fig. 13, and is superimposed on the Brussels map.
As expected, the EMFE radially decreases as the distance to
the center increases. Statistics of the EMFE regardless of the
user location are often required. Taking the expected value of
the considered network over the two dimensions of space in
Theorem 5 gives a value of 3.50 · 10−5 W/m2 (0.11V/m).

The probability to be below the threshold T ′ = -35.7 dBm
(0.22 V/m) is shown at the same 2500 locations in Fig. 14.
The relatively low values of the mean EMFE compared to the
legal threshold leads to choose a relatively low value of T ′

for the illustration. Again, taking the expected value of the
spatially-dependent CDF of the EMFE in Theorem 6 provides
a CDF of the EMFE experienced by any user, regardless of
its location, as shown in Fig. 15.
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Fig. 13. Mean EMFE from the considered LTE 1800 network at 2500
locations in the center of Brussels
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Fig. 14. Femf(-35.7 dBm) for the considered LTE 1800 network at 2500
locations in the center of Brussels
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Fig. 15. Femf (T ′) averaged over all 2500 locations in the considered
LTE 1800 network.

V. CONCLUSION

In this paper, performance metrics are provided to jointly
analyze the EMFE and coverage in MI and MV cellular
networks. Based on network topologies usually encountered in
European cities, the β-GPP is used as an example of tractable
PP for MI networks. In MV networks, the network is modeled
by an I-PPP. The approach is illustrated for the 5G NR 2100
network in Paris (France) and a LTE 1800 network in Brussels
(Belgium) using realistic network parameters. An analysis of
the network parameters is also provided and shows that an
optimal value of these parameters can be found to maximize
the coverage while minimizing the EMFE. For future works,
performance metrics could be easily adapted for other net-
work models, in other cities, using additional features (more
complex BF model, blockage, uplink, heterogeneous cellular
networks). The adaptation of the proposed framework to
evaluate global EMFE, incorporating the correlation between
the location of BSs of different technologies and operators,
in order to have a faithful way of comparison with the legal
thresholds, is another potential avenue for further investigation.



12

APPENDIX A
PROOF OF THE MEAN OF THE EMFE IN A β-GPP

As the main beam of the serving BS is assumed to be
directed towards the user, while the beams of the interfering
BSs are randomly oriented, it is essential to separate the
EMFE caused by the serving BS and the EMFE caused by
the interfering BSs. As explained in Subsection II-A1, since
each BS can potentially be the serving BS, we have

E [P]=EΨ,ξ,|h|,G

[∑
i∈N

(
P̄r,iGi|hi|2+

∑
j∈N
j ̸=i

P̄r,jGj |hj |2ξj
)
1ξi1Ai

]
(25)

where 1Ai
= {Ai = 1} is the indicator function. The

expectation operators and the sum over i can be interchanged.
Moreover, Ψ, ξ, |h|, and G are pairwise independent. Given
the model, the normalized gain of the serving BS is Gi =1,
and E [|h|2] = 1. With these observations and the application
of the expectation operators Eξ and EGi

, (25) is expressed as

E [P] = β
∑
i∈N

EΨ,ξ

[(
P̄r,i + EG

[ ∑
j∈N\{i}

P̄r,jGjξj

])
1Ai

]
.

The expectation operator EΨ can be split into the expectation
operators E|Xi|=ERi

and EΨ\{Xi}. We make a small approxi-
mation by applying the expectation operators EΨ\{Xi} and Eξ

to the sum of the interference and to 1Ai
independently. The

impact of this approximation is shown to be insignificant in the
numerical results section. Given that E [ξi]=β, this leads to

E [P] = β
∑
i∈N

ERi

[(
P̄r,i + βEG,Ψ\{Xi}

[ ∑
j∈N\{i}

P̄r,jGj

])

× EΨ\{Xi}

[ ∏
j∈N\{i}

Eξj

[
1{ξj=1,|Xj |>|Xi|}∪{ξj=0}

] ]
︸ ︷︷ ︸

Υβ
i (R

2
i )

]
. (26)

Focusing first on Υβ
i (R

2
i ), upon applying the expectation

operators, the resulting expression is obtained:

Υβ
i (R

2
i ) =

∏
j∈N\{i}

(
β ERj

[
1{R2

j>R2
i}
]
+ 1− β

)
. (27)

Then using the PDF in (1) for the inner expectation results in

ERj

[
1{R2

j>R2
i}
]
=

∫ τ2

r2
e

1{v>R2
i}

vj−1 e−
cv
β

(j − 1)! (β/c)
j dv. (28)

Using the generalized incomplete gamma function Γ(z; a, b) =∫ b

a
tj−1 e−t dt and replacing (28) in (27) leads to

Υβ
i (R

2
i ) =

∏
j∈N\{i}

(
1− β + β

Γ
(
j,

cR2
i

β
, cτ2

β

)
(j − 1)!

)
. (29)

Then in (26), the sum over j, excluding the index i, can
be rewritten as the difference between the sum over j and

the term with index i. As EG [G] = pg and as the Gi’s are
pairwise independent, by using again the PDF in (1), we have

EG,Ψ\{Xi}

[ ∑
j∈N\{i}

P̄r,jGj

]
= EG,Ψ

[∑
j∈N

P̄r,jGj − P̄r,iGi

]
= pg

∫ τ2

R2
i

(∑
j∈N

( c
β
)jvj−1e−

cu
β

(j − 1)!
−

( c
β
)ivi−1e−

cu
β

(i− 1)!

)
P̄r(v)dv.

(30)

The sum inside the integral converges and gives∑
j∈N

vj−1

(β/c)j (j − 1)!
=
∑
j∈N0

vj

(β/c)j+1 j!
=

c

β
evc/β . (31)

Replacing (31) in (30) gives

EG,Ψ\{Xi}

[ ∑
j∈N\{i}

P̄r,jGj

]
=

2pgc/β

α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=Ri

r=τ
− pg

∫ τ2

R2
i

fi(v)P̄r(v)dv.

(32)

Replacing (27) and (32) in (26) and applying the expectation
operator ERi

using (1) leads to

E [P]=β
∑
i∈N

∫ τ2

r2
e

(
P̄r(u) +

2 c pg
α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=√
u

r=τ

−pgβ

∫ τ2

u

fi(v)P̄r(v)dv

)
× fi(u)Υ

β
i (u)du.

At last, the expression of the mean (10) in Theorem 1 is
obtained by switching the sum and the integral, by distributing
the product and by defining

Ω(u) =
∑
i∈N

fi(u)Υ
β
i (u), Ω∗(u, v) =

∑
i∈N

fi(u)fi(v)Υ
β
i (u).

If no dynamic BF is employed, (25) simplifies to E [P∗] =
EΨ,|h|,ξ

[∑
i∈N P̄r,i|hi|2 ξi

]
. Applying the expectation opera-

tors leads to

E [P∗] = β

∫ τ2

r2
e

∑
i∈N

(c/β)i

(i− 1)!
ui−1e−cu/βP̄r(u)du.

Repeating step (31) and integrating leads to (10) in Corol-
lary 1.

APPENDIX B
PROOF OF THE SECOND MOMENT OF THE EMFE IN A

β-GPP
Since every BS can potentially be the serving BS, the same

reasoning used for the proof of the mean can be applied to
derive the second moment of the EMFE. By using the result
(29), this gives

E
[
P2
]
= E

[
(S0 + I0)

2
]
= E

[
S2
0 + 2S0I0 + I20

]
= E

[∑
i∈N

(
S2
i + 2SiIi + I2i

)
P [X0 = Xi]

]
=
∑
i∈N

ERi

[
EΨ\{Xi},G,|h|,ξ

[
S2
i + 2SiIi + I2i

]
Υβ

i (Xi)
]

(33)
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We then analyze the the inner expectation operator on
each term, separatly. Starting with E[S2

i ] and knowing that
E|h| [|h|4] = (m+ 1)/m, we have

EΨ\{Xi},G,|h|,ξ
[
S2
i

]
= β

m+ 1

m
P̄ 2
r,i. (34)

Now for the cross-term E[SiIi], since the |hi|’s are pairwise
independent, just like the ξi’s and the Gi’s, we obtain

E[SiIi] = EΨ\{Xi},G,|h|,ξ

[
P̄r,i|hi|2Giξi

∑
j∈N\{i}

P̄r,j |hj |2Gjξj

]
= β2P̄r,iEG,Ψ\{Xi}

[ ∑
j∈N\{i}

P̄r,jGj

]
Similarly to what is done in (32) for the mean, this gives

E[SiIi] = βpgP̄r,i

(
2c

α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=Ri

r=τ

−β

∫ τ2

R2
i

fi(v)P̄r(v)dv

)
.

(35)

At last, E[I2i ] can be split into two terms:

E[I2
i ] =

T1︷ ︸︸ ︷
EΨ,G,|h|,ξ

[ ∑
j∈N\{i}

P̄ 2
r,jG

2
j |hj |4ξ2j

]

+EΨ,G,|h|,ξ

[ ∑
j∈N\{i}

∑
k∈N\{i,j}

(
P̄r,jGj |hj |2ξj

)(
P̄r,kGk|hk|2ξk

)]
︸ ︷︷ ︸

T2

By following the same reasoning as before and by using
EG[G

2] = pg for the interfering BSs, T1 is obtained by

T1 = β
m+ 1

m
pg

∑
j∈N\{i}

∫ τ2

R2
i

fj(v)P̄
2
r (v)dv

=
m+ 1

m

pgc

α− 1

[
P̄ 2
r (r

2)
(
r2 + z2

)]r=Ri

r=τ

− m+ 1

m
pgβ

∫ τ2

R2
i

fi(v)P̄
2
r (v)dv

(36)

and T2 is obtained by

T2 = β2p2g
∑

j∈N\{i}

∫ τ2

R2
i

fj(v)P̄r(v)
∑

k∈N\{i,j}

∫ τ2

R2
i

fj(w)P̄r(w)dv dw.

This can be rewritten as

T2 = β2p2g

( ∑
j∈N\{i}

∫ τ2

R2
i

fj(v)P̄r(v)dv
)2

︸ ︷︷ ︸
T2a

−β2p2g
∑

j∈N\{i}

(∫ τ2

R2
i

fj(v)P̄r(v)dv

)2

︸ ︷︷ ︸
T2b

(37)

where T2a gives

T2a = p2g

(
2c

α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=Ri

r=τ
− β

∫ τ2

R2
i

fi(v)P̄r(v)dv.

)2

=

(
2pgc

α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=Ri

r=τ

)2

−
4p2gcβ

α− 2

[
P̄r(r

2)
(
r2 + z2

)]r=Ri

r=τ

∫ τ2

R2
i

fi(v)P̄r(v)dv

+ β2p2g

∫ τ2

R2
i

∫ τ2

R2
i

fi(v)fi(w)P̄r(v)P̄r(w)dw dv

(38)

and T2b can be developed as follows:

T2b = p2gβ
2
∑
j∈N

∫ τ2

R2
i

∫ τ2

R2
i

(vw)j−1e
− c(v+w)

β ( c
β
)2j

(j − 1)!(j − 1)!
P̄r(v)P̄r(w)dw dv

−p2gβ
2

∫ τ2

R2
i

∫ τ2

R2
i

fi(v)fi(w)P̄r(v)P̄r(w)dw dv

The integrals and the sum in the first line can be switched. The
sum over j converges and gives a modified Bessel function of
the first kind I0(x) of order 0:

T2b = p2gc
2

∫ τ2

R2
i

∫ τ2

R2
i

e−
c(v+w)

β I0
(
2c
√
vw/β

)
P̄r(v)P̄r(w)dw dv

− p2gβ
2

∫ τ2

R2
i

∫ τ2

R2
i

fi(v)fi(w)P̄r(v)P̄r(w)dw dv (39)

The second moment in Theorem 1 is given by combining
(33), (34), (35), (36), (37), (38) and (39) and by reorganizing
the terms.

If no BF is employed, the reasoning is exactly the same
as the one to compute E [I2i ], except that there is no j ̸= i
and k ̸= i conditions. There is therefore no summation on the
index i and the only terms that remain are the first term of T1

in (36), the first term of T2a in (38) and the first term of T2b

in (39), with the lower bound of the integrals being re instead
of Ri.

APPENDIX C
PROOF OF THE CHARACTERISTIC FUNCTION OF THE

INTERFERENCE IN A β-GPP
From the definition of CF,

ΦI,i(q|R2
i ) = E

exp(jq ∑
k∈N\{i}

P̄r,k|hk|2Gkξk

∣∣∣|Xk| > |Xi|
)

= E
[ ∏
k∈N\{i}

ejqP̄r,k|hk|2Gkξk 1{|Xk|>|Xi|}

]
.

Since the random variables Ψ, h and ξ are independent,

ΦI,i(q|R2
i )=

∏
k∈N\{i}

EΨ

[
Eξ,|h|,G

[
ejqP̄r,k|hk|Gkξk

]
︸ ︷︷ ︸

Q(q)

1{|Xk|>|Xi|}

]
.

(40)
Extracting the term Q(q) and applying the expectations on ξ
and G leads to

Q(q) = E|h|

[
pgβe

jqP̄r,k|hk|2 + 1− pgβ
]
.
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Then for a Nakagami-m fading it becomes

Q(q) =
pgβ(

1− jqP̄r,k/m
)m + 1− pgβ.

Replacing this expression in (40) and applying the expec-
tation on Φ using (1) results in Proposition 1.

APPENDIX D
PROOF OF THE CDF OF THE EMFE IN A β-GPP

Since every BS can be the serving BS, we obtain

Femf(T
′) =

∑
i∈N

P (P < T ′, X0 = Xi)

= β
∑
i∈N

P [Si + Ii < T ′,Ai]︸ ︷︷ ︸
Fi(T ′)

(41)

Using Gil-Pelaez’ theorem, Fi(T
′) can be further expressed as

Fi(T
′)=EΨ,ξ

[
1Ai

(
1

2
−
∫ ∞

0

1

πq
Im
[
ϕE,i(q|R2

i )e
−jqT ′

]
dq

)]
where ϕE,i(q|R2

i ) = ΦS(q|R2
i ) ΦI,i(q|R2

i ) and

ΦS(q|R2
i ) = E|h| [exp (jqSi)] = (1− jqP̄r,i/m)−m.

Using the same reasoning as in Appendix A to obtain (26)
by using the definition (29) of Υβ

i , we have

Fi(T
′)=ERi

[
Υβ

i (R
2
i )

(
1

2
−
∫ ∞

0

1

πq
Im
[
ϕE,i(q|R2

i )e
−jqT ′

]
dq

)]
.

Applying the expectation operator and using (1) are applied
results in

Fi(T
′)=

∫ τ2

r2
e

fi(u)Υ
β
i (u)

(
1

2
−
∫ ∞

0

1

πq
Im
[
ϕE,i(q|u)e−jqT ′

]
dq

)
du.

(42)
Theorem 2 is obtained by replacing (42) in (41).

APPENDIX E
PROOF OF THE MEAN EMF EXPOSURE IN AN I-PPP

As the main beam of the serving BS is assumed to be
directed towards the user, while the beams of the interfering
BSs are randomly oriented, it is essential to separate the
EMFE caused by the serving BS and the EMFE caused by
the interfering BSs. The mean EMFE can then be written

E [P]=EΨ,|h|,G

[
P̄r,0G0|h0|2 +

∑
i∈N

P̄r,iGi|hi|2
]
.

Using the independence between Gi, hi and Ψ, given that
G0 = 1, EG[Gi|i̸=0] = pg and E|h|[|hi|2] = 1 and using
EΨ[·] = EX0

[·] + EΨ\{X0}[·] , the mean EMFE can be further
expressed as

E [P]=EX0

[
P̄r,0 + pgEΨ\{X0}

[∑
i∈N

P̄r,i

]]
.

It follows from Campbell’s theorem that

E [P] = EX0

[
P̄r,0 + pg

∫ τ

R0

P̄r(r) Λ
(1)(r) dr

]
.

The mean EMFE in Theorem 5 is then obtained by applying
Proposition 2 to compute the expectation over X0 and by
resolving over r.

APPENDIX F
PROOF OF THE SECOND MOMENT OF THE EMF EXPOSURE

IN AN I-PPP

The proof is very similar to the proof of a β-GPP in
Appendix B. For the reader’s convenience, the main steps can
be summarized as follows:

E
[
P2
]
=EX0

[
E|h|

[
S2

0

]
+2EΨ\{X0},G,|h|[S0I0]+EΨ\{X0},G,|h|

[
I2
0

]]
(43)

with

E|h|
[
S2
0

]
=

m+ 1

m
P̄ 2
r,0; (44)

EΨ\{X0},G,|h|[S0I0] = pgP̄r,0EΨ\{X0}

[∑
i∈N

P̄r,i

]
= pgP̄r,0

∫ τ

R0

P̄r(r) Λ
(1)(r) dr;

(45)

EΨ\{X0},G,|h|

[
I2
0

]
= EΨ\{X0},G,|h|

[( ∑
i∈Ψ\{X0}

P̄r,i G
2
i |hi|2

)2]

= E

[∑
i∈N

P̄ 2
r,iG

2
i |hi|4

]
+ E

[∑
i∈N

∑
j∈N\{i}

P̄r,iP̄r,j |hi|2|hj |2GiGj

]
(a)
= pg

m+ 1

m

∫ τ

R0

P̄ 2
r (r) Λ

(1)(r) dr + p2g

(∫ τ

R0

P̄r(r) Λ
(1)(r) dr

)2

(46)

Campbell’s theorem is again used for the first term on the
right-hand side, and the PPP’s second-order product density
formula is used for the second term in step (a) in (46). The
latter is equal to

(
P̄ I
r (r|R0)

)2
. Replacing (44), (45) and (46)

in (43) and applying the expectation operator over X0 results
in (20).

APPENDIX G
PROOF OF THE CHARACTERISTIC FUNCTION OF

INTERFERENCE IN AN I-PPP

Using the definition of the CF and the probability generating
functional, the CF for the interference is

ϕI(q) = exp

[∫∫
B(r0,τ)

(
EG,|h|

[
ejqP̄r(r)G|h|2

]
−1
)
dΛ

]
(47)

where B(r0, τ) = B(0, τ)\B(0, r0) is a ring centered at 0 with
inner radius r0 and outer radius τ . For Nakagami-m fading,
we have

EG,|h|

[
ejxG|h|2

]
= pg (1− jx/m)

−m
+ 1− pg. (48)

Replacing (17) and (48) in (47) and integrating over θ gives

ϕI(q|r) = exp

[
2πpg

∫ τ

r0

b̃ u+ d̃ u ρ̃2 + d̃ u3(
1− jqP̄r(u)/m

)m du︸ ︷︷ ︸
Ξ

+pg

∫ τ

r0

(
4
ã|ρ̃− u|−1K(u) + c̃|ρ̃− u|E(u)(

1− jqP̄r(u)/m
)m − Λ(1)(u)

)
du

]
.
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By definition,
∫ τ

r0
Λ(1)(u)du = Λ(τ)−Λ(r0). Let us now focus

on Ξ. The change of variable υ −→ (u2 + z2)
−α
2 leads to

Ξ = −

(τ2+z2)
−α
2∫

(r2
0+z2)

−α
2

(
b̃+ d̃ ρ̃2

)
υ1− 2

α + d̃ υ1− 4
α − d̃ z2υ1− 2

α

α (1− jq Pt κ−1 υ/m)
m dυ.

Proposition 3 is obtained by resolving over υ and by using
the relationship∫ q

p

x1−n(
1− jsx

m

)m dx =

[
x2−n

n− 2
2F1

(
m, 2− n, 3− n;

jsx

m

)]x=q

x=p

obtained from [53] after a change of variable, with n ̸= 1 and
p, q ≥ 0 and (1− jsx)m having its principal value, leading to

Ξ =

[
d̃

2α−4

(
r2 + z2

)2−α
2F1

(
m, 2− 4

α
, 3− 4

α
;
jqP̄r(r)

m

)

+ b̃+d̃(ρ̃2−z2)

2α−2

(
r2 + z2

)1−α
2F1

(
m, 2− 2

α
, 3− 2

α
;
jqP̄r(r)

m

)]r=τ

r=r0

APPENDIX H
PROOF OF THE JOINT SINR-EXPOSURE CDF

Using the notations S = S0 and I = I0, the joint metric
can be expressed as

G(T, T ′) ≜ P
[

S

I + σ2
> T, S + I < T ′

]
= P

[
I <

S

T
− σ2, I < T ′ − S

]
=

{
P
[
I < S/T − σ2

]
ifS/T − σ2 < T ′ − S,

P
[
I < T ′ − S

]
ifT ′ − S < S/T − σ2.

Rewriting the inequalities, remembering that I is a positive
random variable and introducing T ′′ = T (T ′ + σ2)/(1 + T ),
we get

G(T, T ′) =


P
[
I < S/T − σ2

]
ifS < T ′′,

P
[
I < T ′ − S

]
ifT ′′ < S < T ′,

0 ifS > T ′.

Let FI(y|r0, θ0) be the CDF of the interference conditioned
on the location of the serving BS. Using the definition of S (6)
and by linearity, the last equality can be rewritten as

G(T, T ′) = Er0,θ0

[ ∫ T ′′
P̄r,0

0

FI

(
xP̄r,0

T
− σ2

∣∣∣r0, θ0)f|h|2(x)dx︸ ︷︷ ︸
T1

+

∫ T ′′
P̄r,0

T ′
P̄r,0

FI

(
T ′ − xP̄r,0

∣∣∣ r0, θ0) f|h|2(x)dx︸ ︷︷ ︸
T2

]

Let us develop the term T1. The following functions can be
replaced in the last expression:

- f|h|2(x) =
mmxm−1e−mx

Γ(m)
u(x) where u(x) is the step func-

tion;
- F|h|2(x)=

γ(m,mx)
Γ(m)

the corresponding CDF;
- FI(y|r0, θ0) = 1

2
− 1

π

∫∞
0

Im [ϕI(q|r0, θ0)e−jqy] q−1dq us-
ing the Gil-Pelaez inversion theorem.

Then by linearity, by swapping the integrals over q and x,
and by using the definition of the CDF, we obtain

T1 =
1

2
F|h|2

(
T ′′

P̄r,0

)

−
∫ ∞

0

∫ T ′′
P̄r,0

0
Im

[
ϕI(q|r0, θ0)e

−jq

(
xP̄r,0

T
−σ2

)]
mmxm−1e−mx

Γ(m)πq
dx dq.

By swapping the integral over the real number x with the
imaginary part, we have

T1 =
1

2
F|h|2

(
T ′′

P̄r,0

)

−
mm

Γ(m)

∫ ∞

0
Im

[
ϕI(q|r0, θ0)

∫ T ′′
P̄r,0

0
e
−jq

(
xP̄r,0

T
−σ2

)
−mx

xm−1dx

]
dq

πq
.

The integral inside the imaginary part can be calculated as
follows:∫ b

a

e−cxxm−1dx =
1

cm
Γ(m; ca, cb) if m > 0.

By evaluating this integral, we obtain

T1 =
1

2
F|h|2

(
T ′′

P̄r,0

)
−
∫ ∞

0

1

πq
Im [ϕI(q|r0, θ0)ζ1(T, T ′, l(r0))] dq (49)

where

ζ1(T, T
′, P̄r,0) =

mm

(m− 1)!

γ
(
m, −T ′′

P̄r,0

(
m+ j qP̄r,0

T

))
(
m+ j qP̄r,0

T

)m ejqσ
2

.

The same reasoning can be applied to the term T2. It leads to

T2 =
1

2
F|h|2

(
T ′

P̄r,0

)
− 1

2
F|h|2

(
T ′′

P̄r,0

)
−
∫ ∞

0

1

πq
Im
[
ϕI(q|r0)ζ2(T, T ′, P̄r)

]
dq (50)

where

ζ2(T, T
′, P̄r,0) =

mme−jqT ′

(m− 1)!

Γ

(
m;

T ′(m−jqP̄r,0)
P̄r,0

,
T ′′(m−jqP̄r,0)

P̄r,0

)
(
m− jqP̄r,0

)m .

The joint EMFE-SINR distribution conditioned on the dis-
tance from the user to the serving BS is obtained by grouping
the two terms (49) and (50) and by writing ζ(T, T ′, l0) =
ζ1(T, T

′, l0) + ζ2(T, T
′, l0). This demonstration is used to

obtain:

• Theorem 4 by inserting the sum of the expectations over
the distance to every BS Xi, as done in Appendix D.

• Theorem 8 by applying the expectation operator over
r0 and θ0, i.e. using the PDF of the distance from the
user to the serving BS (2) (there is no dependence on
θ0 so the corresponding expectation operator leads to a
multiplicative factor 2π).
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sité Libre de Bruxelles and at Brussels Environment,
Belgium. His research interests encompass stochas-
tic geometry and ray-tracing modeling as applied
to the assessment of EMF exposure and coverage
analysis in wireless networks.

Charles Wiame earned his M.Sc. degree in electri-
cal engineering from UCLouvain, Belgium, in 2017.
As a Ph.D. student under the guidance of Prof. L.
Vandendorpe and Prof. C. Oestges at UCLouvain,
he successfully obtained his Ph.D. degree in 2023.
His doctoral research focused on exploring the trade-
offs between coverage and EMF exposure in wireless
systems, approached from a stochastic geometry
perspective. Simultaneously, Charles served as a
teaching assistant and lecturer. In 2022, he was
visiting researcher in the lab of Prof. Emil Björnson
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